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Abstract. The phenomenon of noise-induced stabilization oc-
curs when an unstable deterministic system of ordinary differen-
tial equations is stabilized by the addition of randomness into the
system. Noise-induced stabilization is quite an intriguing and sur-
prising phenomenon as one’s first intuition is often that noise will
only serve to further destabilize the system. In this paper, we in-
vestigate under what conditions one-dimensional, autonomous sto-
chastic differential equations are stable, where we take the notion
of stability to be that of global stochastic boundedness. Specifi-
cally, we find the minimum amount of noise necessary for noise-
induced stabilization to occur when the drift and noise coefficients
are power, exponential, or logarithmic functions.

1. Introduction

This work is motivated by the intriguing phenomenon of noise-induced
stabilization. Noise-induced stabilization occurs when the addition of
randomness to an unstable deterministic system of ordinary differential
equations (ODEs) results in a stable system of stochastic differential
equations (SDEs). We are particularly motivated to find the minimum
amount of noise required for the phenomenon of noise-induced stabi-
lization to occur for one-dimensional, autonomous SDEs of the form

dX(t) = b(X(t))dt+ σ(X(t))dB(t) .

Here b(x) is the drift coefficient, which pushes the solution determin-
istically in some direction, σ(x) is the noise coefficient, which controls
the strength of the noise, and B(t) is Brownian motion, a stochastic
process where for each fixed t, B(t) is a normally distributed random
variable with mean 0 and variance t. We assume that b(x) and σ(x) are
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continuous functions and that there exists `0 ≥ 0 such that σ(x) 6= 0
for all |x| ≥ `0.

Our sense of stability comes from that of global stochastic bounded-
ness, which is defined more formally below [3].

Definition 1. X(t) is stable if for all initial conditions and all ε > 0,
there exists some bound R such that

P (|X(t)| ≤ R) > 1− ε
for all t ≥ 0.

In the deterministic setting where X(t) is a solution to an ODE,
the definition of stability reduces to that of boundedness. Hence, the
unstable deterministic systems that we consider either blow up in finite
time or wander off to infinity. We say that noise-induced stabilization
occurs when the addition of noise to an unstable ODE results in a
stable SDE.

Work by Scheutzow [5] has shown sufficient conditions for the occur-
rence of noise-induced stabilization. In this paper, we find necessary
and sufficient conditions for noise-induced stabilization to occur when
the drift and noise coefficients are restricted to certain forms. Section 2
discusses useful background information on the techniques that we use
to prove noise-induced stabilization. Sections 3, 4, 5, and 6 present and
prove our results concerning noise-induced stabilization for when the
drift and noise coefficients are general power functions, polynomials,
exponential functions, and logarithmic functions, respectively. Section
7 discusses the problem of the minimum amount of noise required to
stabilize an unstable system when the noise coefficient is not restricted
to a particular form.

2. Background

In this section, we discuss preliminary information on the methods
used to find our results. In particular, our work uses a well-known result
from [2] to determine the stability of SDEs, and specifically whether
noise-induced stabilization occurs. For ease, we will refer to this result
as the “Stochastic Stability Theorem.”

Stochastic Stability Theorem. Consider the general form for au-
tonomous first-order SDEs:

dX(t) = b(X(t))dt+ σ(X(t))dB(t)

where b(x) and σ(x) are continuous functions and there exists `0 ≥ 0
such that σ(x) 6= 0 for all |x| ≥ `0.
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Define the following quantities:

• s(x) =


exp

[∫ x

`

−2b(z)

σ2(z)
dz

]
when x > `

exp

[∫ x

−`

−2b(z)

σ2(z)
dz

]
when x < −`

• S(x) =


∫ x

`

s(y)dy for x > `∫ x

−`
s(y)dy for x < −`

• m(x) =
1

s(x)σ2(x)

• M(x) =


∫ x

`

m(y)dy for x > `∫ x

−`
m(y)dy for x < −`

The SDE is stable if any only if there exists ` ≥ `0 such that

S(∞) =∞, S(−∞) = −∞, |M(∞)| <∞, |M(−∞)| <∞.

Note that since the lower limit of integration does not affect the
convergence or divergence of these integrals, ` can be any real number
greater than or equal to `0.

Due to the terms defined in the “Stochastic Stability Theorem,”
there are several reoccurring, non-trivial integrals in our proofs. Hence,
we prove below the convergence or divergence of these types of integrals
to use as a reference.

Lemma 1. Consider the integral∫ ∞
1

ecx
n

dx

where n is any real number.

(1) If c ≥ 0, then the integral is infinite.
(2) If c < 0 and n ≤ 0, then the integral is infinite.
(3) If c < 0 and n > 0, then the integral is finite

Proof. (1) If c ≥ 0, then cxn ≥ 0 for all x ≥ 1, which implies
ecx

n ≥ 1 for all x ≥ 1. Thus,∫ ∞
1

ecx
n

dx ≥
∫ ∞
1

dx =∞.
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(2) If c < 0 and n ≤ 0, then xn ≤ 1 for all x ≥ 1, which implies
cxn ≥ c for all x ≥ 1, which in turn implies that ecx

n ≥ ec for
all x ≥ 1. Thus∫ ∞

1

ecx
n

dx ≥
∫ ∞
1

ecdx =∞.

(3) By the Taylor series expansion for ey, ey ≥ yk

k!
for any y > 0 and

any nonnegative integer k. Hence, 1
ey
≤ k!

yk
for any y > 0 and

any nonnegative integer k. If c < 0 and n > 0, then ecx
n

= 1
e|c|xn

where |c|xn > 0 for all x > 0. Hence, ecx
n ≤ k!

(|c|xn)k = k!
|c|kxnk for

any nonnegative integer k for all x > 0. Since it holds for any
nonnegative integer k and n > 0, we can choose k0 such that
nk0 > 1. Thus,∫ ∞

1

ecx
n

dx ≤
∫ ∞
1

k0!

|c|k0xnk0
dx

=
−k0!

|c|k0(nk0 − 1)xnk0−1

∣∣∣∣∞
1

=
k0!

|c|k0(nk0 − 1)
<∞.

�

Consider the integral ∫ −1
−∞

ecx
n

dx.

This integral is well-defined only when n is an integer, so we will now
restrict to this case.

Corollary 1. Consider the integral∫ −1
−∞

ecx
n

dx,

where n is an even integer.

(1) If c ≥ 0, then the integral is infinite for any n.
(2) If c < 0 and n ≤ 0, then the integral is infinite.
(3) If c < 0 and n > 0, then the integral is finite

Proof. If n is an even integer, then ecx
n

= ec(−x)
n

and∫ −1
−∞

ecx
n

dx =

∫ ∞
1

ecx
n

dx.
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Thus, we get the same classification of the integral being finite versus
infinite as in the previous lemma. �

Corollary 2. Consider the integral∫ −1
−∞

ecx
n

dx,

where n is an even integer.

(1) If c ≤ 0, then the integral is infinite for any n.
(2) If c > 0 and n ≤ 0, then the integral is infinite.
(3) If c > 0 and n > 0, then the integral is finite

Proof. If n is an odd integer, then ecx
n

= e−c(−x)
n

and∫ −1
−∞

ecx
n

dx =

∫ ∞
1

e−cx
n

dx.

Thus, we get almost the same classification of the integral being finite
versus infinite as in the previous lemma, with just the sign of c reversed.

�

3. Power Function Stabilization

In this section, we consider ODE’s where the drift coefficient is a
general power function i.e.

dX(t) = r|X(t)|qdt.
These ODE’s are unstable for any r 6= 0.

Theorem 1. Consider the SDE

dX(t) = b(X(t))dt+ σ(X(t))B(t)

where b(X(t)) = a|X(t)|q if q ≥ 0 and σ(X(t)) = r|X(t)|p if p ≥ 0. If
q < 0 then the drift coefficient takes the following form:

b(X(t)) =

{
r|X(t)|q for |X(t)| ≥ 1

r for |X(t)| < 1.

Likewise, if p < 0, then the noise coefficient takes the following form:

σ(X(t)) =

{
a|X(t)|p for |X(t)| ≥ 1

a for |X(t)| < 1.

Also, r, a, q, and p are any real numbers. Noise-induced stabilization
occurs if and only if r 6= 0 and one of the following sets of conditions
is met:

• p > max

{
1

2
,
q + 1

2

}
for any a 6= 0 or
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Figure 1. This image depicts an unstable power ODE
that is stabilized with the sufficient amount of noise.

• p =
q + 1

2
and

{
a2q > 2|r| for 0 < q ≤ 1

a2 ≥ 2|r| for q > 1.

Figure 1 shows three separate graphs depicting the phenomenon of
noise-induced stabilization. The graph on the far left shows an ODE
that diverges off to infinity for all positive initial values; therefore,
the ODE is unstable. The middle graph depicts the noise value of
X(t)dB(t) added to the previously unstable ODE. This specific amount
of noise added does not stabilize the system as a2 < 2r. The final image
depicts 3X(t)dB(t) added to the unstable ODE. It can be seen that
the SDE converges. This occurs since a2 > 2r.

Proof. The “Stochastic Stability Theorem” will be used to show un-
der what conditions noise-induced stabilization occurs. With ` = 1
evaluation of the s(x) term gives

s(x) =

exp
[∫ x

1
−2r|z|q
a2|z|2p dz

]
when x > 1

exp
[∫ x
−1
−2r|z|q
a2|z|2p dz

]
when x < −1

=

{
exp

[−2r
a2

∫ x
1
zq−2pdz

]
when x > 1

exp
[
−2r
a2

∫ x
−1(−z)q−2pdz

]
when x < −1

where the integration depends on the value of q− 2p. The non-critical
case where p 6= q+1

2
will be considered first.
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Simplification of Proof: Y (t) = −X(t) must have the same exact sta-
bility as X(t) since they have the same magnitude.

dY (t) = −dX(t)

= −r|X(t)|qdt− a|X(t)|pdB(t)

= −r|−Y (t)|qdt− a|−Y (t)|pdB(t)

= −r|Y (t)|qdt− a|Y (t)|pdB(t)

Hence, the stability of X(t) with −r, q, −a, and p must be equivalent to
the stability with r, q, p, and a. Thus, when proving Theorem 3, it suf-
fices to just prove the case with r > 0.

Non-Critical Case: Assume q − 2p 6= −1 and let c = −2r
a2(q−2p+1)

and

n = q − 2p+ 1. Then

s(x) =

{
exp [c(xn − 1)] when x > 1

exp [−c((−x)n − 1)] when x < −1

=

{
exp [−c] exp [cxn] when x > 1

exp [c] exp [−c(−x)n] when x < −1

and therefore

S(x) =

{
exp [−c]

∫ x
1

exp [cyn] dy when x > 1

exp [c]
∫ x
−1 exp [−c(−y)n] dy when x < −1.

Evaluation of the m(x) term gives

m(x) =

{
1
a2

exp [c]x−2p exp [−cxn] when x > 1
1
a2

exp [−c] (−x)−2p exp [c(−x)n] when x < −1

and then

M(x) =

{
1
a2

exp [c]
∫ x
1
y−2p exp [−cyn] dy when x > 1

1
a2

exp [−c]
∫ x
−1(−y)−2p exp [c(−y)n] dy when x < −1

Letting x =∞ gives

S(∞) = exp [−c]
∫ ∞
1

exp [cyn] dy (1)

and

M(∞) =
1

a2
exp [c]

∫ ∞
1

y−2p exp [−cyn] dy (2)
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and letting x = −∞ gives

S(−∞) = exp [c]

∫ −∞
−1

exp [−c(−y)n] dy

= − exp [c]

∫ −1
−∞

exp [−c(−y)n] dy

= − exp [c]

∫ ∞
1

exp [−cyn] dy (3)

and

M(−∞) =
1

a2
exp [−c]

∫ −∞
−1

(−y)−2p exp [c(−y)n] dy

= − 1

a2
exp [−c]

∫ −1
−∞

(−y)−2p exp [c(−y)n] dy

= − 1

a2
exp [−c]

∫ ∞
1

y−2p exp [cyn] dy (4)

Non-Critical Case 1 Assume r > 0, p > q+1
2

, and p > 1
2

which means

n = q − 2p+ 1 < 0 and c = −2r
a2(q−2p+1)

> 0. It follows that c ≥ cyn > 0

and therefore exp[c] ≥ exp [cyn] > 1 on the interval from 1 to ∞. The
lower bound of exp[cyn] allows for the following comparison of (1):

S(∞) > exp[−c]
∫ ∞
1

dy =∞.

Therefore, S(∞) = ∞. The upper bound of exp[cyn] allows for the
following comparison of (4):

M(−∞) ≥ − 1

a2
exp[−c]

∫ ∞
1

y−2p exp[c]dy

= − 1

a2

∫ ∞
1

y−2pdy

> −∞

After cancellation of the exponential terms, the integral takes the form∫∞
1
y−2pdy. This integral converges if −2p < −1 which is the case

since it was assumed that p > 1
2
. Therefore, |M(−∞)| < ∞.

The constants n and −c are both negative so 0 > −cyn ≥ −c on
the interval. Then 1 > exp[−cyn] ≥ exp[−c]. The lower bound of
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exp[−cyn] allows for the comparison

S(−∞) ≤ − exp[c]

∫ ∞
1

exp[−c]dy = −
∫ ∞
1

dy = −∞

of (2) and the conclusion that S(−∞) = −∞. Therefore, S(−∞) =
−∞. The upper bound of exp[−cyn] enables the comparison

M(∞) <
1

a2
exp[c]

∫ ∞
1

1

y2p
dy <∞

of (3). Once again, the integral
∫∞
1
y−2pdy converges since p > 1

2
.

Therefore, |M(∞)| < 0.

