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Abstract

Since 2006, the North American bat population has been in rapid decline due to a

disease, known as white-nose syndrome (WNS), caused by an invasive fungus (Pseu-

dogymnoascus destructans). The little brown bat (Myotis lucifugus) is the species

most affected by this emerging disease in North America. We consider how best to

prevent local extinctions of this species using mathematical models. A new vaccine

against WNS has been under development since 2017 and thus, we analyze the effects

of implementing vaccination as a control measure. We create a Susceptible-Exposed-

Infectious-Vaccinated hybrid ordinary differential equation and difference equation

model informed by the phenology of little brown bats. We analyze various vacci-

nation strategies to determine how to maximize bat survival with regard to realistic

restrictions. Next, we perform a sensitivity analysis to determine the robustness of our

results. Finally, we consider other possible control measures in union with vaccination

to determine the optimal control strategy. We find that if the vaccine offers lifelong

immunity, then it will be the most effective control measure considered thus far.
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1 Introduction

Over the past decade, the North American bat population has suffered dev-

astating losses due to a rapidly spreading fungal disease. This epizootic was first

discovered in 2006 by a group of spelunkers in a cave system outside of Albany, New

York. They encountered a colony of hibernating bats and noticed what appeared to

be white powder on their noses and wings. Not knowing what this was, they took

photographs of the bats and then left. The following year, biologists entered a nearby

cave for a routine bat population count and found thousands of dead bats covering

the cave floor. Researchers soon realized the white powder was the cause of what

has become the first sustained bat epizootic in recorded history. The spelunkers in

2006 had captured the first known photographs of what is now known as white-nose

syndrome (WNS) [8]. In the years since, WNS has spread to 31 states and five Cana-

dian provinces, claiming the lives of over six million bats in its wake [21]. Forecasts

predict that little brown bats may be regionally extinct in eastern North America as

early as 2026 [7].

North American bats play pivotal roles in their ecosystems as well as in vari-

ous industries. Bats provide a critical service to the forestry industry by facilitating

recolonization of native vegetation on degraded sites [24]. Bats also save the United

States’ agricultural industry approximately $3.7 billion each year in pest control and

pollination costs [3]. Beyond the benefits that bats provide for society, they also pos-

sess a unique immune system compared to other mammals [15]. Bats have a distinct

asymptomatic maintenance of viral infection that suggests an ancient coexistence of

bats and diseases [25]. Despite their noteworthy immune system, bats are succumbing

to WNS [22].

White-nose syndrome is caused by the invasive, psychrophilic fungus, Pseudo-

gymnoascus destructans (Pd), which affects bats primarily during hibernation [8].

While hibernating, bats have significantly reduced immune function and body tem-

perature [2], making them susceptible to infection. The fungus causes irritation and
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dehydration, leading infected bats to become aroused from torpor significantly more

frequently than healthy bats [4]. These frequent bouts of arousal in turn cause rapid

depletion of fat stores and lead to starvation [13].

In response to the disease, there have been numerous studies conducted. Past

research has focused on the little brown bat (Myotis lucifugus), the species suffering

the most severe losses from the disease. This species has been studied for a variety

of reasons, primarily due to the amount of data available and the severity of their

situation. We also conduct our study on little brown bats. Researchers have used

metapopulation models to investigate the effects of culling infected bats as a possible

control measure for WNS. While targeted culling was found to be effective over a

short period of time, it was not found to be an effective long-term solution [9]. Others

provided insight regarding the dynamics of the fungus using a Susceptible-Infected-

Susceptible model to determine the relative importance of bat-to-bat transmission and

environment-to-bat tranmission in the spread of WNS [18]. Recently, a Susceptible-

Exposed-Infected model was built around the phenology of little brown bats. It was

used to compare five potential methods of control against WNS: thermal refugia,

targeted culling, fungicide application, reduced reservoir size, and generalized culling.

The results of this study suggested the most promising method of control was a

combination of targeted culling and reducing the reservoir size of the fungus [17].

Our research relies and builds upon past work. Specifically it serves as a contin-

uation of this most recent work by Meyer et al., by assessing a new promising method

of control, vaccination. Research is currently underway to develop a vaccine that

could offer bats protection from the fungal disease [19]. To our knowledge, there has

been no attempt to mathematically model the implications of a white-nose syndrome

vaccine. In this paper, we will make such an attempt.

This paper is organized as follows: In Section 2, we will provide details of

our deterministic model, as well as discuss the implementation of vaccination into

the model. In Section 3, we create a stochastic analog of the deterministic model.
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In Section 4, we discuss the results of our models and vaccination strategies. We

conclude in Section 5 with a discussion of the results and suggestions for future work.

2 Deterministic Model

We created our Susceptible-Exposed-Infectious-Vaccinated hybrid ordinary dif-

ferential equation and difference equation model following what was previously cre-

ated by Meyer et al.. We used their model as a basis from which we made mod-

ifications to take into account vaccination as a control measure. In this system,

susceptible bats (S) become infected with the fungus, moving them into the exposed

class (E). Exposed bats become infectious with the disease, which moves them into

the infectious class (I). Furthermore, WNS induced mortality only occurs for bats in

the infectious class at a rate consistent with field observations. Our model accounts

for bats from all three of these classes becoming vaccinated bats (V) at a certain

proportion on a single day in the model; this is referred to as the vaccination pulse.

While these dynamics are happening within the bat population, the model also takes

into account the growth of Pd within the hibernaculum (P).

