Who's writing on this one?	Name of Computer	When it was first built	Who made it (Company and Designer)	Built for/Used by	Notes/ Important Details	Useful source(s) on it
James Lane	Illiac IV	1971	UIUC, DARPA, Burroughs, Texas Instruments (Chief: Daniel Slotnick)	NASA - Ames Lab	First supercomp uter on arpanet; early massively parallel design	'The Illiac IV System', WJ Bouknight et al, Proceedings of the IEEE Vol 60, No. 4, April 1972
Drew Simmons	Cray 1	1975	Cray Research / Seymour Cray	Multiple customers	One of the first 'production' supercomp uters	
Graham Butler	Gordon	January,20 12	San Diego Supercomputer center		It will help for research of further Large Hadron Collider (LHC)	"SDSC's Gordon Supercomputer Assists in Crunching Large Hadron Collider Data." Energy Weekly News (2013): 422.
	Piz Daint	December 2012	Swiss National Supercomputin g Center/ Cray Inc	Numeric weather prediction	It is being used to parse huge data sets and for computer simulation processes.	'Newman, Lily. "Piz Daint Masters Both Speed and Efficiency by Keeping Data Close to Its Processors." IEEE Spectrum. 27 Jan. 2014. Web' Wikipedia articles on CSCS
Matthew	Titan	Early 2013	Oak Ridge leadership	Departmen t of Energy,	It was named	"ORNL Completes First

Dembny			computing facility	for research of different topics such as biofuels,co mbustion engine efficiency etc	after the jaguar supercomp uter was upgraded	Phase of Titan Supercomputer Transition." NewsRx Health & Science (2012): 1238.
Stefanos	Tianhe-2 (Milky way 2)	June 2013	China's National University of Defence Technology(NU DT)/ Inspur	simulation, analysis and governmen t security application s	the world's No. 1 system with a performanc e of 33.86 petaflop/s	Wikipedia articles on Tianhe -2 "Top500ListsJun e 2015" web.
Justin	Stampede	2013,April	Texas advanced computer center(TACC)	Enables and accelerate open science research	TACC Had completed integration of the largest configuratio n of the new intel Xeon Phi parallel coprocesso rs into stampede.	Texas advanced computing center; media invitation: Introducing stampede, A new supercomputer to enable and accelerate open science research in the united states. (2013). <i>Politics & Government Business</i> , , 57. Retrieved from http://ezproxy.va Ipo.edu/login?url =http://search.pr oquest.com/doc view/132115458 9?accountid=14 811
	Hitachi SR8000	2001	Hitachi Ltd circa	Memory intensive application	lt has good scalability	Takahashi, Daisuke, Mitsuhisa Sato,

				S	continuing up to 8 processors except for a few benchmark programs.	and Taisuke Boku."Performa nce Evaluation of the Hitachi SR8000 using SPEC OMP2001 Benchmarks."Int ernational Journal of Parallel Programming 31.3 (2003): 185-96.
	ASCI Blue Mountain	1998	Los Alamos National Laboratory and SGI	A peak speed of TFLOPS & simulates nuclear physics	Set a world record by running 17.8 years of equivalent single processor computing in just 72 hours.	"Energy Department's Blue Mountain Supercomputer Achieves Record-Breakin g Run." PR Newswire: 1. 2000.
Ryan Nguen	Tsubame 2.0	November, 2010	Tokyo Institute of Technology	Weather prediction and high precision simulation over fine grained grids.	it was ranked 5th in the world in the year 2011 due to its performanc e.	Shimokawabe, Takashi, et al. "145 TFlops Performance on 3990 GPUs of TSUBAME 2.0 Supercomputer for an Operational Weather Prediction." <i>Procedia</i> <i>Computer</i> <i>Science</i> 4 (2011): 1535-44. Web.
	Earth	June 2004	NEC	Running	Ultra	"nec Delivers