Through application of the “Stochastic Stability Theorem”, it has been
shown that noise-induced stabilization occurs when r > 0, p > q+1

2
, and

p > 1
2
. Recalling the proof simplification, it can also be concluded that

noise-induced stabilization occurs when −r > 0, p > q+1
2

, and p > 1
2
.

Non-Critical Case 2: Assume r > 0 and p < q+1
2

. Then n = q−2p+1 >

0, c = −2r
a2(q−2p+1)

< 0, and −c > 0. Therefore, the integral contained

in (1) is of the form
∫∞
1

exp[cyn]dy where c is negative and n is pos-
itive. Lemma 1.3 and 1.4 indicates that integrals of this form con-
verge. Therefore, S(∞) <∞. Application of the “Stochastic Stability
Theorem” shows that noise-induced stabilization does not occur when
r > 0 and p < q+1

2
. The proof simplification indicates that noise-

induced stabilization also does not occur when −r > 0 and p < q+1
2

.

Non-Critical Case 3: Assume r > 0 and 1
2
> p > q+1

2
. Then n is a

negative constant and c is a positive constant. Therefore, exp[cyn] > 1
on the interval from 1 to ∞. This allows for the following comparison
of (4):

M(∞) < − 1

a2
exp [−c]

∫ ∞
1

y−2pdy.

Since p < 1
2
, the integral

∫∞
1
y−2pdy must diverge. Therefore, |M(−∞)| =

∞ so noise-induced stabilization does not occur when r > 0 and
1
2
> p > q+1

2
. The simplification of the proof indicates that sta-

bilization also does not occur when −r > 0 and 1
2
> p > q+1

2
.

Critical Case: Assume q − 2p = −1. Then the s(x) term takes the
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form

s(x) =

{
exp

[−2r
a2

∫ x
1
z−1dz

]
when x > 1

exp
[
−2r
a2

∫ x
−1(−z)−1dz

]
when x < −1

=

{
exp

[−2r
a2

ln(x)
]

when x > 1

exp
[
2r
a2

ln(−x)
]

when x < −1

=

{
x
−2r

a2 for x > 1

(−x)
2r
a2 for x < −1

and

S(x) =

{∫ x
1
s(y)dy for x > 1∫ x

−1 s(y)dy for x < −1

=

{∫ x
1
y
−2r

a2 dy for x > 1∫ x
−1(−y)

2r
a2 dy for x < −1.

Evaluation of the m(x) term gives

m(x) =

{
1
a2
x

2r
a2
−2p for x > 1

1
a2

(−x)
−2r

a2
−2p for x < −1

and

M(x) =

{
1
a2

∫ x
1
y

2r
a2
−2pdy for x > 1

1
a2

∫ x
−1(−y)

−2r

a2
−2pdy for x < −1.

Evaluation of the terms at x =∞ and x = −∞ gives

S(∞) =

∫ ∞
1

y
−2r

a2 dy, (5)

S(−∞) =

∫ −∞
−1

(−y)
2r
a2 dy

= −
∫ −1
−∞

(−y)
2r
a2 dy

= −
∫ ∞
1

y
2r
a2 dy, (6)

M(∞) =
1

a2

∫ ∞
1

y
2r
a2
−2pdy, (7)
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and

M(−∞) =
1

a2

∫ −∞
−1

(−y)
−2r

a2
−2pdy

= − 1

a2

∫ −1
−∞

(−y)
−2r

a2
−2pdy

= − 1

a2

∫ ∞
1

y
−2r

a2
−2pdy. (8)

Critical Case 1: Assume r > 0, p = q+1
2
> 1

2
, a2 ≥ 2r and a2q > 2r.

It follows from the assumptions that 0 < 2r
a2
≤ 1 for q > 1. Therefore,

−1 ≤ −2r
a2

< 2r
a2

which means the integrals in both (5)

S(∞) =

∫ ∞
1

y
−2r

a2 dy

and (6)

S(−∞) = −
∫ ∞
1

y
2r
a2 dy

must diverge. Likewise, if q ≤ 1, it must be the case that −1 ≤ −q <
− 2r
a2
< 2r

a2
< q ≤ 1 so that the integrals must still diverge. Therefore,

S(∞) =∞ and S(−∞) = −∞. Note, that in the case where r is neg-
ative, −2r

a2
> 2r

a2
. This is why the magnitude of r must be considered in

the stabilization conditions.

The assumption that 2r < a2q and p = q+1
2

is equivalent to the as-

sumption that 2r
a2
−2p < −1 for q ≤ 1. Since r is positive it can further

be implied that − 2r
a2
− 2p < −1. The fact that both of these terms are

strictly less than negative 1 means the integrals in both (7)

M(∞) =
1

a2

∫ ∞
1

y
2r
a2
−2pdy

and (8)

M(−∞) = − 1

a2

∫ ∞
1

y
−2r

a2
−2pdy

must converge. For q > 1, it must be the case that q > 1 ≥ 2r
a2

which

implies −2r
a2
− 2p < 2r

a2
− 2p < −1 so the integrals once again converge.

Therefore, |M(∞)| and |M(−∞)| are both finite.

Through application of the “Stochastic Stability Theorem”, it has been
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shown that noise-induced stabilization occurs when r > 0, p = q+1
2
> 1

2
,

a2 ≥ 2r and a2q > 2r. Recollection of the proof simplification moti-
vates the conclusion that stabilization also occurs when −r > 0, p =
q+1
2

> 1
2
, a2 ≥ −2r and a2q > −2r.

Critical Case 2: Assume r > 0, p = q+1
2

, and a2 < 2r. Then it

must be the case that −2r
a2

< −1 which implies the integral contained
in (5) must converge. Therefore, S(∞) < ∞ so noise-induced sta-
bilization does not occur. Likewise, if r < 0, p = q+1

2
and a2 <

2|r|, then −2r
a2

> 1 and 2r
a2

< −1 so the integral contained in (6)
must converge. Therefore, S(−∞) > −∞ and noise-induced stabi-
lization does not occur when r > 0, p = q+1

2
, and a2 < 2r. The

proof simplification allows for the additional conclusion that stabi-
lization does not occur when −r > 0, p = q+1

2
, and a2 < −2r.

Critical Case 3: Assume r > 0, p = q+1
2

and a2q ≤ 2r. Then it must be

the case that 2r
a2
− 2p ≥ −1 which implies the integral contained in (7)

diverges. Therefore, |M(∞)| =∞ and noise-induced stabilization does
not occur. Now assume r < 0, p = q+1

2
and a2q ≤ 2|r|. Then it follows

that −2r
a2
−2p ≥ −1 which implies the integral contained in (8) diverges.

Therefore, |M(−∞)| = −∞ and noise-induced stabilization does not
occur when r > 0, p = q+1

2
and a2q ≤ 2r. The proof simplification in-

dicates that stabilization also does not occur when −r > 0, p = q+1
2

and
a2q ≤ −2r.

Critical Case 4: Assume p = q+1
2
≤ 1

2
and assume a2q > 2|r|. These as-

sumptions imply 2|r|
a2

< q ≤ 0. However, this is not possible. Therefore,

there are no cases where both p = q+1
2
≤ 1

2
and a2q > 2|r|. �

4. Polynomial Stabilization

In this section, we investigate stabilizing

dX(t) = b(X(t))dt,

where b(x) is any polynomial of degree q. If r is the coefficient of the
highest degree term, this ODE is unstable when q is even for any r 6= 0
and when q is odd for any r > 0.

The lemma below, as well as the following corollaries, describe gen-
eral results about polynomials which will be used in the proof of noise-
induced stabilization for when the drift and noise coefficients are poly-
nomials.
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Lemma 2. Let f(x) be any polynomial of degree q, where the coefficient
of the highest degree term is r > 0. Then, there exists k ≥ 0 such that

r(x− k)q ≤ f(x) ≤ r(x+ k)q

for all x ≥ k.

Proof. If q = 0, then f(x) = r and the claim is true for k = 0. Hence,
assume q ≥ 1. Since f(x) is a polynomial of degree q, it has the
following form:

f(x) = rxq + r1x
q−1 + r2x

q−2 + ...+ rq−1x+ rq

= r
(
xq +

r1
r
xq−1 +

r2
r
xq−2 + ...+

rq−1
r
x+

rq
r

)
where r1, r2, ..., rq−1, rq are any real constants. Let

rmax = max{|r1
r
|, |r2

r
|, ..., |rq−1

r
|, |rq
r
|}

and k = max{q · rmax, 1}. Then for x ≥ k,

rxq − kxq−1 ≤ f(x) ≤ rxq + kxq−1

and factoring gives

rxq−1(x− k) ≤ f(x) ≤ rxq−1(x+ k).

Hence for x ≥ k,

r(x− k)q ≤ f(x) ≤ r(x+ k)q.

�

Corollary 3. Let f(x) be any polynomial of degree q, where the coeffi-
cient of the highest degree term is r < 0. Then, there exists k ≥ 0 such
that

r(x+ k)q ≤ f(x) ≤ r(x− k)q

for all x ≥ k.

Corollary 4. Let f(x) be any polynomial of degree q, where the coeffi-
cient of the highest degree term is r > 0. Then, there exists k ≥ 0 such
that if q is even,

r(x+ k)q ≤ f(x) ≤ r(x− k)q

and if q is odd,

r(x− k)q ≤ f(x) ≤ r(x+ k)q

for all x ≤ −k.
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Figure 2. This image depicts an unstable polynomial
ODE that is stabilized with the sufficient amount of
noise.

Corollary 5. Let f(x) be any polynomial of degree q, where the coeffi-
cient of the highest degree term is r < 0. Then, there exists k ≥ 0 such
that if q is even,

r(x− k)q ≤ f(x) ≤ r(x+ k)q

and if q is odd,

r(x+ k)q ≤ f(x) ≤ r(x− k)q

for all x ≤ −k.

Theorem 2. Let b(x) be any polynomial of degree q, where the coef-
ficient of the highest degree term is r, and let σ(x) be any polynomial
of degree p, where the coefficient of the highest degree term is a 6=
0. Then noise-induced stabilization of the SDE dX(t) = b(X(t))dt +
σ(X(t))dB(t) occurs if and only if the corresponding ODE is unstable
and one of the following conditions is met:

• p > q+1
2

or

• p = q+1
2

and

{
a2 > 2r for q = 1

a2 ≥ 2r for q ≥ 3
.

Figure 2 shows three separate graphs depicting the phenomenon of
noise-induced stabilization where the drift and noise coefficients are
polynomials. The graph on the far left shows an ODE that diverges off
to infinity for all positive initial values; therefore, the ODE is unstable.
The middle graph depicts the noise value of (X(t) + 1)dB(t) added
to the previously unstable ODE. This specific amount of noise added
does not stabilize the system as p < q+1

2
. The final image depicts
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(X(t) + 1)2dB(t) added to the unstable ODE. It can be seen that the
SDE converges. This occurs since p > q+1

2
.

Proof. Suppose r > 0. By Lemma 2 and Corollary 4, there exist some
kb and kσ such that

s(x) ≥

exp
[∫ x

`
−2r(z+kb)q
a2(z−kσ)2p dz

]
when x > ` ≥ max (kb, kσ)

exp
[∫ x
−`
−2r(z−kb)q
a2(z+kσ)2p

dz
]

when x < −` ≤ −max (kb, kσ)
(9)

and

s(x) ≤

exp
[∫ x

`
−2r(z−kb)q
a2(z+kσ)2p

dz
]

when x > ` ≥ max (kb, kσ)

exp
[∫ x
−`
−2r(z+kb)q
a2(z−kσ)2p dz

]
when x < −` ≤ −max (kb, kσ)

(10)
for even q, and

s(x) ≥

exp
[∫ x

`
−2r(z+kb)q
a2(z−kσ)2p dz

]
when x > ` ≥ max (kb, kσ)

exp
[∫ x
−`
−2r(z+kb)q
a2(z−kσ)2p dz

]
when x < −` ≤ −max (kb, kσ)

(11)
and

s(x) ≤

exp
[∫ x

`
−2r(x−kb)q
a2(x+kσ)2p

dz
]

when x > ` ≥ max (kb, kσ)

exp
[∫ x
−`
−2r(z−kb)q
a2(z+kσ)2p

dz
]

when x < −` ≤ −max (kb, kσ)

(12)
for odd q. These bounds allow for simpler analysis of conditions set by
the “Stochastic Stability Theorem.” First, consider the case where q is
even. Suppose p > q+1

2
. By (9),

S(∞) ≥
∫ ∞
`

exp

[∫ x

`

−2r(z + kb)
q

a2(z − kσ)2p
dz

]
dx.

Let y = z − kσ. Then, by Lemma 2, there exists a k̃1 > 0 such that

S(∞) ≥
∫ ∞
`

exp

[∫ x

`

−2r(yq + k̃1y
q−1)

a2y2p
dy

]
dx.

By dividing through and integrating, it can be found that

S(∞) ≥ c1c2

∫ ∞
`

exp

[
−2r

a2
xq−2p+1

q − 2p+ 1

]
exp

[
−2rk̃1
a2

xq−2p

q − 2p

]
dx

where c1 = exp
[
2r
a2
`q−2p+1

q−2p+1

]
and c2 = exp

[
2rk̃1
a2

`q−2p

q−2p

]
. Since q−2p < −1,

and therefore −2rk̃1
a2(q−2p) > 0, the smallest exp

[
−2rk̃1
a2

xq−2p

q−2p

]
can be is 1.
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Therefore,

S(∞) ≥ c1c2

∫ ∞
`

exp

[
−2r

a2
xq−2p+1

q − 2p+ 1

]
dx.

Since q−2p+1 < 0, this integral diverges by Lemma 1 . By comparison,
S(∞) =∞.
With these bounds on s(x),

S(−∞) ≤
∫ −∞
−`

exp

[∫ x

−`

−2r(z + kb)
q

a2(z − kσ)2p
dz

]
dx.

