
A Modified Ant Colony Optimization Algorithm

for Implementation on Multi-Core Robots

Timothy Krentz Chase Greenhagen Aaron Roggow Danielle Desmond Sami Khorbotly

Department of Electrical and Computer Engineering

Valparaiso University

Valparaiso, IN, USA

Sami.khorbotly@valpo.edu

Abstract— The Ant Colony Optimization (ACO) algorithm is

an evolutionary algorithm that bio-mimics the behavior of ants in

finding the shortest path between an origin and a destination

within a set of pre-determined constraints.

The goal of this work is to create a small-scale application of

the ACO using a swarm of small autonomous robots. We

investigate the practical applicability of the algorithm in real-life

situations by addressing the issues and challenges encountered in

the transition from the modeling/simulation level to the real-life

application of the algorithm. We also suggest some modifications

that will make feasible the implementation of the algorithm on

the robots’ limited computing systems.

The results show that the suggested modified algorithm, when

implemented on the robotic swarm, enables them to successfully

identify the shortest path between two points. These results open

the door to a wide variety of applications like search & rescue,

path planning, and mass transportation.

Keywords — swarm robots, ant colony optimization, multi-core

computing.

I. INTRODUCTION

The concept of using a swarm of small robots to perform

tasks that are either impossible or too hard for a single robot

has been discussed for the last few decades. The various ways

a swarm of robots can be organized is discussed in [1]. A wide

variety of algorithms have been investigated to control the

operation of these swarms. Some of these algorithms, are bio-

inspired and try to mimic the evolutionary behavior of living

colonies [2]. While many swarm algorithms have been

presented and tested on computing/simulation tools, only a

few of them have been actually implemented on real-life

systems [3].

The focus of this work, the Ant Colony Optimization

(ACO) algorithm [4] is one of the prominent algorithms in the

fields of computer science and operations research. The idea is

to find the optimal path in a graph based on the behavior

of food seeking ants. The algorithm is used in a wide variety

of applications including solving the famous traveling

salesman problem [5], data mining [6], industrial assembly

lines [7], and VLSI circuit design [8]. These applications, use

the ACO algorithm as a metaheuristic tool to find solutions to

their various problems. In these problems, a physical

implementation of the ACO is never necessary because the

pursued solutions can be found by running a simple computer

simulation of the algorithm.

In this work, we investigate the real-life applicability of the

algorithm on a small swarm of robots. The importance of this

real-life implementation is that it, not only finds the optimal

mathematical solution, but also allows the use of the robots to

solve a wide variety of real-life problems. One of these

problems is using the robots to optimally transport a large

number of objects from point A to point B. Another

application is to have the robots evacuate a disaster zone by

finding the shortest path to safety.

While the ACO algorithm has been extensively studied, the

real-life robotic implementation introduces a number of

practical challenges and issues that are not encountered, and

therefore not addressed at the mathematics/simulation level.

Some of these issues include robotic collision avoidance, the

error between the actual and the estimated positions, and most

importantly, making decentralized decisions on the robots’

limited computing resources compared to the powerful CAD

and simulation tools. This paper presents a modified version

of the ACO that was implemented to simplify the decision

making and reduce the computing workload without

compromising the performance of the algorithm. The paper

also discusses the measures utilized to overcome the other

challenges still without compromising the performance of the

algorithm.

The rest of the paper is organized as follows: section II
briefly discusses the original ACO algorithm while section III
describe our modified version. Section IV describe the robots
and the experimental setup used to test the modified algorithm.
Section V presents the obtained results and the paper is
concluded with the conclusion and future works in section VI.

II. THE ANT COLONY OPTIMIZATION ALGORITHM

The ACO algorithm is bio-inspired by the behavior of ants

exploring several possible paths between a source and a

destination. Each of these ants will start by traveling on one of

these paths. The ants have no global awareness of the different

paths and have no means to measure the length of the traveled

paths. The optimization is achieved based on ants depositing

pheromone (a chemical they produce) on the traveled paths.

As time passes, the shorter paths will have more completed

round trips than the longer ones and will therefore have higher

concentrations of pheromone. Returning ants, looking to start

a new trip, lean towards selecting paths with higher

pheromone concentrations leading up to convergence in

finding the shortest path.