Jan Feb Mar Apr May Jun July Aug Sept Oct Nov Dec

Hibernation Roosting Swarming Hibernation

May Jun Jul Aug

H. R. Births R. S.

F.D.O.R. Vaccination Pulse

Figure 1: The phenology of little brown bats which informs our model.
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The structure of the model is informed by the phenology of little brown bats

(see Figure 1) [17]. As a result, our model has three distinct phases: swarming,

hibernation, and roosting. The duration of each phase can be seen in Table 1. In

order to more realistically represent a bat colony during roosting, we incorporated one

subphase and two pulses within the roosting phase portion of the model. We created

a total of six compartment models, each with a corresponding set of differential or

difference equations.

Phase Begins Ends Total Days

Swarming 1 61 61

Hibernation 62 273 212

First Day of Roosting Pulse 274 274 1

Daily Roosting 275 319 45

Birth Subphase 320 340 21

Vaccination Pulse 341 341 1

Daily Roosting continued 342 365 24

Table 1: Phases of the model.

Our model operates assuming the bat colony begins at a total initial population

of N0. In each portion of the model, natural death is taken into account for each class

based on the rate µ. The model considers two disease transmission routes: bat-to-bat

and environment-to-bat. These are represented, respectively, by the rates β and φ.

However, it is important to note that these rates vary based on the phase in which

they are used. Our model was created specifically to analyze the effect of vaccination

as a control measure. With the vaccine still being in development, it is not known

what length of immunity the vaccine will offer; it could last one year, or it could last

a lifetime. Our model analyzes the outcomes of various immunity loss rates, a rate

which is represented by λ.
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2.1 Compartment Models
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Figure 2: Flow chart of the swarming phase model.
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Figure 3: Flow chart of the hibernation phase model.
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Figure 4: Flow chart of the first day of roosting pulse model.
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Figure 5: Flow chart of the regular roosting model.
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Figure 6: Flow chart of the birth subphase model.
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Figure 7: Flow chart of the vaccination pulse model.

2.2 Parameters

Table 2 summarizes the parameters used throughout the model. Our model

is designed to confirm results found from Meyer et al., develop them further, and
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implement vaccination as a new control method. As a result, many parameters are

the same as previous works [17]. The majority of parameters are biologically deter-

mined values, or well-estimated. Four transmission parameters φs, φh, βs, and βh are

exceptions to this. Model analyses have shown the amount of bat-to-bat transmission

during swarming is negligible compared to transmission in hibernation [17]. Further-

more, disease induced mortality is limited to only the hibernation phase. The primary

reasons for these assumptions are pathogen and host physiologies [12]. This allows

for the simplifying assumption that RB
0 = Rh

0 and that Rs
0 = 0. By the derivation of

the basic reproductive number for the ith phase

Ri
o =

βiN0τi
(µ+ δ)(τi + µ)

(δ = 0 if i = s) (1)

it can be inferred that βs = 0 [17]. In regards to φs and φh, we elected to consider a

set of parameters that models high bat-to-bat transmission during hibernation (RB
0 =

4.15) and greater environment-to-bat transmission during hibernation than swarming

(φh = 2.0 · 10−13,φh = 1.75 · 10−13 [12]). Model analyses considered multiple com-

binations of these parameters, finding similar results. We selected this combination

to compare our results to previous work as well as doing so under the suggestion of

Langwig et al..
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2.3 Swarming

Our model begins during the swarming phase. The swarming phase occurs

during autumn, generally from mid-August through mid-October [17]. the swarming

phase lasts 61 days in our model (see Table 1). During this time of the year, bats are

mating and accumulating fat stores in preparation for hibernation [10]. Our model

assumes little brown bats do not die due to WNS during this phase and the bat-to-bat

transmission, βS, of the disease is negligible [12]. However due to environment-to-bat

transmission, we assume bats are still transitioning from the susceptible class into

the exposed class, as well as from the exposed class into the infectious class [17].

Here, and throughout the model, natural death is occurring out of all four classes

(see Figure 2).

The swarming phase is modeled by the system of ordinary differential equations

dS

dt
= −(βsI + φsP )S + λV − µS (2a)

dE

dt
= (βsI + φsP )S − (τs + µ)E (2b)

dI

dt
= τsE − µI (2c)

dV

dt
= −λV − µV (2d)

where the rate at which the fungus is being transferred from bat-to-bat is represented

by βs. The rate at which the disease is being transferred from the environment-to-

bat is represented by φs. The rate at which bats leave the exposed class and enter

the infectious class is represented by τs. During the swarming phase, Pd growth is

modeled by the following:

dP

dt
= (ωI + ηP )

(
1− P

KPd

)
(3)
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where ω is the rate of Pd shedding from infectious bats, η is the natural mortality

rate of Pd, and KPd is the carrying capacity of Pd.

2.4 Hibernation

After swarming, bats enter into the hibernation phase. This is the longest

phase, beginning in mid-October and lasting until mid-May [17]. In our model, the

hibernation phase lasts 212 days (see Table 1). It is during this phase that bats are

most susceptible to the disease. Unlike other fungal pathogens which cause superficial

damage, Pd can digest and erode the skin of bats [4]. Due to the irritation and

dehydration caused by the growth of the fungus, the bats are more frequently aroused

during their torpor, causing their fat stores to be depleted too quickly. This loss of

energy, coupled with the lack of insects to consume in the winter, leads to bats dying

of starvation [13].

During this time, bats are still moving from the susceptible class into the ex-

posed class, and also from the exposed class to the infectious class (see Figure 3).

The hibernation phase is modeled with equations which are structurally the same as

the swarming phase. This phase is modeled with the system of equations

dS

dt
= −(βhI + φhP )S + λV − µS (4a)

dE

dt
= (βhI + φhP )S − (τh + µ)E (4b)

dI

dt
= τhE − (δ + µ)I (4c)

dV

dt
= −λV − µV (4d)

where different values are used for the rates of disease transmission from bat-to-bat

and environment-to-bat as indicated, respectively, by βh and φh. Also, the rate at

which bats are moving from the exposed class to the infectious class is indicated by τh.
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In this system we include one new parameter, δ, to represent the rate at which bats

are dying specifically due to white-nose syndrome. During the hibernation phase, Pd

growth is modeled by the following:

dP

dt
= (ωI + ηP )

(
1− P

KPd

)
(5)

where ω is the rate of Pd shedding from infectious bats, η is the natural mortality

rate of Pd, and KPd is the carrying capacity of Pd.