Let y = z − kσ. Then, by Corollary 4, there exists a k̃2 > 0 such that

S(−∞) ≤
∫ −∞
−`

exp

[∫ x

−`

−2r(yq + k̃2y
q−1)

a2y2p
dy

]
dx.

By methods similar to those used previously, it can be found that

S(−∞) ≤ c1

∫ −∞
−`

exp

[
−2r

a2
xq−2p+1

q − 2p+ 1

]
dx

where c1 = exp
[
2r
a2

(−`)q−2p+1

q−2p+1

]
and c2 = exp

[
2rk̃2
a2

(−`)q−2p

q−2p

]
. By Corollary

2, this integral diverges to −∞. Thus, S(−∞) = −∞.
Consider M(∞). By Lemma 2,

M(∞) ≤
∫ ∞
`

1

a2(x− kσ)2p
exp

[∫ x

`

2r(zq + k̃1z
q−1)

a2z2p
dz

]
dx.

There largest the exponential term can be is 1, and therefore

M(∞) ≤ c1c2

∫ ∞
`

1

a2(x− kσ)2p
dx

where c1 = exp
[
2r
a2
`q−2p+1

q−2p+1

]
and c2 = exp

[
2rk̃1
a2

`q−2p

q−2p

]
. This integral

converges for p > 1
2
, which is always true since p > q+1

2
and q ≥ 0.

Thus, M(∞) < ∞. Proof that |M(−∞)| < ∞ follows similarly. By
Corollary 4,

|M(−∞)| ≤

∣∣∣∣∣
∫ −∞
−`

1

a2(x+ kσ)2p
exp

[∫ x

−`

2r(zq + k̃2z
q−1)

a2z2p
dz

]
dx

∣∣∣∣∣ .
The largest the exponential term can be is 1

c1
where c1 = exp

[
−2r
a2

(−`)q−2p+1

q−2p+1

]
.

Thus,

|M(−∞)| ≤
∣∣∣∣c2 ∫ −∞

−`

1

a2(x+ kσ)2p
dx

∣∣∣∣ ,
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where and c2 = exp
[
2rk̃2
a2

(−`)q−2p

q−2p

]
. This integral converges for p > 1

2
,

which again is always true. Therefore |M(−∞)| < ∞, and noise-
induced stabilization does occur when p > q+1

2
, r > 0, and q is even.

Now, assume q is odd. The proofs that S(∞) = ∞ and M(∞) < ∞
are identical to the case where q is even. Now consider S(−∞). By
(12),

S(−∞) ≤
∫ −∞
−`

exp

[∫ x

−`

−2r(z − kb)q

a2(z + kσ)2p
dz

]
dx.

Let y = z + kσ. Then, by Corollary 4, there exists a k̃2 > 0 such that

S(−∞) ≤
∫ −∞
−`

exp

[∫ x

−`

−2r(yq − k̃2yq−1)
a2y2p

dy

]
dx.

By dividing through and integrating, it can be found that

S(−∞) ≤ c1c2

∫ −∞
−`

exp

[
−2r

a2
xq−2p+1

q − 2p+ 1

]
exp

[
2rk̃2
a2

xq−2p

q − 2p

]
dx

where c1 = exp
[
2r
a2

(−`)q−2p+1

q−2p+1

]
and c2 = exp

[
−2rk̃2
a2

(−`)q−2p

q−2p

]
. Since q−2p

is odd, exp
[
2rk̃2
a2

xq−2p

q−2p

]
≥ 1. Therefore,

S(−∞) ≤ c1c2

∫ −∞
−`

exp

[
−2r

a2
xq−2p+1

q − 2p+ 1

]
dx.

By Corollary 1, this integral diverges to negative infinity, and therefore
S(−∞) = −∞. Now consider M(−∞). By Corollary 4,

|M(−∞)| ≤

∣∣∣∣∣
∫ −∞
−`

1

a2(x+ kσ)2p
exp

[∫ x

−`

2r(zq − k̃2zq−1)
a2z2p

dz

]
dx

∣∣∣∣∣ .
The largest the exponential term can be is 1. Therefore,

|M(−∞)| ≤
∣∣∣∣c1c2 ∫ −∞

−`

1

a2(x+ kσ)2p
dx

∣∣∣∣ ,
where c1 = exp

[
−2r
a2

(−`)q−2p+1

q−2p+1

]
and c2 = exp

[
2rk̃2
a2

(−`)q−2p

q−2p

]
. Again, this

integral converges and therefore |M(−∞)| < ∞. Now, it is sufficient
to say that noise-induced stabilization occurs when p > q+1

2
, r > 0,

and q is odd.
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Suppose p = q
2
. By (10), S(∞) can be bounded such that

S(∞) ≤
∫ ∞
`

exp

[∫ x

`

−2r(z − kb)q

a2(z + kσ)2p
dz

]
dx.

Let y = z + kσ, and, by Lemma 2, there exists a k̃2 > 0 such that

S(∞) ≤
∫ ∞
`

exp

[∫ x

`

−2r(yq − k̃2yq−1)
a2y2p

dy

]
dx.

By dividing through and integrating, it can be found that

S(∞) ≤
∫ ∞
`

exp

[∫ x

`

−2r

a2
dz

]
exp

[∫ x

`

2rk̃2
a2

1

z
dz

]
dx

= c1c2

∫ ∞
`

exp

[
−2rx

a2

]
|x|

2rk̃2
a2 dx,

where c1 = exp
[
2r`
a2

]
and c2 = |`|

−2rk̃2
a2 . This integral converges, and

therefore S(∞) <∞.
Suppose p < q

2
. By the same bounds on s(x),

S(∞) ≤
∫ ∞
`

exp

[∫ x

`

−2r(z − kb)q

a2(z + kσ)2p
dz

]
dx.

Let y = z + kσ. By Lemma 2, there exists a k̃2 > 0 such that

S(∞) ≤
∫ ∞
`

exp

[∫ x

`

−2r(yq − k̃2yq−1)
a2y2p

dy

]
dx

= c1c2

∫ ∞
`

exp

[
−2r

a2
xq−2p+1

q − 2p+ 1

]
exp

[
2rk̃2
a2

xq−2p

q − 2p

]
dx,

where c1 = exp
[
2r
a2
`q−2p+1

q−2p+1

]
and c2 = exp

[
−2rk̃2
a2

`q−2p

q−2p

]
. For sufficiently

large x,

S(∞) ≤ c1c2

∫ ∞
`

exp

[
−2r

a2
xq−2p+1

q − 2p+ 1

]
exp

[
r

a2
xq−2p+1

q − 2p+ 1

]
dx

= c1c2

∫ ∞
`

exp

[
−r
a2

xq−2p+1

q − 2p+ 1

]
dx.

By Lemma 1 this integral converges, and thus S(∞) < ∞. Therefore
noise-induced stabilization does not occur when p < q+1

2
and r > 0.
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Suppose p = q+1
2

, and suppose a2 > 2r when q = 1 and a2 ≥ 2r
when q ≥ 3. By (9),

S(∞) ≥
∫ ∞
`

exp

[∫ x

`

−2r(z + kb)
q

a2(z − kσ)2p
dz

]
dx.

Let y = z − kσ. By Lemma 2, there exists a k̃1 > 0 such that

S(∞) ≥
∫ ∞
`

exp

[∫ x

`

−2r(yq + k̃1z
q−1)

a2y2p
dy

]
dx

= c1c2

∫ ∞
`

|x|
−2r

a2 exp

[
2rk̃1
a2

1

x

]
dx,

where c1 = |`|
2r
a2 and c2 = exp[−2rk̃1

a2
1
`
]. This integral diverges for a2 ≥

2r, and therefore S(∞) =∞. Now, consider S(−∞). Note that since
p = q+1

2
, and since p is an integer, q must be odd. By (12),

S(−∞) ≤
∫ −∞
−`

exp

[∫ x

−`

−2r(z − kb)q

a2(z + kσ)2p
dz

]
dx.

Let y = z + kσ. By Corollary 4, there exists a k̃2 > 0 such that

S(−∞) ≤
∫ −∞
−`

exp

[∫ x

−`

−2r(zq − k̃2zq−1)
a2z2p

dz

]
dx

≤ c1c2

∫ −∞
−`
|x|
−2r

a2 exp

[
−2rk̃2
a2

1

x

]
dx,

where c1 = | − `|
2r
a2 and c2 = exp[−2rk̃2

a2
1
`
]. This integral diverges to

negative infinity for a2 ≥ 2r, and therefore S(−∞) = −∞. Consider
M(∞). By Lemma 2,

M(∞) ≤
∫ ∞
`

1

a2(x− kσ)2p
exp

[∫ x

`

2r(zq + k̃1z
q−1)

a2z2p
dz

]
dx.

The exponential term can be partially bounded such that,

M(∞) ≤ c1

∫ ∞
`

1

a2(x− kσ)2p
|x|

2r
a2 dx,
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where c1 = |`|
−2r

a2 . For sufficiently large x, 1
a2(x−kσ)2p ≤

22p

a2x2p
. Therefore,

M(∞) ≤ c1

∫ ∞
`

22p

a2x2p
|x|

2r
a2 dx

= c1

∫ ∞
`

22p

a2
x

2r
a2
−2pdx.

This integral converges for a2q > 2r, and therefore M(∞) <∞.
Consider M(−∞). By Corollary 4,

|M(−∞)| ≤

∣∣∣∣∣
∫ −∞
−`

1

a2(x+ kσ)2p
exp

[∫ x

−`

2r(zq − k̃2zq−1)
a2z2p

dz

]
dx

∣∣∣∣∣
=

∣∣∣∣∣c1c2
∫ −∞
−`

1

a2(x+ kσ)2p
|x|

2r
a2 exp

[
2rk̃2
a2

1

x

]
dx

∣∣∣∣∣ ,
where c1 = | − `|

−2r

a2 and c2 = exp
[
2rk̃2
a2

1
`

]
. The largest exp

[
2rk̃2
a2

1
x

]
can

be is 1. Also, for sufficiently large x,

|M(−∞)| ≤
∣∣∣∣c1c2 ∫ −∞

−`

22p

a2x2p
|x|

2r
a2 dx

∣∣∣∣
=

∣∣∣∣c1c2 ∫ −∞
−`

22p

a2
|x|

2r
a2
−2pdx

∣∣∣∣
This integral converges, and therefore |M(−∞)| <∞.
Now, suppose a2 ≤ 2r when q = 1 and a2 < 2r when q ≥ 3. Consider
S(∞). By the bounds on s(x),

S(∞) ≤
∫ ∞
`

exp

[∫ x

`

−2r(z − kb)q

a2(z + kσ)2p
dz

]
dx.

Let y = z + kσ. By Lemma 2, there exists a k̃2 > 0 such that

S(∞) ≤
∫ ∞
`

exp

[∫ x

`

−2r(yq − k̃2zq−1)
a2y2p

dy

]
dx

= c1c2

∫ ∞
`

|x|
−2r

a2 exp

[
−2rk̃2
a2

1

x

]
dx,

where c1 = |`|
2r
a2 and c2 = exp[2rk̃1

a2
1
`
]. Since exp

[
−2rk̃2
a2

1
x

]
≤ 1,

S(∞) ≤ c1c2

∫ ∞
`

|x|
−2r

a2 dx.

This integral converges when a2 ≤ 2r, and therefore S(∞) <∞. Thus,
when p = q+1

2
, and r > 0, noise-induced stabilization occurs if and only
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if a2 > 2r when q = 1 and a2 ≥ 2r when q ≥ 3.

Let Y (t) = −X(t), and suppose q is even. Since Y (t) is bounded if
and only if X(t) is bounded, Y (t) must have the exact same stability
as X(t). It follows that

dY (t) = −dX(t)

= − [b(X(t)dt+ σ(X(t))dB(t)]

= − [b(−Y (t)dt+ σ(−Y (t))dB(t)] .

Since the highest degree term of the drift coefficient determines the
stability, and since q is even, the stability of X(t) with leading coeffi-
cient −r is equivalent to its stability with leading coefficient r. Since
the noise coefficient, σ(x), is always squared in the terms defined by
the “Stochastic Stability Theorem”, the sign of the coefficient plays no
role in the stability of the SDE. Note that this only holds for even q
since the original ODE is stable for r < 0 and q odd.

�

5. Exponential Function Stabilization

This section considers ODE’s where the drift coefficient is an expo-
nential function, i.e.

dX(t) = r(exp[X(t)])qdt.

where r and q are any real number. The ODE is unstable for any r 6= 0.

5.1. General Exponential Stabilization.

Theorem 3. Consider the SDE

dX(t) = r(exp[X(t)])qdt+ a(exp[X(t)])pdB(t)

where r, a, q, and p are real numbers. Noise-induced stabilization occurs
if and only if r 6= 0, a 6= 0 and one of the following sets of conditions
is met:

• r > 0 and p > max{0, q
2
} or

• r < 0 and −p > max{0, −q
2
}.

Figure 3 shows three separate graphs depicting the phenomenon of
noise-induced stabilization. The graph on the far left shows an ODE
that diverges off to infinity for all positive initial values; therefore,
the ODE is unstable. The middle graph depicts the noise value of
10 exp

[
1
4
X(t)

]
dB(t) added to the previously unstable ODE. This spe-

cific amount of noise added does not stabilize the system as p < 1
2
. The



22 ALLEN, GEBHARDT, KLUBALL, KOLBA

Figure 3. This image depicts an unstable exponential
ODE that is stabilized with the sufficient amount of
noise.

final image depicts 1
2

exp [X(t)] dB(t) added to the unstable ODE. It

can be seen that the SDE converges. This occurs since p > 1
2
.

Proof. The “Stochastic Stability Theorem” will be used to show under
what conditions noise-induced stabilization occurs.

