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Abstract— The Ant Colony Optimization (ACO) algorithm is 

an evolutionary algorithm that bio-mimics the behavior of ants in 

finding the shortest path between an origin and a destination 

within a set of pre-determined constraints.  

The goal of this work is to create a small-scale application of 

the ACO using a swarm of small autonomous robots. We 

investigate the practical applicability of the algorithm in real-life 

situations by addressing the issues and challenges encountered in 

the transition from the modeling/simulation level to the real-life 

application of the algorithm. We also suggest some modifications 

that will make feasible the implementation of the algorithm on 

the robots’ limited computing systems.   

The results show that the suggested modified algorithm, when 

implemented on the robotic swarm, enables them to successfully 

identify the shortest path between two points. These results open 

the door to a wide variety of applications like search & rescue, 

path planning, and mass transportation. 

Keywords — swarm robots, ant colony optimization, multi-core 

computing. 

I. INTRODUCTION  

The concept of using a swarm of small robots to perform 

tasks that are either impossible or too hard for a single robot 

has been discussed for the last few decades. The various ways 

a swarm of robots can be organized is discussed in [1]. A wide 

variety of algorithms have been investigated to control the 

operation of these swarms. Some of these algorithms, are bio-

inspired and try to mimic the evolutionary behavior of living 

colonies [2]. While many swarm algorithms have been 

presented and tested on computing/simulation tools, only a 

few of them have been actually implemented on real-life 

systems [3]. 

The focus of this work, the Ant Colony Optimization 

(ACO) algorithm [4] is one of the prominent algorithms in the 

fields of computer science and operations research. The idea is 

to find the optimal path in a graph based on the behavior 

of food seeking ants. The algorithm is used in a wide variety 

of applications including solving the famous traveling 

salesman problem [5], data mining [6], industrial assembly 

lines [7], and VLSI circuit design [8]. These applications, use 

the ACO algorithm as a metaheuristic tool to find solutions to 

their various problems. In these problems, a physical 

implementation of the ACO is never necessary because the 

pursued solutions can be found by running a simple computer 

simulation of the algorithm. 

In this work, we investigate the real-life applicability of the 

algorithm on a small swarm of robots. The importance of this 

real-life implementation is that it, not only finds the optimal 

mathematical solution, but also allows the use of the robots to 

solve a wide variety of real-life problems. One of these 

problems is using the robots to optimally transport a large 

number of objects from point A to point B. Another 

application is to have the robots evacuate a disaster zone by 

finding the shortest path to safety.  

While the ACO algorithm has been extensively studied, the 

real-life robotic implementation introduces a number of 

practical challenges and issues that are not encountered, and 

therefore not addressed at the mathematics/simulation level. 

Some of these issues include robotic collision avoidance, the 

error between the actual and the estimated positions, and most 

importantly, making decentralized decisions on the robots’ 

limited computing resources compared to the powerful CAD 

and simulation tools. This paper presents a modified version 

of the ACO that was implemented to simplify the decision 

making and reduce the computing workload without 

compromising the performance of the algorithm. The paper 

also discusses the measures utilized to overcome the other 

challenges still without compromising the performance of the 

algorithm.  

The rest of the paper is organized as follows: section II 
briefly discusses the original ACO algorithm while section III 
describe our modified version. Section IV describe the robots 
and the experimental setup used to test the modified algorithm. 
Section V presents the obtained results and the paper is 
concluded with the conclusion and future works in section VI. 

II. THE ANT COLONY OPTIMIZATION ALGORITHM 

The ACO algorithm is bio-inspired by the behavior of ants 

exploring several possible paths between a source and a 

destination. Each of these ants will start by traveling on one of 

these paths. The ants have no global awareness of the different 

paths and have no means to measure the length of the traveled 



paths. The optimization is achieved based on ants depositing 

pheromone (a chemical they produce) on the traveled paths. 

As time passes, the shorter paths will have more completed 

round trips than the longer ones and will therefore have higher 

concentrations of pheromone. Returning ants, looking to start 

a new trip, lean towards selecting paths with higher 

pheromone concentrations leading up to convergence in 

finding the shortest path.  