2.5 Roosting

Once the bats awake from hibernation, the roosting phase begins. It is during

this phase that female little brown bats are giving birth to and rearing young. Gen-

erally, females give birth to only one pup per year [6]. The roosting phase begins

in mid-May and lasts until mid-August [17]. This phase lasts 92 days (see Table 1).

However, to more realistically represent what is happening within a bat population

during this time, our model divides this phase into four separate compartment models

with two pulses and two subphases. Also, it is during this phase on a single day that

our model assumes the vaccine is administered to a proportion of a bat colony.

When differential equations are used in this phase, Pd is growing according to

the following differential equation:

dP

dt
= ηP

(
1− P

KPd

)
. (6)

During the two pulses within this phase, Pd is assumed to have reached carrying

capacity and is treated as a constant on these days.
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2.5.1 First Day of Roosting Pulse

The roosting phase begins with a pulse occurring on the first day. The first

day of roosting pulse (F.D.O.R) represents the complex transfers between classes

that occur at the end of hibernation. At this time, there is a proportion of exposed

and infectious bats moving back into the susceptible class. This is done to take into

account bats who, though exposed or infectious, are still healthy enough to survive

through the remainder of the year (see Figure 4).

To more easily model this singular day, we use a system of difference equations.

On the first day,

St = [St−1 + a1Et−1 + εa2It−1 + V (1− e−λ)]e−µ (7a)

Et = (1− a1)Et−1e
−µ (7b)

It = ε(1− a2)It−1e
−µ (7c)

Vt = Vt−1e
−λe−µ (7d)

where the parameter values used in this system of equations include a1 and a2 which,

respectively, are the proportion of bats who move from the exposed and infectious

classes into the susceptible class. The ε parameter value represents the probability of

a bat becoming infectious late enough in the hibernation phase to be healthy enough

to fly from the hibernaculum after hibernation and survive through the remainder of

the year.

2.5.2 Regular Roosting Subphase

After the first day, a new compartment model is needed to represent what hap-

pens on an ordinary day during this phase. Here we create the system of differential

15



equations

dS

dt
= λV − µS (8a)

dE

dt
= −µE (8b)

dI

dt
= −µI (8c)

dV

dt
= −λV − µV (8d)

to represent this period of time within the model.

2.5.3 Birth Subphase

Since female little brown bats typically give birth to a single pup within a three

week period during the middle of the roosting phase [6], we convert the single-day,

logistic birth pulse from Meyer et al. into a three-week birth subphase. Our birth

subphase begins halfway through the roosting phase and lasts for three weeks.

We assume the population grows at a relative rate, γ, throughout the birth

subphase. We assume that the susceptible class will grow logistically such that

dS

dt
= γN

(
1− N

KMl

)
+ λV − µS

occurs throughout the three week period. In order to determine the birth rate and

the calibrated carrying capacity, γ and KMl, respectively, we fit our model in two

respects. The first condition was that only 25% of a colony’s initial population will

survive two years after the disease arrives [1]. The second condition was that in a

disease-free simulation, the population should return to its initial population size, N0,

each year. To determine the values of γ and KMl necessary to fulfill these conditions,

we utilized MATLAB’s fminsearch optimization method (MathWorks, Natick, MA,
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USA) to minimize the cost functional

J(θ) = 10

(
N0

4
−N(2(365); θdf )

)2

+
10∑
i=1

(N0 −N(365i; θed))
2 (9)

where N is the total bat population at t days under the parameter vector θdf for

the disease-free scenario and θed for the endemic scenario. This yielded a calibrated

carrying capacity KMl of 20,148 bats and relative birth rate γ of 0.0194 d−1. The

results of meeting these conditions are found in Figure 8 and Figure 9.

Figure 8: Dynamics over two years of a population with no vaccination. The total

population reaches 25% of its initial population size at the end of year 2.
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Figure 9: The dynamics over ten years of the total little brown bats in a disease-free

population. The total population returns to its initial population size of 15,000 bats

by the start of each swarming phase.

Bats with WNS are unlikely to be infectious during the spring and summer due

to the psychrophilic nature of Pd, therefore vertical transmission of Pd from mother

to pup is improbable [23]. Hence, we assume that new bats are exclusively added to

the susceptible class. The birth subphase is modeled by the system

dS

dt
= γN

(
1− N

KMl

)
+ λV − µS (10a)

dE

dt
= −µE (10b)

dI

dt
= −µI (10c)

dV

dt
= −λV − µV. (10d)

Allowing for this three week period of births, rather than a birth pulse, is one of the

major modifications to the model not considered in previous work.
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2.5.4 Vaccination Pulse

Our model assumes the vaccine will be administered on a single day, specifically

the day following the conclusion of the birth subphase. The vaccine we model is still

under development, however the idea is to create it in the form of an edible gel. This

gel could then be sprayed onto a proportion of a bat population. The vaccine would

take advantage of bats’ natural tendency to groom themselves and each other [6].

During grooming, bats would ingest the gel vaccine and it would create antibodies

within them that would enable their bodies to fight the fungus [19].

We chose to implement vaccination during this phase for several reasons. It

does not make sense to vaccinate the population during hibernation because it would

disturb the bats in the midst of their torpor, which is what the disease itself does.