Simplification of Proof: Y (t) = −X(t) must have the same exact sta-
bility as X(t) since they have the same magnitude.

dY (t) = −dX(t)

= −r(exp[X(t)])qdt− a(exp[X(t)])pdB(t)

= −r(exp[−Y (t)])qdt− a(exp[−Y (t)])pdB(t)

= −r(exp[Y (t)])−qdt− a(exp[Y (t)])−pdB(t)

Hence, the stability of X(t) with −r must be equivalent to the stabil-
ity with r, but with −q,−p, and −a substituted for q, p, and a. Thus,
when proving Theorem 3, it suffices to just prove the case with r > 0.
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With ` = 1, the s(x) term takes the form

s(x) =

exp
[∫ x

1
−2r exp[qz]
a2 exp[2pz]

dz
]

for x > 1

exp
[∫ x
−1
−2r exp[qz]
a2 exp[2pz]

dz
]

for x < −1

=

{
exp

[−2r
a2

∫ x
1

exp[(q − 2p)z]dz
]

for x > 1

exp
[
−2r
a2

∫ x
−1 exp[(q − 2p)z]dz

]
for x < −1

=

{
exp

[−2r
a2

∫ x
1

exp[kz]dz
]

for x > 1

exp
[
−2r
a2

∫ x
−1 exp[kz]dz

]
for x < −1

where k = q − 2p. The integration depends on the value of k. The
non-critical case where k 6= 0 will first be considered.

Non-Critical Case: Assume k 6= 0.

s(x) =

{
exp

[−2r
a2k

(exp[kx]− exp[k])
]

for x > 1

exp
[−2r
a2k

(exp[kx]− exp[−k])
]

for x < −1

=

exp
[
2r exp[k]
a2k

]
exp

[−2r
a2k

exp[kx]
]

for x > 1

exp
[
2r exp[−k]

a2k

]
exp

[−2r
a2k

exp[kx]
]

for x < −1

and

S(x) =

exp
[
2r exp[k]
a2k

] ∫ x
1

exp
[−2r
a2k

exp[ky]
]
dy for x > 1

exp
[
2r exp[−k]

a2k

] ∫ x
−1 exp

[−2r
a2k

exp[ky]
]
dy for x < −1

=

{
c1
∫ x
1

exp
[−2r
a2k

exp[ky]
]
dy for x > 1

c2
∫ x
−1 exp

[−2r
a2k

exp[ky]
]
dy for x < −1

where c1 = exp
[
2r exp[k]
a2k

]
and c2 = exp

[
2r exp[−k]

a2k

]
. Moving on to the

m(x) term gives

m(x) =

{
1

a2c1
exp

[
2r
a2k

exp[kx]
]

exp[−2px] for x > 1
1

a2c2
exp

[
2r
a2k

exp[kx]
]

exp[−2px] for x < −1

and

M(x) =

{
1

a2c1

∫ x
1

exp
[

2r
a2k

exp[ky]
]

exp[−2py]dy for x > 1
1

a2c2

∫ x
−1 exp

[
2r
a2k

exp[ky]
]

exp[−2py]dy for x < −1

=

{
1

a2c1

∫ x
1

exp
[

2r
a2k

exp[ky]− 2py
]
dy for x > 1

1
a2c2

∫ x
−1 exp

[
2r
a2k

exp[ky]− 2py
]
dy for x < −1.
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Setting x equal to positive infinity gives

S(∞) = c1

∫ ∞
1

exp

[
−2r

a2k
exp[ky]

]
dy (13)

and

M(∞) =
1

a2c1

∫ ∞
1

exp

[
2r

a2k
exp[ky]− 2py

]
dy. (14)

Setting x equal to negative infinity gives

S(−∞) = c2

∫ −∞
−1

exp

[
−2r

a2k
exp[ky]

]
dy

= −c2
∫ −1
−∞

exp

[
−2r

a2k
exp[ky]

]
dy

= −c2
∫ ∞
1

exp

[
−2r

a2k
exp[−ky]

]
dy (15)

and

M(−∞) =
1

a2c2

∫ −∞
−1

exp

[
2r

a2k
exp[ky]− 2py

]
dy

=− 1

a2c2

∫ −1
−∞

exp

[
2r

a2k
exp[ky]− 2py

]
dy

=− 1

a2c2

∫ ∞
1

exp

[
2r

a2k
exp[−ky] + 2py

]
dy

=− 1

a2c2

∫ ∞
1

exp

[
2r

a2k

(
exp[−ky] +

a2kp

r
y

)]
dy. (16)

Non-Critical Case 1: Assume r > 0 and p > max{0, q
2
}. Since p >

max{0, q
2
}, it must be the case that k = q − 2p < 0 and p > 0.

Since k is negative and r is positive, it follows that the constant −2r
a2k

is positive and therefore the exponential terms exp
[−2r
a2k

exp[ky]
]

and

exp
[−2r
a2k

exp[−ky]
]

must be greater than 1 on the interval from 1 to∞.
This allows for the comparison

S(∞) ≥ c1

∫ ∞
1

dy =∞

and

S(−∞) ≤ −c2
∫ ∞
1

dy = −∞

and the conclusion that (13) and (15) diverge. Therefore S(∞) =
∞ and S(−∞) = −∞. The exponential decay term exp[ky] bounds
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the exponential term exp
[

2r
a2k

exp[ky]
]

between exp
[

2r
a2k

]
(lower bound)

and 1 (upper bound). This allows for the following comparison of (14)
to a smaller integral:

M(∞) ≤ 1

a2c1

∫ ∞
1

exp [−2py] dy

<∞

The smaller integral has the form
∫∞
1

exp[−2py]dy with where the con-
stant −p is negative. Then Lemma 1 indicates that the integral con-
verges and |M(∞)| <∞.

Since −k is positive, the Taylor series expansion indicates exp[−ky] >

−ky on the interval from 1 to ∞. Now, assuming −k + a2pk
r

> 0, the
following comparison of (16) to a smaller magnitude integral can be
made:

M(−∞) ≥ − 1

a2c2

∫ ∞
1

exp

[
2r

a2k

(
−ky +

a2pk

r
y

)]
= − 1

a2c2

∫ ∞
1

exp

[
2r

a2k

(
−k +

a2pk

r

)
y

]
> −∞.

Since it was assumed that −k + a2pk
r

> 0, the smaller magnitude inte-

gral takes the form
∫∞
1

exp[cyn]dy where c is negative and n = 1. Then
Lemma 1 indicates that integrals of this form converge so |M(−∞)| <
∞ if −k + a2pk

r
> 0.

Now, assume −k+ a2pk
r
≤ 0 which is equivalent to the assumption that

−k ≤ −a2pk
r

. This inequality allows for the comparison exp[−ky] ≤
exp

[
−a2pk

r

]
and the following comparison of (16) to a smaller magni-

tude integral:

M(−∞) ≥− 1

a2c2

∫ ∞
1

exp

[
2r

a2k

(
exp

[
−a

2pk

r
y

]
+
a2pk

r
y

)]
.

Recalling that −a2pk
r

> 0 and considering the Taylor Series Expan-

sion, the comparison exp
[
−a2pk

r
y
]
>
(
−a2pk

r

)
y + 1

2

(
−a2pk

r

)2
y2 can
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be made. This allows for the following comparison of the smaller mag-
nitude integral:

M(−∞) ≥− 1

a2c2∫ ∞
1

exp

[
2r

a2k

(
−a

2pk

r
y +

1

2

(
−a

2pk

r

)2

y2 +
a2pk

r
y

)]

=− 1

a2c2

∫ ∞
1

exp

[
r

a2k

(
−a

2pk

r

)2

y2

]
>−∞.

The final integral takes the form
∫∞
1

exp[cyn]dy where c = r
a2k

(
−a2pk

r

)2
is a negative constant and n = 2 is a positive constant. Then Lemma
1 indicates that integrals of this form converge so then |M(−∞)| <∞.

Application of the “Stochastic Stability Theorem” indicates that noise-
induced stabilization occurs when r > 0 and p > max{0, q

2
}. The sim-

plification of the proof indicates that noise-induced stabilization also
occurs when −r > 0 and −p > max{0, −q

2
}.

Non-Critical Case 2: Assume r > 0 and q > 2p. Since q > 2p, it
must be the case that k = q − 2p > 0 and −2r

a2k
< 0. The Taylor series

expansion indicates that exp[ky] > ky on the interval which allows for
the following comparison of (13) to a smaller magnitude integral:

S(∞) ≤ c1

∫ ∞
1

exp

[
−2r

a2k
ky

]
dy

<∞

The smaller magnitude integral takes the form
∫∞
1

exp[cyn]dy where

c = −2r
a2

is a negative constant and n = 1. Then Lemma 1 indicates
that integrals of this form converge so S(∞) <∞.

Application of the “Stochastic Stability Theorem” indicates that noise-
induced stabilization does not occur when r > 0 and p < q

2
. The sim-

plification of proofs indicates that noise-induced stabilization also does
not occur when −r > 0 and −p < −q

2
.

Non-Critical Case 3: Assume r > 0 and q
2
< p ≤ 0. It follows from

the assumptions that k = q− 2p < 0 which implies 2r
a2k

< 0. The expo-

nential decay term exp[ky] bounds exp
[

2r
a2k

exp[ky]
]

between exp
[

2r
a2k

]
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and 1 which allows for the following comparison of (14) to a smaller
magnitude integral:

M(∞) ≥ 1

a2c1

∫ ∞
1

exp

[
2r

a2k

]
exp[−2py]dy.

Since−2p is a non-negative constant, it must be the case that exp[−2py] ≥
1 on the interval which allows for the second comparison

M(∞) ≥ 1

a2c1
exp

[
2r

a2k

] ∫ ∞
1

dy

where (14) is being compared to an even smaller magnitude integral
which diverges. Therefore, |M(∞)| =∞.

Application of the “Stochastic Stability Theorem” indicates that noise-
induced stabilization does not occur when r > 0 and q

2
< p ≤ 0. The

simplification of proof indicates that noise-induced stabilization does
not occur when −r > 0 and −q

2
< −p ≤ 0 which can also be stated as

when r < 0 and q
2
> p ≥ 0.

Critical Case: Assume q = 2p so k = 0 and consider when x > 1.
Then the s(x) term takes the form

s(x) = exp

[
−2r

a2

∫ x

1

exp[0]dz

]
= exp

[
−2r

a2
(x− 1)

]
= exp

[
2r

a2

]
exp

[
−2rx

a2

]
so then the S(x) term takes the form

S(x) = exp

[
2r

a2

] ∫ x

1

exp

[
−2ry

a2

]
dy

= exp

[
2r

a2

]
−a2

2r

(
exp

[
−2rx

a2

]
− exp

[
−2r

a2

])
=
−a2

2r
exp

[
2r

a2

]
exp

[
−2rx

a2

]
+
a2

2r



28 ALLEN, GEBHARDT, KLUBALL, KOLBA

Considering when r < 0 and setting x =∞ gives

S(∞) =
−a2

2r
exp

[
2r

a2

]
exp

[
−2r∞
a2

]
+
a2

2r

=
a2

2r
<∞.

The “Stochastic Stability Theorem” indicates that noise-induced sta-
bilization does not occur when r < 0 and p = q

2
. The simplification

of proof indicates that noise-induced stabilization also does not occur
when −r < 0 and p = q

2
. �

The general exponential stabilization theorem shows that sufficiently
large exponential growth can stabilize any exponential drift coefficient.
Recognizing the difference between the drift coefficient experiencing
exponential growth as opposed to exponential decay, the following sec-
tions consider them separately.

5.2. Exponential Growth Stabilization. In this section, stabiliza-
tion of exponential growth in the drift coefficient is considered which
means r and q have the same sign.

Theorem 4. Consider the SDE dX(t) = r·exp [qX(t)] dt+σ(X(t))dB(t)
where

σ(X(t)) =


a · |X(t)|m · exp [pX(t)] for sgn(r)x ≥ 1

a · exp [pX(t)] for 0 ≤ sgn(r)x < 1

a · exp [nX(t)] for sgn(r)x < 0

and r, a, q, p,m, n ∈ R. More specifically, consider when r, q and n
have the same sign and p = q

2
. Noise-induced stabilization occurs if

and only if r 6= 0, a 6= 0, and one of the following sets of conditions is
met:

• m > 1
2
, |n| > | q

2
|,

• m = 1
2
, |n| > | q

2
|, and a2 ≥ 2|r|,

• m > 1
2
, |n| = | q

2
| and a2n < r or

• m = 1
2
, |n| = | q

2
| < 1

2
, and a2 ≥ 2|r|.
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Simplification of Proof: Y (t) = −X(t) must have the same exact
stability as X(t) since they have the same magnitude.

dY (t) = −dX(t)

=



−r(exp[X(t)])qdt− a|X(t)|m(exp[X(t)])pdB(t)

for sgn(r)X(t) > 1

−r(exp[X(t)])qdt− a(exp[X(t)])pdB(t)

for 0 ≤ sgn(r)X(t) < 1

−r(exp[X(t)])qdt− a(exp[X(t)])ndB(t)

for sgn(r)X(t) < −1

=



−r(exp[−Y (t)])qdt− a|−Y (t)|m(exp[−Y (t)])pdB(t)

for sgn(r)− Y (t) > 1

−r(exp[−Y (t)])qdt− a(exp[−Y (t)])pdB(t)

for 0 ≤ sgn(r)− Y (t) < 1

−r(exp[−Y (t)])qdt− a(exp[−Y (t)])ndB(t)

for sgn(r)− Y (t) < −1

=



−r(exp[Y (t)])−qdt− a|Y (t)|m(exp[Y (t)])−pdB(t)

for sgn(−r)Y (t) > 1

−r(exp[Y (t)])−qdt− a(exp[Y (t)])−pdB(t)

for 0 ≤ sgn(−r)Y (t) < 1

−r(exp[Y (t)])−qdt− a(exp[Y (t)])−ndB(t)

for sgn(−r)Y (t) < −1

Hence, the stability of X(t) with −r −q, m, −a, −p, and −n must
be equivalent to the stability with r, q, a, m, p, and n. Thus, when
proving Theorem 3, it suffices to just prove the case with r > 0.