Simulator		Corporation	global climate models to evaluate the effects of global warming.	large-scale parallel computatio n system built with 640 nodes means 5,120 CPUs in total.	Supercomputer to Earth Simulator Center." <i>Mainfra</i> <i>me Computing</i> 15.5 (2002)Web.
Numeric Wind Tunnel	November 1993	National Aerospace Laboratory of Japan /Fujitsu	Developed to promote Computatio nal Fluid Dynamics activities.	It was the first supercomp uter with a sustained performanc e of close to 100 Gflop/s	Naoki Hirose , Masahiro Fukuda, Numerical Wind Tunnel(NWT) and CFD Research, Proceedings of the High-Performan ce Computing on the Information Superhighway, HPC-Asia '97, p.99, April 28-May 02, 1997.
Intel XP/S 140 Paragon	1993	Intel / Sandia National Laboratories	a distributed memory scalable multi computer	It was a productized version of the experiment al Touchstone Delta system	"Top 500 Features Top#1 systems in june 1994" web.
Cray T3E	November 1995	Cray Research Inc.	For extremely fast movement of data	It is known as a scalable computer whose speed increases	"Cray Unveils T3E Supercomputer. " <i>Asian Wall</i> <i>Street Journal</i> :

				as more processors are added	9. 1995. Web.
ASCI White	2000	IBM / Lawrence Livermore National Laboratory	To simulate nuclear weapons tests	It was capable of more than 12 trillion mathematic al operations per second.	Retrieved from https://computati on.llnl.gov/casc/ sc2001_fliers/A SCI_White/ASC I_White01.html
Alpha Server SC45	June 2002	HP / Alamos National Laboratory	High performanc e technical computing	It is an integrated combinatio n of one or more Compute Building Blocks and Storage Building Blocks.	"Top500 List June 2002" web. Wikipedia articles on Alpha Server SC45 supercomputer.
SuperMike	2002	Atipa Technology / Louisiana State University.	To solve a wide variety of challenging science and engineerin g problems.	It clocks at 2.207 Tera Flops,and it performs over 2 trillion floating point operations every second.	Retrieved from http://www.phys. lsu.edu/faculty/t ohline/capital/be owulf.html
Columbia	2004	Silicon Graphics and Intel (SGI) / NASA	Increased NASA's supercomp uting capacity 10-fold for the agency's science,	It was delivered over 3 billion hours of computatio nal time to NASA research	http://www.nas.n asa.gov/hecc/re sources/columbi a.html

			aeronautics and exploration sciences	projects.	
BlueGene/ L	2005	IBM	To run molecular dynamic application s at extreme speeds	It is a first step in IBM's commitmen t to petaflops scale computing by exploring new architectur e of building massively parallel machines.	Bhanota, Gyan, et al. "The BlueGene/L Supercomputer. " <i>Nuclear</i> <i>Physics B</i> (<i>Proceedings</i> <i>Supplements</i>) 119 : 114-21. Web Wikipedia articles on BlueGene/L
Mira	2012	IBM	Industry, Academic and governmen t academic research project	The supercomp uter Mira is twice as fast as todays supercomp uter providing a strong science and technology engine that will fuel national inovation	IBM's Mira Supercomputer does Ten Petaflops with Ease, Inches Us Closer to Exascale-Class Computing. New York: Newstex, 2011. Web.
Nebulae	2011	National Supercomputin g center shenzhen,Gua ngdong,China	To improve health care service in south china	To match up with USA and Europe in the sector of Health	Davis, Bob. "China's Not-so-Super Computers." <i>Wall Street</i>

					care to automatic design to aviation this was developed.	<i>Journal</i> , Easternition ed.: B.1. 2012. Web.
	ASC Purple	2006	IBM / Lawrence Livermore National Laboratory	For the developme nt of the complex three dimensiona l integrated weapons performanc e application s	Advanced Simulation & Computing (ASC) program's purple requires 7.5 MW electrical power for the computer and cooling equipment.	"Top500 List Nov 2006" web. Retrieved from https://asc.llnl.g ov/computing_r esources/purple /
Rogelio Murillo	Mare Nostrum	2007	IBM/Barcelona Supercomputin g center	It is used in human genome research, protein research, astrophysic al simulations , weather forecasting and geological modeling	It is the most gorgeous super computer in the world, installed in a former chapel with acres of glass and steel.	http://gizmodo.c om/293608/mar enostrum-the-w orlds-most-gorg eous-super-com puter
lan McMillan	Roadrunne r	2008	IBM/ Los Alamos National Laboratory	To run calculation s to ensure the safety of the US nuclear stockpile	It has become the first machine to calculate at more than a quadrillion operations	"Beep-beep! Roadrunner breaks petaflop barrier." Nature 453.7197 (2008): 837. Health Reference Center