Roosting is the optimal time to locate bat populations compared to swarming, as

specifically females are easier to find during this time of the year [11]. Also, by

vaccinating on this day, the vaccine would reach the most number of bats within

a population and also protect young bats before they have a chance of becoming

infected.

For this portion of roosting, we once again use a system of difference equations

because vaccination administration is assumed to occur on a single day. The day of

vaccination is modeled as

St = [(1− ν)St−1 + (1− e−λ)(ν(St−1 + Et−1 + It−1) + Vt−1)]e
−µ (11a)

Et = (1− ν)Et−1e
−µ (11b)

It = (1− ν)It−1e
−µ (11c)

Vt = [ν(St−1 + Et−1 + It−1) + Vt−1]e
−λe−µ (11d)

with the parameter ν representing the proportion of the bat population that gains

immunity from the vaccine.
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2.6 Vaccination Strategies

We wanted to analyze our model with regard to realistic restrictions. A re-

striction our model considers is loss of immunity at various rates, λ. We analyze the

consequences of these varying rates of immunity loss. Also, we consider the frequency

of vaccine dispersal into a bat population through various vaccination strategies. We

analyzed the outcomes of vaccinating a population annually, biennially, or once. For

the annual and biennial strategies, we assumed a constant vaccination rate each time

the vaccine was implemented. For one time vaccination, we considered various years

in which the vaccine can be administered.

2.7 Sensitivity Analysis

We performed a sensitivity analysis of our model using a Latin hypercube sam-

pling (LHS) [16]. By doing so we are able to determine qualitatively if our model is

extremely sensitive or not. The LHS operates under the assumption that λ = 0. We

assume that the qualitative results from the LHS when λ = 0 has similar behavior to

when λ 6= 0. To complete the LHS we varied 12 parameters according to ranges found

from literature, or estimated. At each vaccination proportion stepping by 10%, 100

combinations of these 12 parameters were used to calculate a total of 1000 samples

of N10, the surviving population ten years after infection. These varied parameters

and their respective ranges can be found in Table 2. Note that ε is dependent upon

s in the following way:

ε =
1

sδ + 1
(12)

thus varying s in the LHS directly varies epsilon as well. Additionally, KMl is updated

depending on the value the LHS generates for N0. The proportion that N0 is of KMl

was determined by analyzing the disease-free model at different N0 and KMl values

so that annually the bat population reaches the corresponding N0. The following
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relation between KMl and N0 was determined by

KMl = 1.3432N0. (13)

2.7.1 Loss of Immunity

Our results and discussion consider two situations. The first considers lifelong

immunity, λ = 0, and the second considers loss of immunity, λ 6= 0. This consideration

is important as loss of immunity alters the effectiveness of vaccination strategies.

2.7.2 Lag Period

Another restriction we considered was various timing scenarios. We analyzed

the effects of implementing the vaccine before and after a colony included infected

bats. The timing before and after infection is referred to as the lag, and is denoted

as h. The calculation of h is the difference between the year of infection and vaccina-

tion implementation. Negative values of h correspond to vaccinating before infection

begins, and positive values of h correspond to vaccinating after infection begins. For

consistency, the simulation was run for 10 years after the first year of infection re-

gardless of the lag.

2.8 Other Methods of Control

Previous work considered multiple control strategies and highlighted the com-

bination of two control strategies, reduced reservoir size of Pd and targeted culling,

as the most effective measures of control for WNS [17]. At the time the research was

conducted, vaccination was not explored primarily due to the fact that a vaccine had

not been announced. We explored both of these control measures by themselves as

well as in union with vaccination.
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2.8.1 Reduced Reservoir

Reduced reservoir is a method of control that operates by lowering the carrying

capacity Pd. To do this, a proportion of KPd, ρ, will be removed. It is assumed

that this removal only occurs in the year of infection. The effect of this changes the

differential equations modeling P . Hibernation and swarming is now modeled by

dP

dt
= (ωI + ηP )

(
1− P

(1− ρ)KPd

)
(14)

and roosting is now modeled by

dP

dt
= ηP

(
1− P

(1− ρ)KPd

)
. (15)

2.8.2 Targeted Culling

Targeted culling is a method of control that operates by removing a proportion

of the exposed and infectious bats in hopes of preventing spread of the disease to

susceptible bats. It is assumed that this removal of bats occurs twice during the

hibernation phase by an equal proportion ζ. The respective time line for when these

removals occur is listed below in Table 3. With this method of control there are

two new pulses, for each round of culling, and both are implemented using difference

equations

St = St−1e
−µ (16a)

Et = (1− ζ)Et−1e
−µ (16b)

It = (1− ζ)It−1e
−µ (16c)

Vt = Vt−1e
−µ (16d)
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Phase Begins Ends Total Days

Swarming 1 61 61

Hibernation Part 1 62 131 70

Targeted Culling Part 1 132 132 1

Hibernation Part 2 134 202 69

Targeted Culling Part 2 203 203 1

Hibernation Part 3 204 274 71

First Day of Roosting Pulse 274 274 1

Daily Roosting 275 319 45

Birth Subphase 320 340 21

Vaccination Pulse 341 341 1

Daily Roosting continued 342 365 24

Table 3: Phases of the model considering targeted culling.

3 Stochastic Model

3.1 Purpose

Previous work ignored stochastic effects and suggested that it may be important

to consider in two respects. First, stochastic effects may affect how a population

heads towards extinction at small population sizes. Second, population recovery and

the respective control methods may be influenced by stochastic effects [17]. Our

stochastic analog is derived in two parts. First, a Continuous-Time Markov Chain

(CTMC) replaces our phases in which differential equations are utilized (hibernation,

swarming, regular roosting, and the birth subphase). Second, binomial distributions

replace our pulses in which difference equations are utilized (first day of roosting

pulse and vaccination pulse). In this way, our model considers each bat as discrete,

implementing demographic stochasticity, which is a more accurate depiction of a
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population. The stochastic analog operates under the assumption that λ = 0. We

assume that if the stochastic analog is qualitatively similar to the deterministic model

when λ = 0, it is assumed that similar behavior will also be observed when λ 6= 0 .