Proof. The “Stochastic Stability Theorem” will be used to show the
conditions for noise-induced stabilization.
With ` = 1 and r > 0, the s(x) term takes the form

s(x) =

{
exp

[−2r
a2

∫ x
1
z−2mdz

]
for x > 1

exp
[
−2r
a2

∫ x
−1 exp [(q − 2n)z] dz

]
for x < −1

where the integration depends on the value of m.
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Non-Critical Case: Assuming m 6= 1
2

and n 6= q
2

gives

s(x) =

exp
[

−2r
a2(1−2m)

(x1−2m − 1)
]

for x > 1

exp
[

−2r
a2(q−2n)(exp[(q − 2n)x]− exp[2n− q]

]
for x < −1

=

exp
[

2r
a2(1−2m)

]
exp

[
−2r

a2(1−2m)
· x1−2k

]
for x > 1

exp
[
−2r exp[2n−q]
a2(q−2n)

]
exp

[
−2r

a2(q−2n) exp[(q − 2n)x]
]

for x < −1

=

c1 exp
[

−2r
a2(1−2m)

· x1−2m
]

for x > 1

c2 exp
[

−2r
a2(q−2n) exp[(q − 2n)x]

]
for x < −1

and

S(x) =

c1
∫ x
`

exp
[

−2r
a2(1−2m)

· y1−2m
]
dy for x > 1

c2
∫ x
−` exp

[
−2r

a2(q−2n) exp[(q − 2n)y]
]
dy for x < −1

where c1 = exp
[

2r
a2(1−2m)

]
and c2 = exp

[
−2r exp[2n−q]
a2(q−2n

]
. Evaluation of

the m(x) term gives

m(x) =


1

c1a2
x−2m exp

[
2r

a2(1−2m)
· x1−2m − 2px

]
for x > 1

1
c2a2

exp
[

2r
a2(q−2n) exp[(q − 2n)x]− 2nx

]
for x < −1

and

M(x) =


1

c1a2

∫ x
`
y−2m exp

[
2r

a2(1−2m)
· y1−2m − 2py

]
dy for x > 1

1
c2a2

∫ x
−` exp

[
−2r

a2(2n−q) exp[(q − 2n)y]− 2ny
]
dy for x < −1.

Letting x =∞ gives

S(∞) = c1

∫ ∞
`

exp

[
−2r

a2(1− 2m)
· y1−2m

]
dy (17)

and

M(∞) =
1

c1a2

∫ ∞
`

y−2m exp

[
2r

a2(1− 2m)
· y1−2m

]
exp [−2py] dy.

(18)
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Likewise, letting x = −∞ gives

S(−∞) = c2

∫ −∞
−`

exp

[
−2r

a2(q − 2n)
exp[(q − 2n)y]

]
dy

= −c2
∫ −`
−∞

exp

[
2r

a2(2n− q)
exp[(q − 2n)y]

]
dy

= −c2
∫ ∞
`

exp

[
2r

a2(2n− q)
exp[(2n− q)y]

]
dy (19)

and

M(−∞) =
1

c2a2

∫ −∞
−`

exp

[
−2r

a2(2n− q)
exp[(q − 2n)y]− 2ny

]
dy

= − 1

c2a2

∫ −`
−∞

exp

[
−2r

a2(2n− q)
exp[(q − 2n)y]− 2ny

]
dy

= − 1

c2a2

∫ ∞
`

exp

[
−2r

a2(2n− q)
exp[(2n− q)y] + 2ny

]
dy.

(20)

Non-Critical Case 1: Assume r > 0, q > 0, n > 0, and m > 1
2

and

n > q
2
. The integral in (17) takes the form

∫∞
1

exp[cyn]dy where c =
−2r

a2(1−2m)
is a positive constant so the integral must diverge by Lemma

1. Therefore, S(∞) = ∞. Since m > 1
2
, then 1 − 2m < 0 so the term

y1−2m bounds exp
[

2r
a2(1−2m)

· y1−2m
]

between exp
[

2r
a2(1−2m)

· y1−2m
]

and

1. This allows for the following comparison of (18) to the smaller
magnitude integral:

M(∞) ≤ 1

c1a2
exp

[
2r

a2(1− 2m)

] ∫ ∞
`

y−2m exp [−2py] .

The exponential decay term exp[−2py] allows for the further compari-
son of (18) to an even smaller magnitude integral:

M(∞) ≤ 1

c1a2
exp

[
2r

a2(1− 2m)

] ∫ ∞
`

y−2mdy.

Once again, since m > 1
2
, it must be the case that this final integral

converges. Therefore, |M(∞)| < ∞. The conditions for x < −1 are
the same as for Case 1 of the general exponential theorem. Therefore,
S(−∞) = −∞ and |M(−∞)| < ∞. Application of the “Stochastic
Stability Theorem” indicates that noise-induced stabilization occurs
when r > 0, q > 0, m > 1

2
and n > q

2
. The proof simplification indicates

that stabilization also occurs when −r > 0, −q > 0, m > 1
2
, and −n >

−q
2

.
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Non-Critical Case 2: Assume r > 0, q > 0, and m < 1
2
. Then the

integral in (17) takes the form
∫∞
1

exp[cyn]dy where c = −2r
a2(1−2m)

is

a negative constant and n = 1 − 2m is a positive constant. Then
Lemma 1 indicates that integrals of this form converge so S(∞) < ∞
and noise-induced stabilization does not occur when r > 0, q > 0, and
m < 1

2
. Then the proof simplification allows for the conclusion that

noise-induced stabilization also does not occur when −r > 0, −q > 0,
and m < 1

2
.

Non-Critical Case 3: Assume r > 0 and 0 < n < q
2
. It follows from

the assumption that 2n − q is a negative constant. Therefore, the
exponential decay term exp[(2n− q)y] bounds the exponential term

exp

[
−2r

a2(2n− q)
exp[(2n− q)y]

]
between exp

[
−2r

a2(2n−q)

]
(upper bound) and 1 lower bound on the interval

from 1 to ∞. This fact allows for the following comparison of (20)

M(−∞) ≤ − 1

c2a2

∫ ∞
`

exp [2ny] dy

The integral (20) is compared to has the form
∫∞
1

exp[cyn]dy where
c = 2n and n = 1. Then Lemma 1 indicates that integrals of this
form diverge so |M(−∞)| = ∞ and noise-induced stabilization does
not occur when r > 0 and 0 < n < q

2
. Additionally, the proof simpli-

fication indicates that noise-induced stabilization also does not occur
when −r > 0 and 0 < −n < −q

2
.

Critical Case: Now, considering when m = 1
2

and x ≥ 1, the s(x)
term takes the form

s(x) = exp

[
−2r

a2

∫ x

1

z−1dz

]
= exp

[
−2r

a2
ln(x)

]
= x

−2r

a2

and then

S(x) =

∫ x

1

y
−2r

a2 dy.
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Evaluation of m(x) gives

m(x) =
1

a2
x

2r
a2
−1 exp[−2px]

and

M(x) =
1

a2

∫ x

1

y
2r
a2
−1 exp[−2py]dy.

Letting x =∞ gives

S(∞) =

∫ ∞
1

y
−2r

a2 dy (21)

and

M(∞) =
1

a2

∫ ∞
`

y
2r
a2
−1 exp[−2py]dy. (22)

Critical Case 1: Assume r > 0, m = 1
2
, n > q

2
> 0, and a2 ≥ 2r.

Once again, the conditions for x < −1 are the same as for Case 1 of
the previous theorem. Therefore, S(−∞) = −∞ and |M(−∞)| < ∞.
The assumption that a2 ≥ 2r is equivalent to the assumption that
−2r
a2
≥ −1. Then the integral in (21) diverges and S(∞) = ∞. The

assumptions also imply that 2r
a2
−1 ≤ 0. Then y

2r
a2
−1 ≤ 1 on the interval

which allows for the following comparison of (22) to a larger magnitude
integral.

M(∞) ≤ 1

a2

∫ ∞
`

exp[−2py]dy

The smaller magnitude integral has the form
∫∞
1

exp[cyn]dy where
c = −2p is a negative constant and n = 1. Then Lemma 1 indicates
that integrals of this form converge so |M(∞)| < ∞. Application of
the “Stochastic Stability Theorem” indicates that noise-induced stabi-
lization occurs when r > 0, m = 1

2
, n > q

2
> 0, and a2 ≥ 2r. The proof

simplification further concludes that stabilization also occurs −r > 0,
m = 1

2
, −n > −q

2
> 0, and a2 ≥ −2r.

Critical Case 2: Assume r > 0, m = 1
2
, and a2 < 2r. It follows from

the assumptions that −2r
a2

< −1. Therefore, the integral contained in
(21) converges. So S(∞) =∞ and noise-induced stabilization does not
occur when r > 0, m = 1

2
, and a2 < 2r. The proof simplification indi-

cates that noise-induced stabilization also does not occur when −r > 0,
m = 1

2
, and a2 < −2r.
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Semi-Critical Case: Consider when r > 0 and n = q
2
. Then for x < −1,

the s(x) term takes the form

s(x) = exp

[
−2r

a2

∫ x

−1
dz

]
= exp

[
2r

a2

]
exp

[
−2r

a2
x

]
,

and

S(x) = exp

[
2r

a2

] ∫ x

−1
exp

[
−2r

a2
y

]
dy.

Evaluation of the m(x) term gives

m(x) =
1

a2
exp

[
−2r

a2

]
exp

[(
2r

a2
− 2n

)
x

]
and

M(x) =
1

a2
exp

[
−2r

a2

] ∫ x

−1
exp

[(
2r

a2
− 2n

)
y

]
dy.

Setting x = −∞ gives

S(−∞) = − exp

[
2r

a2

] ∫ ∞
1

exp

[
2r

a2
y

]
dy. (23)

and

M(−∞) = − 1

a2
exp

[
−2r

a2

] ∫ ∞
1

exp

[(
2n− 2r

a2

)
y

]
dy. (24)

Semi-Critical Case 1: Assume r > 0, m > 1
2
, n = q

2
> 0 and a2n < r. It

was proven in Non-Critical Case 1 that S(∞) =∞ and |M(∞)| <∞
under these conditions. The integral in (23) has the form

∫∞
1

exp[cyn]dy

where c = 2r
a2

is positive and n = 1. Then Lemma 1 indicates that inte-
grals of this form diverge. Therefore, S(−∞) = −∞. The assumption
that a2n < r is equivalent to the assumption that 2n− 2r

a2
< 0. There-

fore, the integral contained in (24) takes the form
∫∞
1

exp[cyn]dy where

c = 2n− 2r
a2

is a negative constant and n = 1. Then Lemma 1 indicates
that integrals of this form converge so |M(∞)| < ∞. Application of
the “Stochastic Stability Theorem indicates that noise-induced stabi-
lization occurs when r > 0, m > 1

2
, n = q

2
> 0 and a2n < r. The proof

simplification allows for the conclusion that stabilization also occurs
when −r > 0, m > 1

2
, and −n > −q

2
> 0, and −a2n < r.

Semi-Critical Case 2: Assume r > 0, m = 1
2
, 0 < n = q

2
< 1

2
,

and a2 ≥ 2r. It was proven in Critical Case 1 that S(∞) = ∞ and
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|M(∞)| < ∞ under these conditions. It was proven in Semi-Critical
Case 1 that S(−∞) = −∞ under these conditions. Since a2 ≥ 2r, it
must be the case that 2r

a2
≤ 1. Then the assumption that n < 1

2
implies

2n− 2r
a2
< 0. The integral contained in (24) has the form

∫∞
1

exp[cyn]dy

where c = 2n− 2r
a2

is negative and n− 1. Then Lemma 1 indicates that
integrals of this form converge. Therefore |M(−∞)| < ∞ and the
“Stochastic Stability Theorem” indicates that noise-induced stabiliza-
tion occurs when r > 0, m = 1

2
, 0 < n = q

2
< 1

2
, and a2 ≥ 2r. The

proof simplification allows for the conclusion that stabilization also oc-
curs when −r > 0, m = 1

2
, 0 < −n = −q

2
< 1

2
, and a2 ≥ −2r

Semi-Critical Case 3: Assume r > 0, n = q
2
> 0 and a2n ≥ r.

Then 2n − 2r
a2
≥ 0. The integral contained in (24) takes the form∫∞

1
exp[cyn]dy where c = 2n − 2r

a2
≥ 0. Then Lemma 1 indicates that

integrals of this form diverge so |M(−∞)| =∞ and noise-induced sta-
bilization does not occur when r > 0, n = q

2
> 0 and a2n ≥ r. Then

the proof simplification indicates that stabilization also does not occur
when −r > 0, −n = −q

2
> 0, and −a2n ≥ −r.

Semi-Critical Case 4: Assume r > 0, m = 1
2
, a2 ≥ 2r, and 1

2
≤

n = q
2
. It follows that 2r

a2
≤ 1 and since n ≥ 1

2
, it must be the case

that 2n − 2r
a2
≥ 0. Since (24) takes the form

∫∞
1

exp[cyn]dy where

c = 2n − 2r
a2
≥ 0, the integral must diverge by Lemma 1. Therefore,

noise-induced stabilization must not occur when r > 0, m = 1
2
, a2 ≥ 2r,

and 1
2
≤ n = q

2
. Then stabilization also does not occur when −r > 0,

m = 1
2
, a2 ≥ −2r, and 1

2
≤ −n = −q

2
. �

The exponential growth theorem expands on the general exponen-
tial theorem by defining the noise coefficient piece-wise and therefore
allowing for the critical case where p = q

2
.