				per second.	Academic. Web. 8 Oct. 2015.
UNIVAC(Universal automatic computer)	1950	Remington Rand Company	Used for predicting accurate weather prediction, used past history then analyze and produce result	Able to make 2000 mathematic al per second.It is fast and versatile able to print 600 lines per minute	http://www.techn obuffalo.com/
IBM NORC (Naval ordnance research computer)	1950-1954	IBM	Used at columbia University to calculate missile trajectories.	It predated microproce ssor.had a clock speed of 1 microsecon d and was able to perform 15,000 operations per second	Matlis, Jan. "supercomputer s." <i>Computerwor</i> <i>Id</i> 39.22 (2005): 30. Web.
IBM 701 (Defense Calculator)	1953	IBM	Designed for scientific calculation s	The first IBM large-scale electronic computer manufactur ed in quantity and later it was unveiled as the IBM 701 Electronic Data Processing Machines.	Retrieved from www-03.ibm.co m/ibm/history/ex hibits/701/701_i ntro.html
IBM 7030	1956	IBM	To meet	Stretch	Smotherman,

Stretch			the needs of the Livermore and Los Alamos nuclear weapons laboratorie s, such as calculation s for hydrodyna mics and neutron diffusion.	was considered a commercial failure but it generated many technologie s incorporate d in future machines that were highly successful.	Mark, and Dag Spicer. <i>IBM's</i> <i>Single-Processo</i> <i>r</i> <i>Supercomputer</i> <i>Efforts</i> . 53 Vol. ACM, 2010. Web. Wikipedia articles on IBM 7030 Stretch
UNIVAC LARC(Live rmore Advanced Research Computer)	1960	Lawrence Livermore National Laboratory	To run hydrodyna mic simulations for nuclear weapon design	The LARC was the one of the earliest supercomp uter and demonstrat ed the exciting promise of computing as a scientific tool	Retrieved from http://www.comp uter-history.info/ Page4.dir/pages /LARC.dir/LARC .Cole.html
STAR-100	1971	Control Data Corporation (CDC)	To solve large computatio nal problems in science & engineerin g	STAR-100 (STring ARray) was one of the first machines to use a vector processor to improve performanc e on appropriate scientific application	Schneck, Paul B. "The CDC STAR-100." Supercomputer Architecture. Vol. 31. Springer US, 1987. Print.

				S.	
Cray X-MP	1982	Cray Research	It was used for rendering "The Adventures of André and Wally B.," a short film by the Lucasfilm Computer Graphics Project	The company's first shared-me mory, parallel vector processor (PVP) machine	Retrieved from http://www.comp utinghistory.org. uk/det/6188/Intr oduction-of-Cra y-X-MP-superco mputer/
Cyber 205	1981	Control Data Corporation (CDC)	Efficiency in solving complex physical and mathematic al problems	It can produces up to 800 million results per second and also it is up to 8 times faster than any previous control data system.	Retrieved from http://www.comp utinghistory.org. uk/userdata/files /the-control-data -cyber-205-com puter-system-th e_practical-supe rcomputer.pdf
Cray 2	1985	Cray Research	To study the effects on the accuracy of climate model simulations of increasing computatio nal detail	At 1.9 GFLOPS peak performanc e, it was the fastest machine in the world when it was released	Wampler, Steve. "Unique Cray 2 Supercomputer Arrives at LLNL." <i>Business Wire</i> : 1. 1990. Web. Wikipedia articles on Cray 2
ETA 10	1987	ETA Systems	For the installed base of	It is 25 times as powerful as	Delany, Don. <i>Princeton's</i>

			unix programs running on mini supercomp uters	the Cyber, the ETA 10 uses only half the electricity of the smaller machine. It ran at 60 Megaflops and it was cooled by liquid nitrogen.	Supercomputer Center. 63 Vol. Trenton: MIDJersey Chamber of Commerce, 1987. Web. Anonymous. "ETA Systems Links Unix Work Stations to its Supercomputers ." <i>Electronics</i> 61.13 (1988): 23. Web.
Cray Y-MP	1988	Cray Research/ Steve Chen	To simulate the behavior of advanced airplanes and spacecraft, complemen ting wind-tunnel and shock-tunn el testing.	It has achieved a peak speed of 2.37 billion computatio ns per second and it was the successor to the company's X-MP	Fisher, Arthur. Fastest Supercomputer. (Ames Research Center's Cray Y-MP). 234 Vol. Bonnier Corporation, 1989. Web.
CM-5 (Connectio n Machine)	1991	Thinking Machines Corporation/ Danny Hillis	Designed for large scale scientific and business application s	Due to its scalability, its global access of locally distributed memory, CM-5 support a variety of	Retrieved from https://www.ece. cmu.edu/~ece7 40/f13/lib/exe/fet ch.php?media= hillis_cm5.pdf