Furthermore, the transition corresponding to the event of Pd growth is fitted to reflect

the qualitative behavior of the deterministic model. This is done due to the fact that

the bat population and population of CFUs are on different orders of magnitude by

the end of the first swarming phase.

3.1.1 Continuous-Time Markov Chain Derivation

The CTMC is constructed by creating a table for each phase which utilizes a

differential equation. The table considers the events that may happen in that phase,

the respective transition, as well as the respective rate. The total rate, T, is calculated

by summing all of the rates within the phase. Each event is assigned a proportional

non-overlapping interval depending on the proportion of the respective rate to the

total rate, between (0, T ). This means that the interval (0, T ) will be subdivided

proportionally into a number of intervals equal to the number of events. The process

of determining the amount of time between events and which event occurs is outlined

below.

1. The number of days until an event occurs is calculated. This is determined by

a random number generated from the exponential distribution, Exp(1/T ).

2. The number of days calculated in Step 1 is added to the total number of days.

3. Now that an event has occurred it must be classified into which event occurred.

A random number is generated from the uniform distribution U(0, T ).

4. The number generated in Step 3 falls into an interval belonging to an event.

That event is said to occur. The respective transition occurs.

5. Step 1 through Step 4 is repeated until the number of days in a phase is com-

pleted.
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CTMC tables with event, transition, and rate information for swarming, hibernation,

roosting, and the birth subphase are found in Tables 4, 5, 7, and 8 respectively.

3.1.2 Binomial Distributions Derivation

The binomial distribution requires two inputs, the number of trials, n, and the

probability of success for a given trial, p. Within our model binomial distributions are

applied at two different pulses, and within each pulse, there is a binomial distribution

used on each class of bats (S, E, I and V). The corresponding inputs are provided in

the Tables 6 and 9.

We considered implementing the Poisson distribution, an approximation of the

binomial distribution. The n value would represent the total number of bats alive in

a given class, and the p value would represent our definition of success, which varies.

The general rule for Poisson distributions calls for its use when n is larger than 20 and

p is less than or equal to 0.05 [20]. Our definition of success made p greater than 0.05

for the parameters used in the first day of roosting pulse and the vaccination pulse.

The reasoning for the choice to use a binomial distribution rather than a Poisson

distribution is outlined as follows.

For the first day of roosting pulse, the natural death the success probability p

was determined by e−µ which equals 0.9997. We evaluated the parameter value ε and

found it to equal a 0.09 probability. For the probabilities of infectious and exposed

bats moving to the susceptible class we defined success to be when a bat did not leave

the infectious or exposed class. These probabilities 1−a1 and 1−a2 which both equal

0.25 (see Table 6).

For the vaccination pulse, the success definition for natural death was the same

and did not meet the standard rule for the Poisson distribution. We defined success

to mean bats remained in their class and did not move into the vaccinated class, 1−ν.

For our model in general, we consider vaccination proportions greater than 0.1 and
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less than 0.9. This means the probability of bats staying in their class during this

time is at minimum 0.1 (see Table 9).

3.2 Swarming

Event Transition Rate

Susceptible Death S → S − 1 µS

Exposed Death E → E − 1 µE

Infectious Death I → I − 1 µI

Vaccinated Death V → V − 1 µV

Infection S → S − 1 (βSI + φSP )S

E → E + 1

End of latency E → E − 1 τSE

I → I + 1

Pd Growth P → P ∗ 100.001 (ωI + ηP )
(

1− P
KPd

)
Table 4: Rates of the swarming phase.
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3.3 Hibernation

Event Transition Rate

Susceptible Death S → S − 1 µS

Exposed Death E → E − 1 µE

Infectious Death I → I − 1 (µ+ δ) I

Vaccinated Death V → V − 1 µV

Infection S → S − 1 (βHI + φHP )S

E → E + 1

End of latency E → E − 1 τHE

I → I + 1

Pd Growth P → P ∗ 100.001 (ωI + ηP )
(

1− P
KPd

)
Table 5: Rates of the hibernation phase.

3.4 Roosting

3.4.1 First Day of Roosting

Calculation/Success Definition Success Probability

Infectious bats survive F.D.O.R e−µ

Viable infectious bats after hibernation ε

Recovered Infectious bats (1− a2)

Exposed bats survive F.D.O.R e−µ

Recovered exposed bats (1− a1)

Susceptible bats survive F.D.O.R e−µ

Vaccinated bats survive F.D.O.R e−µ

Table 6: Binomial distributions for the F.D.O.R.
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3.4.2 Regular Roosting Subphase

Event Transition Rate

Susceptible Death S → S − 1 µS

Exposed Death E → E − 1 µE

Infectious Death I → I − 1 µI

Vaccinated Death V → V − 1 µV

Pd Growth P → P ∗ 100.001 ηP
(

1− P
KPd

)
Table 7: Rates of the regular roosting subphase.

3.4.3 Birth Subphase

Event Transition Rate

Susceptible Death S → S − 1 µS

Exposed Death E → E − 1 µE

Infectious Death I → I − 1 µI

Vaccinated Death V → V − 1 µV

Birth S → S + 1 γN
(

1− N
KMl

)
Pd Growth P → P ∗ 100.001 ηP

(
1− P

KPd

)
Table 8: Rates of the birth subphase.
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3.5 Vaccination Pulse

Calculation/Success Definition Success Probability

Infectious bats survive VP e−µ

Infectious bats vaccinated (1− ν)

Exposed bats survive VP e−µ

Exposed bats vaccinated (1− ν)

Susceptible bats survive VP e−µ

Susceptible bats vaccinated (1− ν)

Vaccinated bats survive VP e−µ

Table 9: Binomial distributions for the vaccination pulse.