Several variations of the ACO algorithm exist in the

literature. The common theme amongst all versions is that the

probability of an ant selecting a certain path is proportional to

the ratio of the pheromone concentration on that path to the

concentrations on the other paths. In a generic implementation

of the algorithm, if N ants are exploring K possible paths, the

N ants start the process by taking arbitrary paths in their first

runs out. In successive iterations, the chance of an ant going

on a path k is

()

()∑
=

+

+
=

K

i

h

i

h

k

k

c

c
P

1

ρ

ρ
. (1)

Where xρ denotes the pheromone concentration on the path x.

The variables c and h are simulation parameters and can

change depending on the nature of the application.

The amount of pheromone on each path is a time

dependent variable. It increases with additional ants traveling

that path and decreases with time because of the evaporation

phenomenon. The pheromone concentration at path k is

updated every simulation cycle using the equation

τττ ∆+⋅−=+)()1()1(nen kk . (2)

With kτ being the pheromone concentration on path k, e being

the evaporation rate, and τ∆ being the amount of pheromone

deposited by the ants on that path during a simulation cycle.

III. THE MODIFIED ALGORITHM

Just like the original ACO algorithm, the modified

algorithm used in this work utilized probability measures in

order to mimic the ant behavior. The main difference is that

whereas an ant tracks their path by secreting pheromones, the

robots are programmed to log the completion of a path with a

designated base station. As a robot travels an “efficient”

shorter path more quickly, the frequency of travel on such a

paths is expected to be higher than the longer ones. As a

result, a robot that is starting a new trip, is more likely to take

a more efficient path at a higher rate and, in turn, logs more

data points for that path.

Whenever a robot is starting a new trip, a decision is

needed to determine which of the possible paths the robot

must take. The base station has the data from the previous

trips of the whole swarm. This data is used to calculate the

probability of the robot taking each of the possible K paths

using a modified version of equation (1). In this version, the

number of completed trips on a path i is considered to be an

indication of the pheromone level of that path iρ . In other

words, the modified algorithm assumes zero pheromone

evaporation and that all the robots/ants have equal weights in

the decision making. As a result, the values of the pheromone

levels on all paths are always positive integers. The value of

the simulation parameter c was originally chosen to be zero,

meaning that the pheromone level is the exclusive factor to

determine the probability of taking a path. In order to ensure

that no path has a zero probability of being taken, the process

is started with the first K robots taking all K paths, one robot

for each path. This guarantees that, upon the return of all

robots from their initial trips, no path has a zero pheromone

level. Other values for the parameter c were also investigated,

and are discussed in the results section.

When it comes to the other simulation parameter h,

multiple values were used to investigate its effect on the

performance. In the basic model (h = 1), each data point

linearly contributes to the overall chance of that path being

taken. In this model, unless a path is significantly shorter than

the others, it will take a very long time and a very large

number of runs for a path to emerge with a dominant

probability. For example, Table I shows a sample of 3 paths

pheromone distribution and the corresponding path

probabilities for various models. In this sample, Path 2 is the

shortest path and adequately has five completed trips while

only three and two trips have been completed on path 1 and

path 3, respectively. The numbers in the table show that a

robot starting a new trip has a 50% chance of taking the

shortest path. These probabilities will theoretically lead to the

emergence of the shortest path when a large enough sample is

used. However, due to the limited number of robots in our

small scale implementation, there is a significant risk of a

longer path being selected. Also, even if the algorithm

converged to select the shortest path, it is expected that a very

long time is needed for that convergence.

Considering the size constraint, and considering the

numbers in Table I, larger values of h seemed to be necessary

to increase the chance of the shortest path gaining dominance

in a reasonable amount of time. However, while increasing the

value of h would increase the dominance of the shortest path

(as shown in Table I) and consequently the speed of the

algorithm, it would also increase the chance of error because

the algorithm may be favoring the wrong path.

 TABLE I. A SAMPLE PHEROMONE DISTRIBUTION AND THE

CORRESPONDING PATH PROBABILITIES FOR VARIOUS MODELS

 Path 1 Path 2 Path 3

Pheromone Level ρ 3 5 2

Basic Model (h = 1) 30% 50% 20%

Quadratic Model (h = 2) 23.9% 65.8% 10.5%

Cubic Model (h = 3) 16.9% 78.1% 5%

To understand this issue, it is important to remember that

in a real-life implementation like the one in this work, the

length of the path is not the only parameter affecting the round

trip time. Other real-life inconvenient issues may lead a robot

finishing a path in an exceptionally short or long period of

time. For example, a robot on a certain path could have taken

more time to finish the trip because it slowed down to avoid a

collision. Therefore, while the algorithm is supposed to

dominantly favor paths with higher pheromone levels, it

should also be robust enough to filter out and recover from

skewed data.