Several variations of the ACO algorithm exist in the 

literature. The common theme amongst all versions is that the 

probability of an ant selecting a certain path is proportional to 

the ratio of the pheromone concentration on that path to the 

concentrations on the other paths. In a generic implementation 

of the algorithm, if N ants are exploring K possible paths, the 

N ants start the process by taking arbitrary paths in their first 

runs out. In successive iterations, the chance of an ant going 

on a path k is  
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Where xρ denotes the pheromone concentration on the path x. 

The variables c and h are simulation parameters and can 

change depending on the nature of the application.  

The amount of pheromone on each path is a time 

dependent variable. It increases with additional ants traveling 

that path and decreases with time because of the evaporation 

phenomenon. The pheromone concentration at path k is 

updated every simulation cycle using the equation 

τττ ∆+⋅−=+ )()1()1( nen kk .  (2) 

With kτ being the pheromone concentration on path k, e being 

the evaporation rate, and τ∆ being the amount of pheromone 

deposited by the ants on that path during a simulation cycle.     

III. THE MODIFIED ALGORITHM 

Just like the original ACO algorithm, the modified 

algorithm used in this work utilized probability measures in 

order to mimic the ant behavior. The main difference is that 

whereas an ant tracks their path by secreting pheromones, the 

robots are programmed to log the completion of a path with a 

designated base station. As a robot travels an “efficient” 

shorter path more quickly, the frequency of travel on such a 

paths is expected to be higher than the longer ones. As a 

result, a robot that is starting a new trip, is more likely to take 

a more efficient path at a higher rate and, in turn, logs more 

data points for that path. 

Whenever a robot is starting a new trip, a decision is 

needed to determine which of the possible paths the robot 

must take. The base station has the data from the previous 

trips of the whole swarm. This data is used to calculate the 

probability of the robot taking each of the possible K paths 

using a modified version of equation (1). In this version, the 

number of completed trips on a path i is considered to be an 

indication of the pheromone level of that path iρ . In other 

words, the modified algorithm assumes zero pheromone 

evaporation and that all the robots/ants have equal weights in 

the decision making. As a result, the values of the pheromone 

levels on all paths are always positive integers. The value of 

the simulation parameter c was originally chosen to be zero, 

meaning that the pheromone level is the exclusive factor to 

determine the probability of taking a path. In order to ensure 

that no path has a zero probability of being taken, the process 

is started with the first K robots taking all K paths, one robot 

for each path. This guarantees that, upon the return of all 

robots from their initial trips, no path has a zero pheromone 

level. Other values for the parameter c were also investigated, 

and are discussed in the results section.      

When it comes to the other simulation parameter h, 

multiple values were used to investigate its effect on the 

performance. In the basic model (h = 1), each data point 

linearly contributes to the overall chance of that path being 

taken. In this model, unless a path is significantly shorter than 

the others, it will take a very long time and a very large 

number of runs for a path to emerge with a dominant 

probability.  For example, Table I shows a sample of 3 paths 

pheromone distribution and the corresponding path 

probabilities for various models.  In this sample, Path 2 is the 

shortest path and adequately has five completed trips while 

only three and two trips have been completed on path 1 and 

path 3, respectively. The numbers in the table show that a 

robot starting a new trip has a 50% chance of taking the 

shortest path. These probabilities will theoretically lead to the 

emergence of the shortest path when a large enough sample is 

used. However, due to the limited number of robots in our 

small scale implementation, there is a significant risk of a 

longer path being selected. Also, even if the algorithm 

converged to select the shortest path, it is expected that a very 

long time is needed for that convergence.  

Considering the size constraint, and considering the 

numbers in Table I, larger values of h seemed to be necessary 

to increase the chance of the shortest path gaining dominance 

in a reasonable amount of time. However, while increasing the 

value of h would increase the dominance of the shortest path 

(as shown in Table I) and consequently the speed of the 

algorithm, it would also increase the chance of error because 

the algorithm may be favoring the wrong path. 