				parallel programmi ng models with good performanc e	
Cray 3	1993	Cray Computer Corporation (CCC)	It ran atmospheri c and oceanic computer simulations and was used for CCC software developme nt	It uses gallium arsenide(G aAs) integrated circuits for all its logic circuitry and it was a multi vector processor intended to be reminiscent to the Cray 2	http://ed-thelen. org/comp-hist/vs -cray-comp-cray -3.html
fujitsu Numerical wind tunnel	1994	Jaguar-K computer	To increase calculation per second as per the japanese word 'kie' for the number quadrillion	First supercomp uter to break the 100 gigaflop speed barrier	Wakabayashi, Daisuke. "Corporate News: One Goal: 10 Quadrillion Calculations Fujitsu-Japan Venture Aims to Give Country a Global Edge in Supercomputers , Furthering Variety of Research Efforts." <i>The</i> <i>Wall Street</i>

						<i>Journal Asia</i> : 21. 2010. Web.
	Hitachi SR 2201	1996	Hitachi	For high-speed message communica tion and a pseudo vector processing function that provides a major boost in performanc e of large-scale scientific calculation s.	It's high-end model is capable of performing over 600 (600 GFLOPS) billion floating-poi nt operations per second.	Retrieved from http://www.hitac hi.co.jp/Prod/co mp/hpc/eng/sr1. html
	IBM Sequoia	2011	IBM/ Lawrence Livermore National Laboratory	To help maintain the safety and security of the U.S. national stockpile of nuclear weapons.	It is a petascale Blue Gene/Q supercomp uter and it will be shared among Lawrence Livermore, Los Alamos, and Sandia national laboratorie s.	Wait, Patience. "IBM's Sequoia is World's Fastest Supercomputer. " <i>Informationweek</i> - <i>Online</i> 2012. Web.
Harris Gustafson	Deep Blue	1997	IBM	For chess computing and to simulate the entire	Capable of calculating over 100 million chess	Retrieved from http://www.theve rge.com/2012/5/ 11/3015223/dee p-blue-15-year-

			human brain	positions per second and it defeated the world chess champion Garry Kasparov	anniversary-kas parov
Tianhe-IA	2010	National Supercomputin g Center in Tianjin, china	For weather and climate modeling, materials research, biomedical research and oil exploration	The first supercomp uter to use China's Galaxy interconnec t chip set and uses the latest processors to gain a speed edge	Merritt, Rick. "Homegrown Interconnect Pushes China Super to no. 1 on Top 500 List." <i>Electronic</i> <i>Engineering</i> <i>Times</i> : 34. 2010. Web.
Fujitsu K Computer	2011	Fujitsu/ RIKEN Advanced Institute for Computational Science	To achieve peak performanc e in benchmark tests and to ensure high effective performanc e in application s used in actual research.	It became the first computer to achieve 10 petaflops of LINPACK performanc e	Itoh, S. "Application Software and Usage Environment for the K Computer." <i>FUJITSU</i> <i>SCIENTIFIC &</i> <i>TECHNICAL</i> <i>JOURNAL</i> 48.3 (2012): 357-63. Web.
Tera-100	2010	Bull	For application s that need to run on a huge	It is able to perform a peak at 1.25petaFL OPs, the	Retrieved from http://insidehpc. com/2011/06/ter a-100-is-europe

			number of processors while also sharing a very large-scale main memory of up to 4TB.	first European computer to sustain a one petaflop/s performanc e on Linpack test.	s-most-powerful -supercomputer/ http://www-hpc. cea.fr/en/compl exe/docs/T100- en.pdf
JUGENE	2009	IBM	To study type la supernova e explosions and to better understand ing of mysterious dark energy in the universe	When compared to other systems the power consumptio n is extremely low even at maximum computing power.	http://www.e-sci encetalk.org/bri efings/16/ESTB- 16-superCompu ting.html
Ranger	2009	Oracle/ Texas Advanced Computer Center	For high performanc e computing activities in Africa	Ranger was the first supercomp uter in open science to approach the petascale mark and launch of biggest ever switch with Ranger was an historic moment in petaflop computing.	Retrieved from https://www.tacc .utexas.edu/-/ra nger-supercomp uter-begins-new -life