5.3. Exponential Decay Stabilization. In this section, stabilization
of exponential decay in the drift coefficient is considered which means
r and q have the opposite sign.

Theorem 5. Consider the SDE dX(t) = r·exp [qX(t)] dt+a·|X(t)|pdB(t)
where r and q have opposite signs. Noise-induced stabilization occurs
if and only if r 6= 0, a 6= 0, and p > 1

2
.

Proof. The “Stochastic Stability Theorem” will be used to show under
what conditions noise-induced stabilization occurs.
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Simplification of Proof: Y (t) = −X(t) must have the same exact sta-
bility as X(t) since they have the same magnitude.

dY (t) = −dX(t)

= −r(exp[X(t)])qdt− a|X(t)|pdB(t)

= −r(exp[−Y (t)])qdt− a|−Y (t)|pdB(t)

= −r(exp[Y (t)])−qdt− a|Y (t)|pdB(t)

Hence, the stability of X(t) with −r, −q, −a, and p must be equivalent
to the stability with r, q, p, and a. Thus, when proving Theorem 3, it
suffices to just prove the case with r > 0.

The s(x) term takes the form

s(x) =

{
exp

[−2r
a2

∫ x
1
z−2p exp[qz]dz

]
for x > 1

exp
[
−2r
a2

∫ x
−1(−z)−2p exp[qz]dz

]
for x < −1

and

S(x) =

{∫ x
1

exp
[−2r
a2

∫ y
1
z−2p exp[qz]dz

]
dy for x > 1∫ x

−1 exp
[
−2r
a2

∫ y
−1(−z)−2p exp[qz]dz

]
dy for x < −1.

The m(x) term then takes the form

m(x) =

{
1
a2
x−2p exp

[
2r
a2

∫ x
1
z−2p exp[qz]dz

]
for x > 1

1
a2

(−x)−2p exp
[
2r
a2

∫ x
−1(−z)−2p exp[qz]dz

]
for x < −1

and

M(x) =

{
1
a2

∫ x
1
y−2p exp

[
2r
a2

∫ y
1
z−2p exp[qz]dz

]
dy for x > 1

1
a2

∫ x
−1(−y)−2p exp

[
2r
a2

∫ y
−1(−z)−2p exp[qz]dz

]
dy for x < −1.

If x =∞, then

S(∞) =

∫ ∞
1

exp

[
−2r

a2

∫ y

1

z−2p exp[qz]dz

]
dy (25)

and

M(∞) =
1

a2

∫ ∞
1

y−2p exp

[
2r

a2

∫ y

1

z−2p exp[qz]dz

]
dy. (26)
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If x = −∞, then

S(−∞) =

∫ −∞
−1

exp

[
−2r

a2

∫ y

−1
(−z)−2p exp[qz]dz

]
dy

= −
∫ ∞
1

exp

[
2r

a2

∫ y

1

z−2p exp[−qz]dz

]
dy (27)

and

M(−∞) =
1

a2

∫ −∞
−1

(−y)−2p exp

[
2r

a2

∫ y

−1
(−z)−2p exp[qz]dz

]
dy

= − 1

a2

∫ ∞
1

y−2p exp

[
−2r

a2

∫ y

1

z−2p exp[−qz]dz

]
dy (28)

Case 1: Assume r > 0, q < 0, p > 1
2
. Then −2r

a2
is a negative constant

and since exp[qz] is an exponential decay term, the following compari-
son of (25) can be made:

S(∞) ≥
∫ ∞
1

exp

[
−2r

a2

∫ y

1

z−2pdz

]
dy

With the assumption that p > 1
2
, the comparison takes the form

S(∞) ≥ exp

[
2r

a2(1− 2p)

] ∫ ∞
1

exp

[
−2r

a2(1− 2p)
y1−2p

]
dy.

Now the integral takes the form
∫∞
1

exp[cyn]dy where c = −2r
a2(1−2p) is a

positive constant. Then Lemma 1 indicates that integrals of this form
diverge so S(∞) = ∞. Since 2r

a2
> 0 and exp[−qy] is an exponential

growth term, the following comparison holds for (27):

S(−∞) ≤ −
∫ ∞
1

exp

[
2r

a2

∫ y

1

z−2pdz

]
dy

= − exp

[
−2r

a2(1− 2p)

] ∫ ∞
1

exp

[
2r

a2(1− 2p)
y1−2p

]
dy

The final comparison integral takes the form
∫∞
1

exp[cyn]dy where c =
2r

a2(1−2p) is a negative constant and n = 1 − 2p is a negative constant.

Then Lemma 1 indicates that integrals of this form diverge so S(−∞) =
−∞. Using the fact that 2r

a2
> 0 and exp[qz] is an exponential decay

term, the following comparison of (26) can be made:

M(∞) ≤ 1

a2

∫ ∞
1

y−2p exp

[
2r

a2

∫ y

1

z−2pdz

]
dy

=
1

a2
exp

[
−2r

a2(1− 2p)

] ∫ ∞
1

y−2p exp

[
2r

a2(1− 2p)
y1−2p

]
dy.
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The exponential term

exp

[
2r

a2(1− 2p)
y1−2p

]
must be less than or equal to 1 on the interval which allows for the
following comparison of (26):

M(∞) ≤ 1

a2
exp

[
−2r

a2(1− 2p)

] ∫ ∞
1

y−2pdy.

This final integral must converge since −2p must be less than −1.
Therefore, |M(∞)| < ∞. Once again using the fact that −2r

a2
is a

negative constant and exp[−qz] is an exponential growth term, the
following comparison of (28) can be made:

M(−∞) ≥ − 1

a2

∫ ∞
1

y−2p exp

[
−2r

a2

∫ y

1

z−2pdz

]
dy

= − 1

a2
exp

[
2r

a2(1− 2p)

] ∫ ∞
1

y−2p exp

[
−2r

a2(1− 2p)
y1−2p

]
dy.

Now, the exponential term

exp

[
−2r

a2(1− 2p)
y1−2p

]
is bounded between exp

[
−2r

a2(1−2p)

]
(upper bound) and 1 (lower bound)

due to 1 − 2p being a negative power. This allows for the following
comparison:

M(−∞) ≥ − 1

a2
exp

[
2r

a2(1− 2p)

] ∫ ∞
1

y−2p exp

[
−2r

a2(1− 2p)

]
dy

= − 1

a2

∫ ∞
1

y−2pdy

> −∞.

Once again, this final integral must converge since −2p is strictly less
than −1. Therefore, |M(−∞)| < ∞. Application of the “Stochastic
Stability Theorem” indicates that noise-induced stabilization occurs
when r > 0, q < 0, p > 1

2
. Then stabilization also occurs when −r > 0,

−q < 0, and p > 1
2
.

Case 2: Assume r > 0, q < 0, p ≤ 1
2
. Since 2r

a2
is a positive constant,

and exp[qz] is an exponential decay term, the following comparison of
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(26) holds:

M(∞) ≥ 1

a2

∫ ∞
1

y−2p exp

[
2r

a2

∫ y

1

z−2pdz

]
dy

=
1

a2
exp

[
−2r

a2(1− 2p)

] ∫ ∞
1

y−2p exp

[
2r

a2(1− 2p)
y1−2p

]
dy.

Since p ≤ 1
2
, the constant 2r

a2(1−2p) must be positive so that the expo-

nential term

exp

[
2r

a2(1− 2p)
y1−2p

]
is greater than or equal to 1 on the interval. This fact allows for the
additional comparison of (26) to an even smaller magnitude integral:

M(∞) ≥ 1

a2
exp

[
−2r

a2(1− 2p)

] ∫ ∞
1

y−2pdy.

Since −2p ≥ −1, this final integral must diverge. Therefore, |M(∞)| =
∞ and noise-induced stabilization does not occur when r > 0, q < 0,
p ≤ 1

2
. Then it also does not occur when −r > 0, −q < 0, and

p ≤ 1
2
. �

The exponential decay theorem shows that an exponential noise-
coefficient is not required for stabilization of all exponential drift coef-
ficients. In this theorem, a power noise coefficient was used to stabilize
the exponential decay term.

6. Logarithmic Function Stabilization

In this section we will investigate the stabilization of the ODE

dX(t) = r[ln(|X(t)|)]qdt,
where r and q are real numbers with q ≥ 0. This ODE is unstable if
and only if r 6= 0.

Theorem 6. Consider the SDE

dX(t) = r[ln(|X(t)|)]qdt+

{
a|X(t)|m[ln(|X(t)|)]pdB(t) for x > 2

a(2m)[ln(2)]pdB(t) for x ≤ 2

where r, a, q, p, and m are real numbers and q, p,m ≥ 0. Noise-induced
stabilization occurs if and only if the ODE is unstable, and one of the
following conditions is met:

• m > 1
2
,

• m = 1
2

and p > q+1
2

, or

• m = 1
2

and p = q+1
2

and a2q > 2|r|.
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Figure 4. This image depicts an unstable logarithmic
ODE that is stabilized with the sufficient amount of
noise.

Figure 4 shows three separate graphs depicting the phenomenon of
noise-induced stabilization. The graph on the far left shows an ODE
that diverges off to infinity for all positive initial values; therefore,
the ODE is unstable. The middle graph depicts the noise value of
[X(t)]

1
4 ln(|X(t)|+1)dB(t) added to the previously unstable ODE. This

specific amount of noise added does not stabilize the system as m < 12.
The final image depicts X(t) ln(|X(t)|+1) added to the unstable ODE.
It can be seen that the SDE converges. This occurs since m > 1

2
.

Proof. For this SDE we are looking at b(x) = r ln(|x|)q and σ(x) =
a|x|m ln(|x|)p where r > 0. Assume there exists some bound ` such
that σ(x) is not undefined, then by the Stochastic Stability Theorem

s(x) =

exp
[∫ x

`
−2r ln(|z|)q

a2|z|2m ln(|z|)2pdz
]

for x > `

exp
[∫ x
−`

−2r ln(|z|)q
a2|z|2m ln(|z|)2pdz

]
for x < −`.

After further simplification,

s(x) =

exp
[∫ x

`
−2r ln(|z|)q−2p

a2|z|2m dz
]

for x > `

exp
[∫ x
−`
−2r ln(|z|)q−2p

a2|z|2m dz
]

for x < −`.
(29)

In order to find where noise-induced stabilization will occur, we must
separate the value of m into three different possibilities: m > 1

2
, m < 1

2
,

and m = 1
2
.

Case 1: m > 1
2
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To show that when m > 1
2

all values of r, a, q, p, and m there is noise-
induced stabilization we want s(x) to be greater than or equal to some
integral that diverges. Since ln(|z|) ≥ ln(2) for z ≥ 2. Thus,

s(x) ≥

exp
[∫ x

`
−2r ln(2)(q−2p)

a2|z|2m dz
]

for x > `

exp
[∫ x
−`
−2r ln(2)(q−2p)

a2|z|2m dz
]

for x < −`.

After integrating,

s(x) ≥


exp

[
−2r ln(2)(q−2p)|z|(−2m+1)

a2(−2m+1)

∣∣∣x
`

]
for x > `

exp

[
−2r ln(2)(q−2p)|z|(−2m+1)

a2(−2m+1)

∣∣∣x
−`

]
for x < −`

=

c1 exp
[
−2r ln(2)(q−2p)|x|(−2m+1)

a2(−2m+1)

]
for x > `

c2 exp
[
−2r ln(2)(q−2p)|x|(−2m+1)

a2(−2m+1)

]
for x < −`

(30)

and

m(x) ≤


exp

[
2r ln(2)(q−2p)|x|(−2m+1)

a2(−2m+1)

]
c1a2x2m ln(|x|)2p for x > `

exp

[
2r ln(2)(q−2p)|x|(−2m+1)

a2(−2m+1)

]
c2a2x2m ln(|x|)2p for x < −`

(31)

where c1 = exp
[
2r ln(2)(q−2p)|`|(−2m+1)

a2(−2m+1)

]
and c2 = exp

[
2r ln(2)(q−2p)|−`|(−2m+1)

a2(−2m+1)

]
.

First assume q − 2p < 0. Using (30) and (31) we know

S(∞) ≥
∫ ∞
`

c1 exp

[
−2r ln(2)(q−2p)|y|(−2m+1)

a2(−2m+ 1)

]
dy,

M(∞) ≤
∫ ∞
`

exp
[
2r ln(2)(q−2p)|y|(−2m+1)

a2(−2m+1)

]
c1a2y2m ln(|y|)2p

dy,

S(−∞) ≥
∫ −∞
−`

c2 exp

[
−2r ln(2)(q−2p)|y|(−2m+1)

a2(−2m+ 1)

]
dy, and

M(−∞) ≤
∫ −∞
−`

exp
[
2r ln(2)(q−2p)|y|(−2m+1)

a2(−2m+1)

]
c2a2y2m ln(|y|)2p

dy.

Looking at S(∞) using Lemma 1 allows us to conclude that S(∞) ≥ ∞.
For M(∞) the exponential will converge since the coefficient is nega-
tive; therefore, as a whole M(∞) < ∞. For S(−∞) the largest value
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the exponential function can be is 1; therefore, S(−∞) ≥ −
∫ −`
−∞ c2dy,

which equals −∞. From this it can be concluded that S(−∞) is infi-
nite. Then M(−∞) <∞ since the exponential function is converging
from its coefficient being negative. Now assume q − 2p > 0. To show
s(x) is greater than something that diverges we use the comparison

ln(|z|)q−2p ≤ |z|m− 1
2 . Then,

s(x) ≥


exp

[∫ x
`
−2r|z|(m−

1
2 )

a2|z|2m dz

]
for x > `

exp

[∫ x
−`
−2r|z|(m−

1
2 )

a2|z|2m dz

]
for x < −`,

which simplifies to

s(x) ≥


exp

[∫ x
`

−2r
a2|z|(m+1

2 )
dz

]
for x > `

exp

[∫ x
−`

−2r
a2|z|(m+1

2 )
dz

]
for x < −`.