4 Results

In our research, we attempted to answer five questions. First, we wanted to

know if implementing a birth subphase would yield similar results as previous re-

searchers found using a birth pulse (1). Second, we sought to discover if a vaccine

could save local bat populations from extinction (2). Third, we compared different

implementations of the vaccine under various realistic restrictions (3). This allowed

us to make recommendations about how to administer the vaccine in order to maxi-

mize its effectiveness. Fourth, we wanted to know how vaccination compared to other

control methods (4). Fifth, we wanted to answer the question posed by Meyer et al.

regarding whether or not implementing stochastic processes would affect the success

of control measures [17] (5).
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4.1 Deterministic Model

To answer question (1), we rebuilt the previous model created by Meyer et al..

We confirmed similar dynamics, as well as a loss of 75% of the initial bat population

after two years (see Figure 10a), which corresponds to data collected on infected bat

populations [1]. After we confirmed these dynamics, we adjusted the model to include

a birth subphase in place of a birth pulse. Our model accounts for an influx of bat

pups into the population over a three week period, instead of using the simplification

of births all occurring on a single day. With this addition, our model had a similar

quantitative and qualitative nature to previous research (see Figure 10a).

4.1.1 Various Vaccination Proportions

To answer question (2) in regard to the effectiveness of the vaccine in preventing

the local extinction of bat populations, we began by determining the outcome of

annual vaccination with lifelong immunity at ν = 0.5. We observed that the total

population is retreating away from extinction. By the second year, the vaccinated

class has become the dominant class, and in doing so protects the population from

suffering severe losses (see Figure 10b). Then, we compared these results to no method

of control, where the total population approaches extinction (see Figure 10a). Next,

we explored various vaccination proportion values, ν (see Figure 11). We saw that

even at small values of ν, such as 0.1, stabilization was possible. We also learned

that a high value of ν, such as 0.9, was not significantly more effective than more

moderate values of ν, such as 0.5.
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(a) The dynamics of the bat population with

no control measure implemented.

(b) The dynamics of the bat population with

vaccination implemented at ν = 0.5 assuming

lifelong immunity and annual vaccination.

Figure 10: The dynamics of the deterministic model.

Figure 11: Total population over ten years at four different annual vaccination pro-

portions: 0%, 10%, 50%, and 90%. This plot assumes the vaccine offers lifelong

immunity against WNS.
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This prompted us to determine the total population alive ten years after infec-

tion, N10, for 100 different values of ν ranging from 0% to 100%, as well as the the

derivative of this curve (see Figure 12). The derivative suggests that incrementing

the vaccination proportion at small values of ν leads to a bigger change in N10 in

comparison to incrementing at large values of ν.

Figure 12: The blue curve represents the relationship between the vaccination pro-

portion, ν, and the resulting total population after ten years, N10. The red line is

the derivative of the blue curve, visualizing where the most increase occurs between

ν values. This plot assumes annual vaccination with lifelong immunity.

4.1.2 Sensitivity Analysis

We performed a sensitivity analysis on the results of Figure 12 using Latin

hypercube sampling (see Figure 13). Our results show that our model is somewhat

sensitive to variations in parameter values, however the model consistently follows

the same qualitative behavior. The mean at each value of ν of the LHS simulations
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follows a similar pattern to the simulations with default values, with a slightly less

optimistic outlook.

Figure 13: Latin hypercube sampling varying twelve parameter values within our

model. For each value of ν the twelve parameters were varied 100 times, represented

by the green dots. The mean of the realizations are represented by the red diamonds.

The blue curve is the result of using the default values in our model.

4.1.3 Loss of Immunity

In order to answer question (3) we consider some restrictions that could real-

istically occur when implementing vaccination as a control measure for WNS. We

created a new parameter, λ, which allows us to control the rate at which bats lose im-

munity to the disease after becoming vaccinated. We considered a situation in which

immunity only lasts one year, λ = 1/365, and vaccination occurred annually. Under

these assumptions, vaccination by itself was not as effective of a control measure over

ten years (see Figure 14). We considered ν at the proportions 0%, 10%, 50%, and

33



90% to evaluate the effect of one year immunity on these various ν values (see Figure

15).

Figure 14: The dynamics of the bat population with vaccination implemented at ν =

0.5 assuming lifelong immunity and annual vaccination.
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Figure 15: Total population over ten years at four different annual vaccination pro-

portions: 0%, 10%, 50%, and 90%. This plot assumes loss of immunity occurs, on

average, one year after vaccination.
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Figure 16: The blue curve represents the relationship between the annual vaccination

proportion, ν, and the resulting total population after ten years, N10. The red curve

is the derivative of the blue curve, visualizing where the most increase occurs between

ν values. This plot assumes that loss of immunity occurs, on average, one year after

vaccination.

We determined the total the total population alive ten years after infection,

N10, for 100 different values of ν ranging from 0% to 100%, with immunity lasting

one year, λ = 1/365. Next, we plotted the derivative of this curve. The derivative

tells us that incrementing the vaccination proportion at large values of ν leads to a

bigger change in N10 in comparison to incrementing at small values of ν (see Figure

16).

4.1.4 Multiple Realistic Restrictions

We also considered various timing strategies for the vaccine. The difference

between the year of infection and the year of vaccination. This lag is represented
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on the horizontal axis as seen in Figures 17, 18, and 19. The negative numbers

represent vaccination occurring before infection, zero represents the same year, and

positive numbers represent vaccination occurring after infection. In these figures we

also consider three different implementation options: annual, biennial, and once. We

do this for lifelong immunity, the black curves, as well as one year immunity, the red

curves.