Delta	1993	Intel/ Caltech	to investigate a variety of scientific problems	Due to its large memory, large parallel file system and peak performanc e, Delta has marked a turning point in the modern evolution of supercomp uters	Retrieved from http://www.mcs. anl.gov/publicati on/computation al-science-exper iences-intel-touc hstone-delta-su percomputer
Hitachi CP-PACS	1996	Hitachi/Tsukub a	To global accomplish ments in numerical research in particle physics, condensed matter physics, and astrophysic s	The system set a world record of 368.2 gigaFLOPS on the Linpack benchmark in September 1996	Retrieved from http://museum.i psj.or.jp/en/com puter/super/002 1.html
SX-3/44	1991	NEC Corporation	To forecast weather patterns and analyze air pollution	It is a 22 GFLOP vector supercomp uter. Hardware and software reliability of the SX-3/44 have proven to be excellent	"NEC Outbids Cray for Order." <i>Globe & Mail</i> (<i>Toronto,</i> <i>Canada</i>): B14. 1991. Web

Hitachi S-3800	1994	Hitachi	To facilitate stable high performanc e in multiprogra mming environme nts.	The storage control unit of Hitachi s-3800 is capable of achieving 8 GFLOPS in each of up to four shared-me mory multiproces sors.	Kitai, Katsuyoshi, et al. "Distributed Storage Control Unit for the Hitachi S-3800 Multivector Supercomputer" .Web.
RS/6000 SP	1994	IBM	To study combustion , materials science, fusion energy, biology, high-energ y and nuclear physics, and global climates	It uses Reduced Instruction Set Computer technology, and simplifies processing steps to speed the execution of commands	Energy Inks Five-Year Contract for IBM RS/6000 SP Supercomputer. 18 Vol. 1105 Media, Inc, 1999. Web.
SP2/512 (Scalable Powerparal lel)	1994	IBM/ Cornell Theory Center	To simulate climate modeling. fluid turbulence and pollution dispersion application s.	This is a scalable parallel-pro cessing computer a machine that, to solve a computatio nal problem, divides it among many processors that run simultaneo	Retrieved from http://www.the-s cientist.com/?art icles.view/article No/28046/title/S upercomputer-C enter-Fosters-C ooperation/

				usly	
VAX 11/780	1977	Digital Equipment Corporation (DEC)	Used for chemical computatio ns, scientific computatio ns and data analysis	VAX was an instruction set architectur e (ISA) and it was the first of a range of popular and influential computers implementi ng that architectur e.	https://books.go ogle.com/books ?isbn=9400964 51X
Fujitsu VP2000	1988	Fujitsu	For industry specific application s	The VP2000 Series is the world's first supercomp uter series to offer UNIX System V Release 4 operating system.	Lasecke, Margaret, and David Gould. "Fujitsu America Enters U.S. Supercomputer Market." <i>Business Wire</i> : 1. 1992. Web.
Apollo	1988	ΗΡ	For high performanc e computing out of science and academia and into the enterprise.	It was the first machine that has been installed at the National Renewable Energy Laboratory (NREL) in the US.	Retrieved from http://www.thein quirer.net/inquir er/news/234906 7/hp-explores-n ew-territory-with -apollo-super-co mputeray