The numbers in Table I, supported by empirical testing

showed that h = 2 appeared to be the right design decision as it

did lead to a faster convergence of a dominant path without

compromising the robustness of the algorithm. Further

increase in the exponential value of h would increase the

speed of convergence of the algorithm at the expense of

introducing higher chance of error. The algorithm could also

be manipulated in other ways to fine tune the performance

based on the needs of the designers and the specific criteria of

their applications. One possibility is introducing data decay.

This would mimic the pheromone evaporation process in the

original algorithm that is modeled in equation (2). This decay

makes a longer path, not only unpopular, but also forgotten. In

an ideal case, this would lead to only one path eventually

having all of the data points and all other paths being

forgotten. The addition of data decay can have a significant

effect on a small-scale application like the one in this work.

However, in a large-scale implementation, with many more

robots, a change like this would become negligible, as paths

that are less popular will gradually lose their statistical

effectiveness anyways.

IV. THE EXPERIMENTAL SETUP

A. The Testing Environmnet

To implement the algorithm in a small-scale real-life

application, an 8’x4’ wooden arena was fabricated to serve as

the testing environment for the robots. The arena can be seen

in Figure 1. In this arena, the testing environment was setup

by designating an origin (the nest) and a destination (the food

source). Three possible paths of different lengths can lead a

robot from the origin to the destination. The map of the arena

can be seen in Figure 2. The red and the green colored areas

indicate the origin and the destination, respectively. The three

possible paths are also indicated by three different line styles

as specified in the figure. Each path includes two non-

overlapping lanes for two directions of travel

(origin�destination and destination�origin). The two lanes

per path system was used to minimize robot collisions. The

direction on each lane is indicated by an arrow in figure 2.

B. The Robots

For the robots, the starting point was the Propeller Activity

Bot [9] from Parallax, Inc. This robot was chosen because it is

easy to program in C with the SimpleIDE software. It also

includes high-speed servo motors with optical encoders to

provide accurate and consistent maneuvering. The robots also

include mounted breadboards allowing the necessary additions

of radio modules and ultrasonic proximity sensors that are

discussed below in further detail.

C. The Communication System

Since the robots can neither deposit chemicals nor sense

their concentrations, the chemical pheromone was replaced by

digital pheromone or electromagnetic signals [10]. In digital

pheromone, rather than laying down the chemical on the

traveled path, each robot communicated via airwaves to a

centralized home base. The home base recorded the number of

times each path had been completed. It was critical that this

home base was stationary and located near the origin because

in a scaled up application, with a larger number of robots, it

may not be possible to establish communication between all

the robots. The home base was situated near the origin

because that would be where a robot needs to report a

completed path and acquire the updated data for the next trip.

Another benefit of the home base was using it for traffic

control at the congestion area near the origin. All the robots

came back to the origin and then had the choice to either go

back on the same path or transition to another one. This

increased the chance of robots running into each other on this

congested part of the course. To solve this issue, a First In

First Out (FIFO) queue was set up where the home base stored

the requests from various robots and only provided the next

robot in the queue with a new path to execute when the traffic

section was clear.

Figure 1. The testing environment, with three Propeller Activity Bots with

peripherals at their starting locations.

The robots communicated with the home base through the

XBee-PRO Module 802.15.4, which were mounted on every

robot including the stationary home base. One of the nice

features of this module is that it allows the robot to

communicate selectively. The XBee modules can be set such

that the mobile robots can only communicate with the

home base. Similarly, the home base can selectively choose to

send exclusive data to a specific robot.

In the implementation, once a robot completed a path, it

would send a signal to the home base notifying it of the

robot’s unique identity and the path that it just completed. In

response, the home base would reply to that robot with the

robot’s unique identity followed by the path on which to

take. It would also tell the robot whether to wait or proceed,

depending on whether or not the home base area was clear.

When cleared, the robot would transition to the new path to be

taken, and once on the new path, it would notify the home

base, which in turn proceeded to communicate with the next

robot waiting in the queue.