 TABLE I. A SAMPLE PHEROMONE DISTRIBUTION AND THE 

CORRESPONDING PATH PROBABILITIES FOR VARIOUS MODELS 

 Path 1 Path 2 Path 3 

Pheromone Level ρ 3 5 2 

Basic Model (h = 1) 30% 50% 20% 

Quadratic Model (h = 2) 23.9% 65.8% 10.5% 

Cubic Model (h = 3) 16.9% 78.1% 5% 



To understand this issue, it is important to remember that 

in a real-life implementation like the one in this work, the 

length of the path is not the only parameter affecting the round 

trip time. Other real-life inconvenient issues may lead a robot 

finishing a path in an exceptionally short or long period of 

time. For example, a robot on a certain path could have taken 

more time to finish the trip because it slowed down to avoid a 

collision. Therefore, while the algorithm is supposed to 

dominantly favor paths with higher pheromone levels, it 

should also be robust enough to filter out and recover from 

skewed data. 

The numbers in Table I, supported by empirical testing 

showed that h = 2 appeared to be the right design decision as it 

did lead to a faster convergence of a dominant path without 

compromising the robustness of the algorithm. Further 

increase in the exponential value of h would increase the 

speed of convergence of the algorithm at the expense of 

introducing higher chance of error. The algorithm could also 

be manipulated in other ways to fine tune the performance 

based on the needs of the designers and the specific criteria of 

their applications. One possibility is introducing data decay. 

This would mimic the pheromone evaporation process in the 

original algorithm that is modeled in equation (2). This decay 

makes a longer path, not only unpopular, but also forgotten. In 

an ideal case, this would lead to only one path eventually 

having all of the data points and all other paths being 

forgotten. The addition of data decay can have a significant 

effect on a small-scale application like the one in this work. 

However, in a large-scale implementation, with many more 

robots, a change like this would become negligible, as paths 

that are less popular will gradually lose their statistical 

effectiveness anyways.  

IV. THE EXPERIMENTAL SETUP 

A. The Testing Environmnet 

To implement the algorithm in a small-scale real-life 

application, an 8’x4’ wooden arena was fabricated to serve as 

the testing environment for the robots. The arena can be seen 

in Figure 1. In this arena, the testing environment was setup 

by designating an origin (the nest) and a destination (the food 

source). Three possible paths of different lengths can lead a 

robot from the origin to the destination. The map of the arena 

can be seen in Figure 2. The red and the green colored areas 

indicate the origin and the destination, respectively. The three 

possible paths are also indicated by three different line styles 

as specified in the figure. Each path includes two non-

overlapping lanes for two directions of travel 

(origin�destination and destination�origin). The two lanes 

per path system was used to minimize robot collisions. The 

direction on each lane is indicated by an arrow in figure 2. 

B. The Robots 

For the robots, the starting point was the Propeller Activity 

Bot [9] from Parallax, Inc. This robot was chosen because it is 

easy to program in C with the SimpleIDE software. It also 

includes high-speed servo motors with optical encoders to 

provide accurate and consistent maneuvering. The robots also 

include mounted breadboards allowing the necessary additions 

of radio modules and ultrasonic proximity sensors that are 

discussed below in further detail.   

C. The Communication System 

Since the robots can neither deposit chemicals nor sense 

their concentrations, the chemical pheromone was replaced by 

digital pheromone or electromagnetic signals [10]. In digital 

pheromone, rather than laying down the chemical on the 

traveled path, each robot communicated via airwaves to a 

centralized home base. The home base recorded the number of 

times each path had been completed.  It was critical that this 

home base was stationary and located near the origin because 

in a scaled up application, with a larger number of robots, it 

may not be possible to establish communication between all 

the robots. The home base was situated near the origin 

because that would be where a robot needs to report a 

completed path and acquire the updated data for the next trip. 

Another benefit of the home base was using it for traffic 

control at the congestion area near the origin. All the robots 

came back to the origin and then had the choice to either go 

back on the same path or transition to another one. This 

increased the chance of robots running into each other on this 

congested part of the course. To solve this issue, a First In 

First Out (FIFO) queue was set up where the home base stored 

the requests from various robots and only provided the next 

robot in the queue with a new path to execute when the traffic 

section was clear.  