Then,

s(x) ≥


exp

[
−2r|z|(−m+1

2 )

a2(−m+ 1
2
)

∣∣∣∣∣
x

`

]
for x > `

exp

[
−2r|z|(−m+1

2 )

a2(−m+ 1
2
)

∣∣∣∣∣
x

−`

]
for x < −`

=


c1 exp

[
−2r|x|(−m+1

2 )

a2(−m+ 1
2
)

]
for x > `

c2 exp

[
−2r|x|(−m+1

2 )

a2(−m+ 1
2
)

]
for x < −`

(32)

and

m(x) ≤


exp

[
2r|x|(−m+1

2 )

a2(−m+1
2 )

]
c1a2|x|2m ln(|x|)2p for x > `

exp

[
2r|x|(−m+1

2 )

a2(−m+1
2 )

]
c2a2|x|2m ln(|x|)2p for x < −`

(33)
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where c1 = exp

[
2r|`|(−m+1

2 )

a2(−m+ 1
2
)

]
and c1 = exp

[
2r|−`|(−m+1

2 )

a2(−m+ 1
2
)

]
. Using (32)

and (33), and the Stochastic Stability Theorem it can be proven that

S(∞) ≥
∫ ∞
`

c1 exp

[
−2r|y|(−m+ 1

2
)

a2(−m+ 1
2
)

]
dy,

|M(∞)| ≤
∫ ∞
`

exp

[
2r|y|(−m+1

2 )

a2(−m+ 1
2
)

]
c1a2|y|2m ln(|y|)2p

dy,

S(−∞) ≥
∫ −∞
−`

c2 exp

[
−2r|y|(−m+ 1

2
)

a2(−m+ 1
2
)

]
dy, and

|M(−∞)| ≤
∫ −∞
−`

exp

[
2r|y|(−m+1

2 )

a2(−m+ 1
2
)

]
c2a2|y|2m ln(|y|)2p

dy.

When evaluating S(∞) the coefficient in the exponential is positive;
therefore, by the integral comparison test it can be concluded that
S(∞) diverges. For M(∞) the coefficient of the exponential function
is negative, which causes it to converge. Since the exponential is con-
verging, and m and p ≥ 0, then the integral as a whole is also converg-
ing. In conclusion, M(∞) <∞. As for S(−∞), the smallest value the

exponential function can be is 1; therefore S(−∞) ≥ −
∫ −`
−∞ c2dy. This

integral diverges to −∞, thus S(−∞) ≥ −∞. For similar reasons as
M(∞), M(−∞) converges as well. Finally, assume q − 2p = 0 when
m > 1

2
. Then,

s(x) =

exp
[∫ x

`
−2r

a2|z|2mdz
]

for x > `

exp
[∫ x
−`

−2r
a2|z|2mdz

]
for x < −`

After integrating, it can be said that

s(x) =


exp

[
−2r|z|(−2m+1)

a2(−2m+1)

∣∣∣∣∣
x

`

]
for x > `

exp

[
−2r|z|(−2m+1)

a2(−2m+1)

∣∣∣∣∣
x

−`

]
for x < −`
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=

c1 exp
[
−2r|x|(−2m+1)

a2(−2m+1)

]
for x > `

c2 exp
[
−2r|x|(−2m+1)

a2(−2m+1)

]
for x < −`

(34)

and

m(x) =


exp

[
2r|x|(−2m+1)

a2(−2m+1)

]
c1a2|x|2m ln(|x|)2p for x > `

exp

[
2r|x|(−2m+1)

a2(−2m+1)

]
c2a2|x|2m ln(|x|)2p for x < −`,

(35)

where c1 = exp
[
−2r|`|(−2m+1)

a2(−2m+1)

]
and c2 = exp

[
−2r|−`|(−2m+1)

a2(−2m+1)

]
. Again,

using (34) and (35), and the Stochastic Stability Theorem it can be
determined that

S(∞) =

∫ ∞
`

c1 exp

[
−2r|y|(−2m+1)

a2(−2m+ 1)

]
dy,

|M(∞)| =
∫ ∞
`

exp
[
2r|y|(−2m+1)

a2(−2m+1)

]
c1a2|y|2m ln(|y|)2p

dy,

S(−∞) =

∫ −∞
−`

c2 exp

[
−2r|y|(−2m+1)

a2(−2m+ 1)

]
dy, and

|M(−∞)| =
∫ −∞
−`

exp
[
2r|y|(−2m+1)

a2(−2m+1)

]
c2a2|y|2m ln(|y|)2p

dy.

When evaluating the integral of S(∞), Lemma 1 says since the coef-
ficient of the exponential function is positive, S(∞) is infinite. The
coefficient of the exponential function for M(∞) is negative; therefore,
the exponential function will converge. Since m and p are positive,
and the exponential function is converging, the integral of those func-
tions will converge as well. Thus, M(∞) < ∞. As for S(−∞), the∫ −∞
−` c2 exp

[
−2ry(−2m+1)

a2(−2m+1)

]
dy = −

∫ −`
−∞ c2 exp

[
−2ry(−2m+1)

a2(−2m+1)

]
dy, which di-

verges to negative infinity. Therefore, S(−∞) = −∞. From M(∞)
it is already known that the function in M(−∞) is converging. Thus,
|M(−∞)| <∞.

In summary, when m > 1
2

we found that noise-induced stabilization
always occurs.
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Case 2: m < 1
2

Looking back at (29), in order to show that noise-induced stabilization
does not occur for m < 1

2
, s(x) must be less than or equal to some

function that converges. In this case, we use the comparison ln(2)q−2p ≤
ln(|z|)q−2p for z ≥ 2 to show

s(x) ≤

exp
[∫ x

`
−2r ln(2)(q−2p)

a2|z|2m dz
]

for x > `

exp
[∫ x
−`
−2r ln(2)(q−2p)

a2|z|2m dz
]

for x < −`.

After integration,

s(x) ≤


exp

[
−2r ln(2)(q−2p)|z|(−2m+1)

a2(−2m+1)

∣∣∣∣∣
x

`

]
for x > `

exp

[
−2r ln(2)(q−2p)|z|(−2m+1)

a2(−2m+1)

∣∣∣∣∣
x

−`

]
for x < −`

≤

c1 exp
[
−2r ln(2)(q−2p)|x|(−2m+1)

a2(−2m+1)

]
for x > `

c2 exp
[
−2r ln(2)(q−2p)|x|(−2m+1)

a2(−2m+1)

]
for x < −`

(36)

and

m(x) ≥


exp

[
2r ln(2)(q−2p)|x|(−2m+1)

a2(−2m+1)

]
c1a2|x|2m ln(|x|)2p for x > `

exp

[
2r ln(2)(q−2p)|x|(−2m+1)

a2(−2m+1)

]
c2a2|x|2m ln(|x|)2p for x < −`

where c1 = exp
[
2r ln(2)(q−2p)|`|(−2m+1)

a2(−2m+1)

]
and c2 = exp

[
2r ln(2)(q−2p)|−`|(−2m+1)

a2(−2m+1)

]
.

First suppose q − 2p > 0, then referring back to (36) can be said that

S(∞) ≤
∫ ∞
`

c1 exp

[
−2r ln(2)(q−2p)|y|(−2m+1)

a2(−2m+ 1)

]
dy.

Using Lemma 1, S(∞) is less than or equal to a converging integral;
therefore, noise-induced stabilization does not occur for m < 1

2
when

q−2p > 0. Now assume q−2p < 0. Using the comparison ln(|z|)q−2p ≤
|z|m− 1

2 ,

s(x) ≤


exp

[∫ x
`
−2r|z|(m−

1
2 )

a2|z|2m dz

]
for x > `

exp

[∫ x
−`
−2r|z|(m−

1
2 )

a2|z|2m dz

]
for x < −`.
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Which simplifies to

s(x) ≤


exp

[∫ x
`

−2r
a2|z|(m+1

2 )
dz

]
for x > `

exp

[∫ x
−`

−2r
a2|z|(m+1

2 )
dz

]
for x < −`.

After integration,

s(x) ≤


exp

[
−2r|z|(−m+1

2 )

a2(−m+ 1
2
)

∣∣∣∣∣
x

`

]
for x > `

exp

[
−2r|z|(−m+1

2 )

a2(−m+ 1
2
)

∣∣∣∣∣
x

−`

]
for x < −`

≤


c1 exp

[
−2r|x|(−m+1

2 )

a2(−m+ 1
2
)

]
for x > `

c2 exp

[
−2r|x|(−m+1

2 )

a2(−m+ 1
2
)

]
for x < −`

(37)

where c1 = exp

[
2r|`|(−m+1

2 )

a2(−m+ 1
2
)

]
and c2 = exp

[
2r|−`|(−m+1

2 )

a2(−m+ 1
2
)

]
. Then using

(37) it can be shown that

S(∞) ≤
∫ ∞
`

c1 exp

[
−2r|y|(−m+ 1

2
)

a2(−m+ 1
2
)

]
dy.

Lemma 1 allows us to conclude that this equation is finite; therefore,
S(∞) is less than a finite number. From the stochastic stability the-
orem, since S(∞) < ∞ then the SDE is unstable. Finally, suppose
q − 2p = 0. Looking back at (29) it can be said that

s(x) =

exp
[∫ x

`
−2r

a2|z|2mdz
]

for x > `

exp
[∫ x
−`

−2r
a2|z|2mdz

]
for x < −`

After integration,

s(x) =


exp

[
−2r|z|(−2m+1)

a2(−2m+1)

∣∣∣∣∣
x

`

]
for x > `

exp

[
−2r|z|(−2m+1)

a2(−2m+1)

∣∣∣∣∣
x

−`

]
for x < −`

=

c1 exp
[
−2r|x|(−2m+1)

a2(−2m+1)

]
for x > `

c2 exp
[
−2r|x|(−2m+1)

a2(−2m+1)

]
for x < −`

(38)
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where c1 = exp
[
2r|`|(−2m+1)

a2(−2m+1)

]
and c2 = exp

[
2r|−`|(−2m+1)

a2(−2m+1)

]
. Investigating

S(∞) it can be determined that

S(∞) =

∫ ∞
`

c1 exp

[
−2r|y|(−2m+1)

a2(−2m+ 1)

]
dy,

which is a finite integral. Therefore, S(∞) < ∞ and noise-induced
stabilization does not occur for m < 1

2
when q − 2p = 0. Furthermore,

when m < 1
2
, it can be concluded from these integrations that noise-

induced stabilization never occurs.

Case 3: m = 1
2

Referring back to (29) when m = 1
2

s(x) =

exp
[
−2r
a2

∫ x
`

1
|z| ln(|z|)2p−q dz

]
for x > `

exp
[
−2r
a2

∫ x
−`

1
|z| ln(|z|)2p−q dz

]
for x < −`

In order to solve this equation a u-substitution must be used. Let

u = ln(|z|) and du =
1

|z|
dz (39)

then,

s(x) =

exp
[
−2r
a2

∫ ln(|x|)
ln(|`|)

1
u2p−q

du
]

for x > `

exp
[
−2r
a2

∫ ln(|x|)
ln(|−`|)

1
u2p−q

du
]

for x < −`
After integrating,

s(x) =


exp

[
−2ruq−2p+1

a2(q−2p+1)

∣∣∣ln(|x|)
ln(|`|)

]
for x > `

exp

[
−2ruq−2p+1

a2(q−2p+1)

∣∣∣ln(|x|)
ln(|−`|)

]
for x < −`

=

c1 exp
[
−2r ln(|x|)q−2p+1

a2(q−2p+1)

]
for x > `

c2 exp
[
−2r ln(|x|)q−2p+1

a2(q−2p+1)

]
for x < −`

(40)

and

m(x) =


exp

[
2r ln(|x|)q−2p+1

a2(q−2p+1)

]
c1a2|x| ln(|x|)2p for x > `

exp

[
2r ln(|x|)q−2p+1

a2(q−2p+1)

]
c2a2|x| ln(|x|)2p for x < −`

(41)

where c1 = exp
[
2r ln(|`|)q−2p+1

a2(q−2p+1)

]
and c2 = exp

[
2r ln(|−`|)q−2p+1

a2(q−2p+1)

]
. To con-

tinue investigating the stabilization of the SDE next we will look at
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S(∞),M(∞), S(−∞), and M(−∞). In order to integrate these equa-
tions we must separate this into three different values of q − 2p + 1.
First, assume that q − 2p+ 1 > 0.

S(∞) =

∫ ∞
`

c1 exp

[
−2r ln(|y|)q−2p+1

a2(q − 2p+ 1)

]
dy

<∞

Since S(∞) is finite when q − 2p + 1 > 0, by Lemma 1, then by
the stochastic stability theorem there is no noise-induced stabilization.
Now, assume that q − 2p+ 1 < 0.

S(∞) =

∫ ∞
`

c1 exp

[
−2r ln(|y|)q−2p+1

a2(q − 2p+ 1)

]
dy

=∞

M(∞) =

∫ ∞
`

exp
[
2r ln(|y|)q−2p+1

a2(q−2p+1)

]
c1a2y ln(|y|)2p

dy

≤
∫ ∞
`

1

c1a2y ln(|y|)2p
dy.

To solve for M(∞) we use the same u-substitution from (39). After
doing so,

M(∞) ≤ 1

c1a2

∫ ln(|∞|)

ln(|`|)

1

u2p
du.