D. The Proximity Sensors

Another issue that had to be addressed was making sure all

the robots stayed on course during their trips. These robots

were programmed to know their way on pre-determined paths.

Once a path is chosen, a robot should ideally be able to find its

way from the origin to the destination and back. The problem

is that the robots, even with the position encoders, did not

accurately stay in their lane in their chosen path.

Figure 2. Map of the arena showing the origin, the destination, and the three

different paths.

This was a big obstacle to implementing the algorithm,

especially because the robots were not driving in a straight

line, and inconsistency is expected when a robot makes

multiple turns in a trip. In a large-scale application, this issue

could be addressed using geolocation techniques such as

adding a Global Positioning System (GPS) on each robot. This

solution was unfortunately not feasible in a small scale indoor

environment like the one in this work. Therefore, another

solution was needed to address these inconsistencies and

prevent the robots from veering off course and even driving

into each other in some cases.

This problem was solved by adding an ultrasonic sensor to

the right side of each mobile robot. The ultrasonic sensor,

interfaced to the robot’s microcontroller would send an

ultrasonic burst and receive the echo returned to determine the

distance to a nearby object. The robot would use that data to

determine if it is too far or too close to the wall and correct

itself to maintain a pre-determined distance to the wall.

Multiple robots with sensors mounted on the right side can be

seen in figure 3. The figure shows, from a robot perspective,

two robots on opposing lanes of path 1. The addition of the

ultrasonic sensors guaranteed each robot to drive alongside the

wall, which helped overcome position inaccuracies.

E. The Microcontroller and the Code

The Propeller microcontroller allows the use of multi-

threaded code, as the Propeller has 8 logical cores with shared

memory. This turned out to be necessary as described below.

The application of a robot swarm working in cohesion

required precise motion control to avoid collisions on the path.

Proper motor speed and accurate orientation information were

mandatory to control each robot with a high degree of

precision; this was done best with hardware timers. Each core

of the Propeller has two timer/counter peripherals. The robots

used in this work, however, required precise timing of three

components: two servo-motors, where each servo-motor needs

an independently timed PWM signal, and an ultrasonic sensor,

that also requires an accurate dedicated timer to perform the

crucial distance measurement.

Figure 3. A robot-level action shot of three Robots with the peripherals in

the testing environment.

In order to accurately time the three components with

separate hardware timers, the code was broken into a dual-

threaded program to take advantage of additional hardware

timers available on other cores of the Propeller

microcontroller. This dual-threaded code used a main program

core and a speed adjustment core. The main program

controlled the two motors and the communication module.

The main program also called a function to start on a new core

within the microcontroller. This function set up the ultrasonic

timer and used one of the timer/counter peripherals on the

second core in use to time each ping, thus measuring distance.

This function then calculated drive corrections to be made,

and loaded new motor speed values into memory. The main

program core accessed that same memory when driving the

two motors, each controlled by a timer peripheral on the main

core. This design gave accurate measurements from the

ultrasonic sensor while maintaining fluid speed control of the

two motors.

V. RESULTS

When implementing the modified ACO in real life, the

main constraint was the size of the swarm. Due to the limited

dimensions of the available testing environment, only three

robots were running simultaneously. Nevertheless, even with

the smaller number of robots, a proof of concept was

accomplished and the results showed that, in the majority of

the test runs, the modified algorithm converged and the robots

were successfully able to identify the shortest available path.

The implementation of the work in a physical system, also

showed that there are many important considerations

unexplored in simulations that greatly impact the behavior of

the algorithm. The first, perhaps more plain, implication of a

physical implementation is the possibility of collisions

between robots, particularly concerning congestion around the

home base. It was found that using the queue system that

makes robots wait for traffic to clear adds a fairly consistent

amount of time to each path traveled. This addition across the

board decreases the relative dominance of a shorter path,

leading to a slower convergence. For example, if a shorter

path can be traveled in 10 seconds while a longer path is

traveled in 20 seconds. A round trip on the longer path is

twice as long as a similar trip on the shorter path. Adding a 2

second queue time for both paths lead to changing the

proportions and make the longer path only 1.83 times longer

than the shorter one. The longer the queue times, the slower

the convergence of the algorithm.