 

Figure 1. The testing environment, with three Propeller Activity Bots with 

peripherals at their starting locations. 



The robots communicated with the home base through the 

XBee-PRO Module 802.15.4, which were mounted on every 

robot including the stationary home base. One of the nice 

features of this module is that it allows the robot to 

communicate selectively. The XBee modules can be set such 

that the mobile robots can only communicate with the 

home base.  Similarly, the home base can selectively choose to 

send exclusive data to a specific robot.  

In the implementation, once a robot completed a path, it 

would send a signal to the home base notifying it of the 

robot’s unique identity and the path that it just completed.  In 

response, the home base would reply to that robot with the 

robot’s unique identity followed by the path on which to 

take.  It would also tell the robot whether to wait or proceed, 

depending on whether or not the home base area was clear. 

When cleared, the robot would transition to the new path to be 

taken, and once on the new path, it would notify the home 

base, which in turn proceeded to communicate with the next 

robot waiting in the queue.  

D. The Proximity Sensors 

Another issue that had to be addressed was making sure all 

the robots stayed on course during their trips. These robots 

were programmed to know their way on pre-determined paths. 

Once a path is chosen, a robot should ideally be able to find its 

way from the origin to the destination and back. The problem 

is that the robots, even with the position encoders, did not 

accurately stay in their lane in their chosen path.  

 

Figure 2. Map of the arena showing the origin, the destination, and the three 

different paths. 

This was a big obstacle to implementing the algorithm, 

especially because the robots were not driving in a straight 

line, and inconsistency is expected when a robot makes 

multiple turns in a trip. In a large-scale application, this issue 

could be addressed using geolocation techniques such as 

adding a Global Positioning System (GPS) on each robot. This 

solution was unfortunately not feasible in a small scale indoor 

environment like the one in this work. Therefore, another 

solution was needed to address these inconsistencies and 

prevent the robots from veering off course and even driving 

into each other in some cases.  

This problem was solved by adding an ultrasonic sensor to 

the right side of each mobile robot. The ultrasonic sensor, 

interfaced to the robot’s microcontroller would send an 

ultrasonic burst and receive the echo returned to determine the 

distance to a nearby object. The robot would use that data to 

determine if it is too far or too close to the wall and correct 

itself to maintain a pre-determined distance to the wall. 

Multiple robots with sensors mounted on the right side can be 

seen in figure 3. The figure shows, from a robot perspective, 

two robots on opposing lanes of path 1. The addition of the 

ultrasonic sensors guaranteed each robot to drive alongside the 

wall, which helped overcome position inaccuracies.  

E. The Microcontroller and the Code 

The Propeller microcontroller allows the use of multi-

threaded code, as the Propeller has 8 logical cores with shared 

memory. This turned out to be necessary as described below.  

The application of a robot swarm working in cohesion 

required precise motion control to avoid collisions on the path. 

Proper motor speed and accurate orientation information were 

mandatory to control each robot with a high degree of 

precision; this was done best with hardware timers. Each core 

of the Propeller has two timer/counter peripherals. The robots 

used in this work, however, required precise timing of three 

components: two servo-motors, where each servo-motor needs 

an independently timed PWM signal, and an ultrasonic sensor, 

that also requires an accurate dedicated timer to perform the 

crucial distance measurement.  

 
Figure 3. A robot-level action shot of three Robots with the peripherals in 

the testing environment. 



In order to accurately time the three components with 

separate hardware timers, the code was broken into a dual-

threaded program to take advantage of additional hardware 

timers available on other cores of the Propeller 

microcontroller. This dual-threaded code used a main program 

core and a speed adjustment core. The main program 

controlled the two motors and the communication module. 

The main program also called a function to start on a new core 

within the microcontroller. This function set up the ultrasonic 

timer and used one of the timer/counter peripherals on the 

second core in use to time each ping, thus measuring distance. 