From these plots we are able to identify several trends. For annual and biennial

vaccination with lifelong immunity, the total population is always higher after ten

years if vaccination occurs before infection. These two strategies offer comparable

outcomes after ten years. Also for lifelong immunity, if the vaccine can only be

administered once, there is consistently a spike in the N10 value at the year before

infection. By analyzing the behavior of populations with one year immunity after

vaccination, we find similar results for the annual and biennial strategies. Generally

it is best to implement the vaccine before infection for these situations (see Figures

17, 18, and 19).
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Figure 17: Population remaining ten years after infection, N10, with various vaccina-

tion strategies (curve style) and immunity length (color) at 10% vaccination. Each

dot represents a single run of the model. Initial population size is 15000 bats.
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Figure 18: Population remaining ten years after infection, N10, with various vaccina-

tion strategies (curve style) and immunity length (color) at 50% vaccination. Each

dot represents a single run of the model. Initial population size is 15000 bats.
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Figure 19: Population remaining ten years after infection, N10, with various vaccina-

tion strategies (curve style) and immunity length (color) at 90% vaccination. Each

dot represents a single run of the model. Initial population size is 15000 bats.

Next, we performed a sensitivity analysis of N10 versus lag between infection and

vaccination using Latin hypercube sampling of 12 perturbed parameter values. We

plot the LHS results in Figure 20 for the three vaccination strategies (annual, biennial,

and once) as well as for three vaccination proportions (10%, 50%, and 90%). We find

that the results are somewhat sensitive to variations in parameter values, however it

consistently follows the same qualitative behavior as the default parameters.
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Figure 20: Sensitivity analysis of number of bats surviving ten years after infection,

N10, vs. lag between infection and vaccination, h, for three vaccination strategies:

annual, biennial, and once. Each green point is a realization of the model using

perturbed parameter values from a Latin hypercube sampling. The means of the

green points are represented by red diamonds. These plots assume the vaccine offers

lifelong immunity (λ = 0).

In Figure 21 we investigate the dynamics of various vaccination strategies cou-

pled with both lifelong immunity as well as one year immunity. The assumption made
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in all plots is that h = 0 and ν = 0.5. We see the differences in dynamics, as well

as the ten-year-survival, N10, depending on the immunity length, of all vaccination

strategies.
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Figure 21: Population dynamics over ten years, with three different vaccination strate-

gies: annual, biennial, and once. Plots on the left assume lifelong immunity and plots

on the right assume loss of immunity occurs, on average, one year after vaccination
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Next, we wanted to further analyze the relationship between the vaccination

proportion, ν, and the length of immunity, λ, to be able to determine the best year

to distribute the vaccine within a bat population assuming vaccination occurs one

time. Based on the results in Figure 22, we were able to divide the graph into four

sections. Each section corresponds to the vaccination year, h, that will yield the best

outcome after ten years. Our model found that the four best years to vaccinate, if it

can only be done once, are one year before, the year of, five years after, and six years

after infection.

Figure 22: Each region defines a lag, h, which describes the optimal lag in the one

time vaccination strategy, given a vaccination proportion and average duration of

immunity.

Ultimately we wanted to be able to provide insight into how many bats would

be alive after 10 years, N10, depending on the vaccination strategy chosen, the length

of immunity the vaccine provides, as well as optimistic lag situations. Figure 23

shows four various situations, with either vaccinating the year before, or the year of
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infection, with either biennial or annual vaccination. Given this information, the 10

year survival is given by the corresponding color.

Figure 23: Comparing effectiveness of vaccination strategies with regard to length of

immunity, 1
λ
, and vaccination proportion, ν. Color corresponds to number of bats

surviving ten years after infection, N10.

4.2 Multiple Methods of Control

To answer question (4) regarding the vaccine’s effects compared to other control

measures, we analyzed two of the controls proposed by Meyer et al.. Meyer et al.
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suggested that, based on their study, the combination of targeted culling and reducing

the reservoir size of Pd offered the most promising results [17]. We analyzed the effects

of all three control measures, and their combinations, after 10 years. We began by

assuming lifelong immunity, λ = 0, and annual vaccination. Under these assumptions,

vaccination was the most effective control measure over ten years when comparing

the individual performance. Vaccination in union with reducing the reservoir size of

Pd, ρ, was the most effective combination of controls (see Figure 24).

Figure 24: Comparing control methods of targeted culling (ζ), reduced reservoir (ρ),

and vaccination (ν). Each sphere represents a combination of these three methods of

control. Lifelong immunity and annual vaccination is assumed.

However it is not definitively known that the vaccine will offer lifelong immunity,

nor is it known that implementing the vaccine annually will be feasible. Therefore,

next we considered the results of immunity lasting one year, λ = 1/365, and vac-

cination occurring once. The results of these assumptions dramatically change the

outcome after ten years. Vaccination by itself with these conditions offers bleak results
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of very low bat populations after ten years (see Figure 25).

Figure 25: Comparing control methods of targeted culling (ζ), reduced reservoir (ρ),

and vaccination (ν). Each sphere represents a combination of these three methods of

control. One year immunity and one time vaccination is assumed.

4.3 Stochastic Model

To answer question (5) we created a stochastic analog of our deterministic

model. We found it was qualitatively the same over 100 realizations in compari-

son to the deterministic model (see Figure 26). The average of 100 realizations was

also similar to the deterministic model at various values of ν (see Figure 27). The

assumption made in both of these figures was that λ = 0. It is important to note that

the deterministic model was slightly more optimistic than the average of the stochas-

tic realizations. With these results we recognized both models would provide us with

an equal amount of accuracy. We chose to solely further analyze the deterministic

model for this reason.
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Figure 26: 100 realizations of the stochastic model with 50% annual vaccination.