Cray T3D	1993	Cray Inc.	For the implementa tion of scientific application s software on a massively parallel platform.	The T3D's fast network and efficient global shared memory operations facilitate various algorithms.	Wimberly, Frank C., et al. "Porting Third-Party Applications Packages to the Cray T3D: Programming Issues and Scalability Results." <i>Parallel</i> <i>Computing</i> 22.8 (1996): 1073-89. Web.
Intel iPSC/860	1990	Intel	For the purpose of analysis of several research projects	It quickly becomes the industry's price/ performanc e standard bearer, offering higher performanc e than traditional vector supercomp uters at one tenth the cost.	http://www.tabor communications .com/sponsors/o ldhtml/904.html
ASCI Blue pacific	1999	IBM/ Lawrence Livermore National Laboratory	For crash analysis, Computatio nal Fluid Dynamics (CFD), structural	It can make four trillion calculation s in one second and if we punch one	Murray, Charles J. <i>Lawrence Livermore Unveils World's Fastest</i> <i>Computer</i> . 54

			analysis, and Electronic Design Automation (EDA).	calculation per second into our handheld calculator, it would take 126,839 years to reach four trillion calculation s.	Vol. Manhassett: UBM Canon LLC, 1999. Web.
BGW (Watson Blue Gene)	2005	IBM	For life sciences, hydrodyna mics, materials sciences, quantum chemistry, molecular dynamics and fluid dynamics and business application s	It has a processing speed of 91.29 teraflops and it comprises 20 refrigerator -sized racks, less than half the size of convention al systems, and has three times the performanc e	"New Privately Owned Supercomputer Unveiled by IBM." <i>Telecom</i> <i>Worldwide</i> : 1. 2005. Web.
SX-8	2004	IBM	For large-scale and ultra high-speed computing of massive data, such as meteorolog ical forecasting, environme	It's multi-node model achieves the world's fastest peak vector performanc e of 65 TFLOPS and also it achieves	"nec Launches Sx-8, World's Fastest Vector Supercomputer. " <i>Mainframe</i> <i>Computing</i> 17.12 (2004)Web.

			ntal simulations and automotive crash analysis.	excellent space saving and power saving capacity.	
Juropa	2008	Bull,Atos Group	For acceleratin g the developme nt of high performanc e cluster computing in Europe.	It was set up by the Forschung szentrum Julich to investigate emerging cluster technologie s and achieve a new class of cost-efficie nt supercomp uters for peta-scale computing.	. "The Forschungszent rum Julich in Germany Chooses Bull to Deliver a 200-Teraflops Supercomputer for the JuRoPa Project." <i>PR</i> <i>Newswire</i> 2008. Web.
Dawn	2009	IBM	For massive computer simulations to ensure the readiness of the nation's nuclear weapons arsenal.	It is capable of 500 teraflops, using the Blue Gene/P design, to evaluate the Sequoia design	http://www.popul armechanics.co m/technology/a4 948/4337190/
Red Sky	2009	Oracle / Sandia National Laboratories	To achieve power usage efficiency and for several technologic	The reduction in power and water consumptio n combined with the	Retrieved from https://share.sa ndia.gov/news/r esources/news_ releases/oracle-

			al innovations that result in a greener process.	reduction in carbon footprint makes Red Sky one of the most energy efficient compute platforms.	award/#.VmB8k narTIU
Hopper	2010	Cray Inc / National Energy Research Scientific Computing Center (NERSC)	For open science research in climate modeling, biology, environme ntal sciences, combustion , fusion energy, astrophysic s, nuclear and high-energ y physics.	It is NERSC's first petaflop system, a Cray XE6, with a peak performanc e of 1.28 Petaflops/ sec	"Cray Signs \$40 Million Supercomputer Agreement with the National Energy Research Scientific Computing Center NERSC." <i>Energy Weekly</i> <i>News</i> (2012): 71. Web.
Cielo	2010	Cray Inc.	To perform milestone weapons calculation s	It was a petascale resource for conducting NNSA weapons simulations in the 2011-2015 timeframe, can achieve more than one quadrillion floating	"national Nuclear Security Administration's Cielo, Roadrunner Supercomputers Ranked among World's most Powerful Supercomputers ." US Fed News Service, Including US

					point operations per second.	<i>State News</i> 2011. Web.
Christian Garcia	SuperMUC	2012	IBM / Lenovo	It serves European researcher s of many fields, including medicine, astrophysic s, computatio nal fluid dynamics, computatio nal fluid dynamics, computatio nal chemistry, life sciences, genome analysis and earthquake simulations	It ensures maximized economic efficiency with higher performanc e and low power consumptio n in a supercomp uting and HPC (High Performanc e Computing) environme nt.	"Samsung Electronics Co., Ltd.; Leibniz Supercomputing Centre "SuperMUC" Supercomputer Uses Samsung's Green DDR3." <i>Mergers &</i> <i>Acquisitions</i> <i>Week</i> (2012): 121. Web. Wikipedia articles on SuperMUC
	Vulcan	2013	IBM	For collaborativ e work with industry and research universities to advance science and accelerate the technologic al innovation	It was combined with the larger Sequoia system, producing some breakthrou gh computatio n, notably setting a world speed record of 504 billion events per	Retrieved from https://www.llnl. gov/news/lawre nce-livermores- vulcan-brings-5- petaflops-comp uting-power-coll aborations-indu stry-and