This function then calculated drive corrections to be made, 

and loaded new motor speed values into memory. The main 

program core accessed that same memory when driving the 

two motors, each controlled by a timer peripheral on the main 

core. This design gave accurate measurements from the 

ultrasonic sensor while maintaining fluid speed control of the 

two motors.  

V. RESULTS 

When implementing the modified ACO in real life, the 

main constraint was the size of the swarm. Due to the limited 

dimensions of the available testing environment, only three 

robots were running simultaneously. Nevertheless, even with 

the smaller number of robots, a proof of concept was 

accomplished and the results showed that, in the majority of 

the test runs, the modified algorithm converged and the robots 

were successfully able to identify the shortest available path.   

The implementation of the work in a physical system, also 

showed that there are many important considerations 

unexplored in simulations that greatly impact the behavior of 

the algorithm. The first, perhaps more plain, implication of a 

physical implementation is the possibility of collisions 

between robots, particularly concerning congestion around the 

home base. It was found that using the queue system that 

makes robots wait for traffic to clear adds a fairly consistent 

amount of time to each path traveled. This addition across the 

board decreases the relative dominance of a shorter path, 

leading to a slower convergence. For example, if a shorter 

path can be traveled in 10 seconds while a longer path is 

traveled in 20 seconds. A round trip on the longer path is 

twice as long as a similar trip on the shorter path. Adding a 2 

second queue time for both paths lead to changing the 

proportions and make the longer path only 1.83 times longer 

than the shorter one. The longer the queue times, the slower 

the convergence of the algorithm. 

Another important factor that was noticed in the physical 

implementation is the speed of the individual robots. While 

these robots are identical, and must ideally run at the same 

speed, real-life imperfections must be taken into 

consideration, especially since the whole algorithm depends 

on travel times. Fortunately this was addressed by choosing 

suitable values for the parameters c and h in equation (1). As 

explained in section III, setting the value of h =2 resulted in 

significant increase in the speed of convergence. In fact, 

convergence often happened without ever actually making a 

‘wrong’ decision. In other words, immediately after the initial 

run, where each of the three robots travels one of the three 

paths, all three robots will indefinitely converge to the shortest 

path. This could be considered good news. However, we felt 

that such a fast convergence was associated with a high 

chance of error, such as some cases where the robots actually 

converged on a wrong path. To remedy this, the value of the 

parameter c was increased to one. In the updated model (h=2, 

c=1), the robots took at least two trips exploring possible paths 

before eventually converging to the shortest path.  

It is worth noting that the severity of the tradeoff between 

the two models above is heightened by our small sample size. 

The difference between various models, while existing, should 

be much less significant with larger robot populations. 

VI. CONCLUSION & FUTURE WORKS 

In this work, we presented a small-scale implementation 

of the well-known ant colony optimization algorithm on a 

small swarm of robots. The algorithm needed to be modified 

to overcome a number of physical implementation issues that 

are otherwise not encountered in a computer simulation. 

The proof of concept implementation was successfully 

accomplished. The results showed that the implementation 

parameters can be adjusted in a tradeoff between the speed of 

convergence and the robustness of the algorithm.  Based on 

their application, a system designer must adjust those 

parameters based on how efficient does the system need to be 

in order to be considered viable, and how much error are they 

willing to tolerate for an efficient convergence.  

In the future, one important development for this work is 

to move beyond pre-defined paths by equipping the robots 

with the means to look for their prospective targets. One of the 

possibilities is to add a thermal sensor and include one or 

more heat sources in the testing environment.  

Moreover, for an effective rescue mission, it is important 

to be able to adapt to never before seen terrains. For this 

purpose, a combination of the ACO with Dijkstra's algorithm 

might prove useful. One possible implementation could have 

the robots create their own node mesh through exploration, 

creating several possible paths to an end goal. Dijkstra's 

algorithm would not be able to solve the entire problem, as not 

all edges are found, nor their lengths or weights. The ACO 

algorithm would be useful to find optimal paths within this 

mesh, using frequency analysis rather than strict distances. 
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