Another important factor that was noticed in the physical

implementation is the speed of the individual robots. While

these robots are identical, and must ideally run at the same

speed, real-life imperfections must be taken into

consideration, especially since the whole algorithm depends

on travel times. Fortunately this was addressed by choosing

suitable values for the parameters c and h in equation (1). As

explained in section III, setting the value of h =2 resulted in

significant increase in the speed of convergence. In fact,

convergence often happened without ever actually making a

‘wrong’ decision. In other words, immediately after the initial

run, where each of the three robots travels one of the three

paths, all three robots will indefinitely converge to the shortest

path. This could be considered good news. However, we felt

that such a fast convergence was associated with a high

chance of error, such as some cases where the robots actually

converged on a wrong path. To remedy this, the value of the

parameter c was increased to one. In the updated model (h=2,

c=1), the robots took at least two trips exploring possible paths

before eventually converging to the shortest path.

It is worth noting that the severity of the tradeoff between

the two models above is heightened by our small sample size.

The difference between various models, while existing, should

be much less significant with larger robot populations.

VI. CONCLUSION & FUTURE WORKS

In this work, we presented a small-scale implementation

of the well-known ant colony optimization algorithm on a

small swarm of robots. The algorithm needed to be modified

to overcome a number of physical implementation issues that

are otherwise not encountered in a computer simulation.

The proof of concept implementation was successfully

accomplished. The results showed that the implementation

parameters can be adjusted in a tradeoff between the speed of

convergence and the robustness of the algorithm. Based on

their application, a system designer must adjust those

parameters based on how efficient does the system need to be

in order to be considered viable, and how much error are they

willing to tolerate for an efficient convergence.

In the future, one important development for this work is

to move beyond pre-defined paths by equipping the robots

with the means to look for their prospective targets. One of the

possibilities is to add a thermal sensor and include one or

more heat sources in the testing environment.

Moreover, for an effective rescue mission, it is important

to be able to adapt to never before seen terrains. For this

purpose, a combination of the ACO with Dijkstra's algorithm

might prove useful. One possible implementation could have

the robots create their own node mesh through exploration,

creating several possible paths to an end goal. Dijkstra's

algorithm would not be able to solve the entire problem, as not

all edges are found, nor their lengths or weights. The ACO

algorithm would be useful to find optimal paths within this

mesh, using frequency analysis rather than strict distances.

ACKNOWLEDGMENT

This work was possible thanks to the generous support
received via the Frederick F. Jenny Professorship of emerging
technologies.

REFERENCES

[1] G. Dudek, M. Jenkin, E. Milios, & D. Wilkes, “A taxonomy for swarm

robots.” IEEE/RSJ International Conference on Intelligent Robots and

Systems, 1993.

[2] S. Nouyan, R. Groß, M. Bonani, F. Mondada, & M. Dorigo,
“Teamwork in self-organized robot colonies.” IEEE Transactions on
Evolutionary Computation, vol. 13, no. 4, 2009.

[3] J. Lindsay, S. Givigi, G. Pieris, G. Fusina, & G. Labonte,

“Experimental validation of swarms of robots.” IEEE International

Conference on Systems. 2012.

[4] M. Dorigo, V. Maniezzo, and A. Colorni, “The Ant System:

Optimization by a colony of cooperating agents.” IEEE Transactions

on Systems, Man, and Cybernetics–Part B, vol. 26, no. 1, 1996.

[5] M. Dorigo and L. Gambardella. “Ant Colony System: A cooperative

learning approach to the traveling salesman problem.” IEEE

Transactions on Evolutionary Computation, vol. 1, no. 1, 1997.

[6] R. Parpinelli, H. Lopes, and A. Freitas. “Data mining with an ant

colony optimization algorithm.” IEEE Transactions on Evolutionary

Computation, vol. 6, no. 4, 2002.

[7] J. Bautista and J. Pereira. “Ant algorithms for a time and space

constrained assembly line balancing problem.” European Journal of

Operational Research, vol. 177, no. 3, 2007.

[8] S. Alupoaei and S. Katkoori. “Ant colony system application to

marcocell overlap removal.” IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, vol. 12, no. 10, 2004.

[9] https://www.parallax.com/product/32500

[10] H. Parunak, S. Brueckner, J. Sauter, “Digital pheromone mechanisms
for coordination of unmanned vehicles.” International joint conference

on Autonomous agents and multiagent systems: part 1, 2002.