In order for M(∞) <∞ we must have 2p > 1. Now to look at S(−∞),
and M(−∞),

S(−∞) =

∫ −∞
−`

c2 exp

[
−2r ln(|y|)q−2p+1

a2(q − 2p+ 1)

]
dy

= −
∫ −`
−∞

c2 exp

[
−2r ln(|y|)q−2p+1

a2(q − 2p+ 1)

]
dy

= −
∫ ∞
`

c2 exp

[
−2r ln(|y|)q−2p+1

a2(q − 2p+ 1)

]
dy

= −∞

M(−∞) =

∫ −∞
−`

exp
[
2r ln(|y|)q−2p+1

a2(q−2p+1)

]
c2a2y ln(|y|)2p

dy

≤
∫ −∞
−`

1

c2a2y ln(|y|)2p
dy.
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Using (39) we know that

M(∞) ≤ 1

c2a2

∫ ln(|−∞|)

ln(|−`|)

1

u2p
du.

With the absolute values around the negative numbers, M(−∞) =
M(∞); therefore, they have the same stability. Thus, when m = 1

2
we

find that for q−2p+1 < 0, which can also be written as p > q+1
2

, noise-
induced stabilization does occur. Finally, assume that q−2p+1 = 0. In
order to further investigate the stability of the SDE when q−2p+1 = 0
we must re-evaluate (29) to make sure the integration is not undefined.
When doing so we find

s(x) =

exp
[
−2r
a2

∫ ln(|x|)
ln(|`|) u

q−2pdu
]

for x > `

exp
[
−2r
a2

∫ ln(|x|)
ln(|−`|) u

q−2pdu
]

for x < −`

=

exp
[
−2r
a2

∫ ln(|x|)
ln(|`|)

1
u
du
]

for x > `

exp
[
−2r
a2

∫ ln(|x|)
ln(|−`|)

1
u
du
]

for x < −`.

After integrating,

s(x) =


exp

[
−2r
a2
· ln(u)

∣∣∣ln(|x|)
ln(|`|)

]
for x > `

exp

[
−2r
a2
· ln(u)

∣∣∣ln(|x|)
ln(|−`|)

]
for x < −`

=

exp
[
−2r ln(ln(|x|))

a2

]
exp

[
2r ln(ln(|`|))

a2

]
for x > `

exp
[
−2r ln(ln(|x|))

a2

]
exp

[
2r ln(ln(|−`|))

a2

]
for x < −`.

With cancellations between the exponentials and logarithms s(x) sim-
plifies down to

s(x) =

{
c1[ln(|x|)]

−2r

a2 for x > `

c2[ln(|x|)]
−2r

a2 for x < −`
(42)

and

m(x) =


[ln(|x|)]

2r
a2
−2p

c1a2|x| for x > `

[ln(|x|)]
2r
a2
−2p

c2a2|x| for x < −`,
(43)

where c1 = [ln(|`|)]
2r
a2 and c2 = [ln(|−`|)]

2r
a2 . After finding the values

of s(x) and m(x) the Stochastic Stability Theorem says,
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S(∞) =

∫ ∞
`

c1[ln(|y|)]
−2r

a2 dy,

which diverges for any value of a 6= 0, and

M(∞) =

∫ ∞
`

[ln(|y|)]
2r
a2
−2p

c1a2|y|
dy.

Using (39),

M(∞) =

∫ ln(|∞|)

ln(|`|)

u
2r
a2
−2p

c1a2
du.

In order to get M(∞) < ∞ we must have 2r
a2
− 2p < −1; therefore,

a2q > 2r. Referring back to the theorem,

S(−∞) =

∫ −∞
−`

c2[ln(|y|)]
−2r

a2 dy.

Similarly to S(∞), this integral goes to negative infinity for any value
of a 6= 0. Using (39) for M(∞),

M(−∞) =

∫ ln(|−∞|)

ln(|−`|)

u
2r
a2
−2p

c2a2
du

= M(∞).

Since M(−∞) = M(∞) then, stabilization for M(−∞) is the same as
M(∞). Thus, when m = 1

2
, and q − 2p + 1 = 0 we will have noise-

induced stabilization for a2q > 2|r|.

When looking at the cases where r < 0, let Y (t) = −X(t).Since Y (t)
is bounded if and only if X(t) is bounded, Y (t) must have the exact
same stability as X(t). Suppose X(t) satisfies

dX(t) = b(X(t))dt+ σ(X(t))dB(t)

where b(x) = r[ln(|x|)]q, σ(x) = a|x|m ln(|x|)p, and r < 0. It follows
that

dY (t) = −dX(t)

= − [r[ln(|X(t)|)]qdt+ a|X(t)|m ln(|X(t)|)pdB(t)]

= − [r[ln(| − Y (t)|)]qdt+ a|(−Y (t))|m ln(|(−Y (t))|)pdB(t)] .
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Since there are absolute values within the logarithmic and power terms
the stability of X(t) with leading coefficient −r is equivalent to its
stability with leading coefficient r. �

7. General Noise Minimum

In this section we explore the minimum amount of noise necessary
for noise-induced stabilization to occur when the noise coefficient is not
restricted to a particular form. The definitions below characterize what
it means for a noise coefficient σ(x) to be the minimum necessary to
stabilize an ODE with drift coefficient b(x).

Definition 2. Let b(x) and σ(x) be continuous functions. We say that
σ(x) stabilizes b(x) if the solution x(t) to the ODE

dx(t) = b(x(t))dt

is unstable, but the solution X(t) to the SDE

dX(t) = b(X(t))dt+ σ(X(t))dB(t)

is stable.

Definition 3. Let b(x) and σ(x) be continuous functions. We say that
σ(x) is the minimum noise necessary to stabilize b(x) if

(1) σ(x) stabilizes b(x) and
(2) for any continuous function σ̃(x) such that

lim sup
x→±∞

∣∣∣∣ σ̃(x)

σ(x)

∣∣∣∣ < 1 ,

σ̃(x) does not stabilize b(x).

Notes:

(1) The “lim sup” appears above since the limit may not exist; e.g.
an oscillatory function.

(2) The minimum noise is not unique. There may be multiple func-
tions that satisfy the definition of minimum noise and for any
two of these, the limit of the absolute value of the ratio will
always be one.

Lemma 3. Let b(x) and σ̂(x) be continuous functions and suppose σ̂(x)
does not stabilize b(x). Furthermore, suppose there exists `0 ≥ 0 such
that σ̂(x) 6= 0 and b(x) 6= 0 for all |x| ≥ `0, and additionally that b(x)
is either strictly positive for x ≥ `0 or that b(x) is strictly negative for
x ≤ −`0. Then for any continuous function σ̃(x) such that

lim sup
x→±∞

∣∣∣∣ σ̃(x)

σ̂(x)

∣∣∣∣ < 1 ,
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σ̃(x) also does not stabilize b(x).

Proof. Without loss of generality, we assume b(x) is strictly positive

for x ≥ `0 and that either Ŝ(∞) < ∞ or M̂(∞) = ∞, where Ŝ(x) is
S(x) from the “Stochastic Stability Theorem” with σ̂(x) substituted

for σ(x), and likewise with M̂(x) (and ŝ(x) and m̂(x)).
Let σ̃(x) be any continuous function such that

lim sup
x→±∞

∣∣∣∣ σ̃(x)

σ̂(x)

∣∣∣∣ < 1 .

Then there exists ` ≥ `0 such that
σ̃2(x)

σ̂2(x)
< 1 for all |x| ≥ `. Define

s̃(x), m̃(x), S̃(x), and M̃(x) to be the corresponding values from the
“Stochastic Stability Theorem” with σ̃(x) substituted for σ(x).

Now since b(x) > 0 for all x ≥ `, then
−2b(x)

σ̃2(x)
<
−2b(x)

σ̂2(x)
for all

x ≥ `, which implies s̃(x) < ŝ(x) and m̃(x) > m̂(x) for all x ≥ `. Thus,

if Ŝ(∞) < ∞, S̃(∞) < ∞ as well, or if M̂(∞) = ∞, M̃(∞) = ∞ as
well. Therefore, σ̃(x) does not stabilize b(x).

�

Lemma 4. Let b(x) and σ(x) be continuous functions. Furthermore,
suppose there exists `0 ≥ 0 such that σ(x) 6= 0 and b(x) 6= 0 for all
|x| ≥ `0, and additionally that b(x) is either strictly positive for x ≥ `0
or that b(x) is strictly negative for x ≤ −`0. If σ(x) stabilizes b(x) and
there exists a continuous function σ̂(x) such that

lim sup
x→±∞

∣∣∣∣ σ̂(x)

σ(x)

∣∣∣∣ = 1 ,

but σ̂(x) does not stabilize b(x), then σ(x) is the minimum noise nec-
essary to stabilize b(x).

Proof. Since σ̂(x) does not stabilize b(x), any continuous function σ̃(x)
such that

lim sup
x→±∞

∣∣∣∣ σ̃(x)

σ̂(x)

∣∣∣∣ < 1

also does not stabilize b(x) by Lemma 3.
Now for any continuous function σ̃(x),

lim sup
x→±∞

∣∣∣∣ σ̃(x)

σ(x)

∣∣∣∣ = lim sup
x→±∞

(∣∣∣∣ σ̃(x)

σ̂(x)

∣∣∣∣ · ∣∣∣∣ σ̂(x)

σ(x)

∣∣∣∣)
≤
(

lim sup
x→±∞

∣∣∣∣ σ̃(x)

σ̂(x)

∣∣∣∣) · (lim sup
x→±∞

∣∣∣∣ σ̂(x)

σ(x)

∣∣∣∣) < 1 .
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Thus, σ(x) is the minimum noise necessary to stabilize b(x). �

Building upon the above definitions and lemmas, we now prove the
overall minimum noise necessary for stabilization when the drift coef-
ficient is a general power function with power q > 0.

Theorem 7. Suppose b(x) = r|x|q where r 6= 0 and q > 1. Then

σ(x) = (
√

2|r|)|x|
q+1
2

is the minimum noise necessary to stabilize b(x).

Proof. We know that σ(x) stabilizes b(x) by the power function stabi-
lization theorem 1. Consider

σ̂(x) = (
√

2|r|)|x|
q+1
2

 1√
1 + 2

ln(|x|)


for |x| ≥ 2. σ̂(x) can be defined to be anything nonzero for |x| < 2
such that the function is continuous. Then

lim sup
x→±∞

∣∣∣∣ σ̂(x)

σ(x)

∣∣∣∣ = 1 .

Without loss of generality, assume r > 0. Then for x ≥ 2,

−2b(x)

σ̂2(x)
=
−1

|x|

(
1 +

2

ln(|x|)

)
=
−1

|x|
+

−2

|x| ln(|x|)
.

Thus for x ≥ 2,

ŝ(x) = exp

[∫ x

2

−1

|z|
+

−2

|z| ln(|z|)
dz

]
= exp [− ln(|x|) + ln(2)− 2 ln(ln(|x|)) + 2 ln(ln(2))]

=
2(ln(2))2

|x|(ln(|x|))2
.

Hence,

Ŝ(∞) =

∫ ∞
2

2(ln(2))2

|x|(ln(|x|))2
dx = 2 ln(2) <∞

which implies that σ̂(x) does not stabilize b(x). Therefore, by Lemma
4, σ(x) is the minimum noise necessary to stabilize b(x).

�
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Theorem 8. Consider b(x) = r|x|q where r 6= 0 and 0 < q ≤ 1. Then

σ(x) =


(√

2|r|
q

)
|x| q+1

2

(
1√

1− 2
q ln(|x|)

)
for |x| ≥ 2(√

2|r|
q

)
|2| q+1

2

(
1√

1− 2
q ln(|2|)

)
for |x| < 2

is the minimum noise necessary to stabilize b(x).

Proof. By the power function stabilization theorem 1, we know that

σ̂(x) =

(√
2|r|
q

)
|x|

q+1
2

does not stabilize b(x). Thus, by Lemma 4, it suffices to show that
σ(x) does stabilize b(x).

Without loss of generality, assume r > 0. Then for x ≥ 2,

−2b(x)

σ2(x)
=
−q
x

(
1− 2

ln(x)

)
=
−q
x

+
2

x ln(x)
.

Thus for x ≥ 2,

s(x) = exp

[∫ x

2

−q
z

+
2q

z ln(z)
dz

]
= exp [−q ln(x) + q ln(2) + 2 ln(ln(x))− 2 ln(ln(2))]

=
2q(ln(x))2

xq(ln(2))2
.

Hence,

S(∞) =

∫ ∞
2

2q(ln(x))2

xq(ln(2))2
dx

≥
∫ ∞
2

2q

xq
dx

=∞ .

Now

M(∞) =

∫ ∞
2

xq(ln(2))2

2q(ln(x))2
· q

2rxq+1

(
1− 2

q ln(x)

)
dx

≤ q(ln(2))2

2q+1r

∫ ∞
2

1

x(ln(x))2
dx

<∞ .

S(−∞) = −∞ and |M(−∞)| <∞ since b(x) > 0 for x < 0. Therefore,
σ(x) is the minimum noise necessary to stabilize b(x). �
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Note that it is still an open question whether or not an overall min-
imum noise coefficient exists for when the drift coefficient is a general
power function with q ≤ 0. The minimum noise necessary to stabilize
a polynomial of degree q ≥ 2 should be analogous to that stated in
Theorem 7, and analogous to that stated in Theorem 8 for a polyno-
mial of degree q = 1. As for when the drift coefficient is an exponential
or logarithmic function, or more general, the existence of an overall
minimum noise coefficient, and its form if it exists, remains an open
problem.

8. Conclusion

Initially, the phenomenon of noise-induced stabilization might seem
counterintuitive; however, in this paper we have shown stabilization of
ODEs can occur with the addition of noise. In addition to stabilizing
the ODEs, we have proven the precise minimum amount of noise nec-
essary for stabilization when the drift and noise coefficients are general
power functions, polynomials, or exponential or logarithmic functions.

Furthermore, we hope our results will motivate future work in inves-
tigating other forms of the noise and drift coefficients, and finding the
precise minimum amount of noise needed to stabilize systems where
the noise coefficient is not restricted to a specific form.
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