				second.	
Seaborg	2003	IBM	It was designed to work on fusion-ener gy and nuclear-ph ysics problems	It is one of many large supercomp uter systems IBM either has contracted for or deployed over the past year, in both the scientific research as well as the commercial sectors.	Retrieved from http://money.cnn .com/2001/06/2 1/technology/ib m/
ASCI Q	2003	Hewlett-Packar d	It was used in solving grand-chall enge computing problems for various U.S. governmen t agencies, including the U.S. Departmen t of Defense, the Departmen t of Energy and NASA	High-fidelit y, three-dime nsional computer simulations of unprecede nted scale running on ASCI Q are crucial to the continued certification of the nation's aging nuclear weapons stockpile	"Platform Computing Powers World's Second Largest Supercomputer, the LANL ASCI-Q." <i>PR</i> <i>Newswire</i> : 1. 2003. Web.
PrimePow er HPC2500	2002	Fujitsu	To achieve the world's highest	It runs on the Solaris operating	Retrieved from https://pr.fujitsu.

			theoretical peak performanc e and scalability	environme nt, for which a large number of application s are commercial ly available.	com/en/news/20 02/08/22.html
Origin 2000	1999	Silicon Graphics (SGI)	For specialized scientific computing and for climate simulation purposes.	It uses the distributed shared memory architectur e.With all nodes connected, it was able to sustain 2.1 teraflops and peak of over 2.5 teraflops	Wikipedia articles on SGI Origin 2000
SP(Scalabl e Powerparal lel) Power 3	1999	IBM	For high-perfor mance engineerin g, scientific scalar and parallel computing, large-scale Internet services such as email and news delivery services.	The benefits of the POWER3 microproce ssor is the integration between the strong floating-poi nt capabilities of IBM POWER2 architectur e and the symmetric multiproces sing (SMP) capabilities	Coleman, Patrick T. "SP Adds POWER3." <i>SunExpert</i> 10.3 (1999): 10. Web

Lightning	2003	Linux Networx /Los Alamos National Laboratory	To run complex calculation s, to model weapons and nuclear simulations	of the PowerPC It will provide a large-scale, practical cluster computing, building on open-sourc e tools by the larger high-perfor mance computing community.	Retrieved from http://www.techn ewsworld.com/s tory/31354.html
Chinook	2008	Hewlett-Packar d	To research on climate science, hydrogen storage and molecular chemistry problems	Researcher s used Chinook to better understand the inner workings of bacteria that consume metal and to understand how they form communitie s, potentially improving their use in environme ntal clean-up	Cary, Annette. "New PNNL Supercomputer Tackling Complex Problems." <i>McClatchy</i> - <i>Tribune</i> <i>Business</i> <i>News</i> 2009. Web.
Olympus	2012	Atipa Technology	To do more complex, advanced research in areas such	With the theoretical peak processing speed of	Retrieved from http://www.pnl.g ov/news/release

			energy storage and future power grid developme nt.	162 Teraflops, it can complete computatio ns as fast as about 20,000 typical personal computers combined.	.aspx?id=908
Shaheen II	2015	Cray Inc.	For research projects modelling turbulence in engines, atmospheri c dynamics, and renewable energy grids.	It is the highest-ran ked Middle East system in the 22-year history of the list and the first to crack the Top 10	Retrieved from http://www.bbc.c om/news/techno logy-33506479
Trinity	2015	Cray Inc.	For more targeted weapons stockpile-re lated workloads.	It is the first of the NNSA's Advanced Simulation and Computing program's advanced technology systems	Retrieved from http://www.lanl.g ov/projects/trinit y/

Note: There may be sources to use as starting points for this least. If you find something that you think is a good starting point, please let me know and I'll take a look!