Total population (bats) over ten years.
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Figure 27: Comparison of the deterministic model (black curve) and the average of

100 realizations of stochastic model (red curve). Total population (bats) over ten

years with various vaccination proportions.
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5 Discussion

With a white-nose syndrome vaccine still under development, its level of im-

pact is based on numerous assumptions; however, the devastating effects of WNS

warrant predicting the success of vaccination. Furthermore, mathematical modeling

of this disease allows researchers to analyze the effects of implementing various con-

trol methods in situ before enacting a plan in vivo, thus protecting bat populations

from suffering further losses.

We have shown that, if the vaccine provides lifelong immunity, even at a small

vaccination proportion (ν), the bat population can be sustained (see Figure 11). We

also have shown that the gain in ten-year-survival between high vaccination propor-

tions is not large (see Figure 12). Thus, it appears to be an effective measure of

control even if conservationists cannot vaccinate an entire colony.

Our results show that if the vaccine provides lifelong immunity, it will be the

most effective control method considered thus far. While targeted culling (ζ) coupled

with reduced Pd reservoir size (ρ) has the potential to be effective, vaccination alone

saves more bats over ten years than this coupling (see Figure 24). In particular,

when ζ = ρ = 0.9, ten-year survival is 75.2% while when ν = 0.9, the ten-year

survival is 91.7%. Even though vaccination coupled with reduced Pd reservoir size

is the most effective control method in terms of increasing ten-year-survival, it is

important to note the difficulty in implementing a reduced reservoir of the fungus.

It is known that Pd prefers to grow on specific substrate, so it would be possible

to remove such cave sediment; yet, cave systems are fragile and mass removal of

sediment could compromise the hibernacula themselves [18]. Furthermore, the impact

from targeted culling is sensitive to parameter variation, specifically the transmission

route parameters (βs, βh, φs, φh). Changes in these values could lead to targeted

culling negatively affecting the population rather than helping [17]. Therefore, we

conclude that vaccination by itself poses a practical and efficient method of control.
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We believe the limiting cost in administering the vaccine is the number of times

the colony is vaccinated rather than the number of vaccine doses per visit. This is

due to the suggested method of distribution of the vaccine, namely, an edible gel that

can be sprayed on a large number of bats. This prompted us to explore different vac-

cination strategies in order to determine the optimal implementation. For annual and

biennial vaccination strategies, vaccinating at least the year before infection provides

significant benefits, with either lifelong immunity or only an average immunity period

of a year (see Figures 17, 18, and 19). With a vaccine that offers lifelong immunity,

the results after ten years are comparable. The similarity of these results are worth

consideration when weighing the cost and effort required to vaccinate.

When considering vaccinating only once, the optimal timing of vaccination is

dependent on the length of immunity that the vaccine provides, as well as the vaccina-

tion proportion. We found that for one-time vaccination, it is never best to vaccinate

more than one year before infection, as the number of vaccinated bats decreases over

time due to natural death. At low vaccination proportions and high immunity lengths,

vaccinating the year before infection provides optimal ten-year-survival. Perhaps sur-

prisingly, at high vaccination proportions and low immunity lengths, vaccinating five

or six years after infection provides optimal ten-year-survival (see Figure 22). This is

primarily an artifact of our measure of success, ten-year-survival. Since the average

lifespan of a little brown bat is about 8.5 years [6], the closer you vaccinate to the ten

year mark, the more vaccinated bats would still be alive.

Next, we showed that the continuous time Markov chain stochastic analog model

is qualitatively and quantitatively similar to the deterministic model. This allowed us

to use the deterministic model for our later analysis, as similar results were expected

from the stochastic analog. Note, however, that our models did not include absolute

or relative noise, only demographic stochasticicty, so a different noise structure could

change this conclusion.

We also saw from our LHS that the qualitative behavior of our results is similar
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across parameter ranges. The general trend of each realization, conceptualized as the

mean of all realizations, follows the trend of our default parameter assumptions (see

Figure 13). Clearly as parameters vary, the quantitative specifics must vary in turn,

such as the exact boundaries of the strategy regions in Figure 22, but ultimately these

specifics are nuances.

We have also shown the importance of developing a vaccine with a long immu-

nity period as well as the importance of administering that vaccine regularly. With

only an average immunity period of a year, in combination with vaccinating only once,

vaccination is ineffective. In particular, when ζ = ρ = 0.9, ten-year survival is 75.2%,

while when ν = 0.9, the ten-year survival is 7.24% (see Figure 25). Thus, we arrive at

a suggestion of vaccinating at least a year before infection, as well as administering

the vaccine as frequently as possible. It is important to note that realistic restric-

tions such as cost may prevent the administration of the vaccine from being deployed

frequently. For long immunity periods, this is acceptable, since biennial and annual

vaccination strategies produce similar survival rates at high vaccination proportions.

Note that vaccination without vertical transmission of immunity is insufficient

to solve this epizootic. Since Pd can survive in the environment even in the absence

of bats, the epizootic will return after vaccination ends. Furthermore, the ability of

Pd to propogate in the environment means that it would be impossible for a critical

vaccination proportion to be reached where remaining members of the colony obtain

herd immunity. Therefore, research into how to remove the fungus is key for a long-

term solution. Yet, with regional bat extinction in the Northeastern United States

on the horizon, and the lack of possible long-term control methods, vaccination is a

promising short-term solution.

We believe that a useful next direction of research would be modeling the spatial

spread of this disease between bat colonies. With the ability to predict where the

fungus will grow next, coupled with the results of our study, proactive measures

could be taken to determine the best time to vaccinate each bat colony. Furthermore,
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developing a control method to remove Pd from the environment appears to be the

most realistic long-term solution.
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