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Abstract. Noise-induced stabilization is the phenomenon in which the addi-
tion of randomness to an unstable deterministic system of ordinary differential

equations (ODEs) results in a stable system of stochastic differential equations

(SDEs). A Hamiltonian system is a two-dimensional system of ODEs defined
by a Hamiltonian function, which is constant along each solution curve. With

stability defined as global stochastic boundedness, Hamiltonian systems can-

not be stabilized by the addition of noise that is constant in space. Therefore
we studied ways to deterministically perturb different Hamiltonian systems in

such a way so that the qualitative behavior of solutions is preserved but noise-

induced stabilization becomes possible. We provide a systematic framework for
methods of perturbing these systems and proving noise-induced stabilization.
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1. Introduction

Hamiltonian systems are a class of differential equations which were initially de-
veloped as a means of modeling closed physical systems. From a purely mathemat-
ical standpoint, this paper will examine how minor perturbations to Hamiltonian
systems can fundamentally alter the behavior of the systems. Our goals of this
paper are to provide a systematic framework for perturbing unstable Hamiltonian
systems so that noise-induced stabilization can occur and to prove that the resulting
systems are indeed stable. We will demonstrate several instances in which modified
Hamiltonian systems are stabilized by the addition of white noise.

This paper will consist of five sections. In the first, we will define key terms and
explain concepts which are used throughout the paper. In the second, third, and
fourth, we examine three classes of perturbed Hamiltonian systems and prove their
stability. In the fifth, we summarize our results and discuss future directions that
this research could be taken.

1.1. Background & Definitions. We begin with the definition of a Hamiltonian
system.

Definition 1 (Hamiltonian System). A Hamiltonian system is a two-dimensional
system of differential equations defined by a Hamiltonian function H(x, y) given by

dxt
dt

=
∂H

∂y

dyt
dt

= −∂H
∂x

.

Due to this structure, the value of the Hamiltonian function is constant along
any solution curve of the system. To see why this is true, note that

dH

dt
=
∂H

∂x

dx

dt
+
∂H

∂y

dy

dt

=
∂H

∂x

∂H

∂y
− ∂H

∂y

∂H

∂x

= 0.

This property is critical to the nature of the problem of noise-induced stabiliza-
tion; to elaborate further, we must first discuss stochastic differential equations and
stability.

We construct a system of stochastic differential equations (SDEs) by adding
noise terms onto a deterministic system. If the original deterministic system is
Hamiltonian, then we get a stochastic system of the following form:

dXt

dt
=
∂H

∂y
(Xt, Yt) + ε1

dB1(t)

dt

dYt
dt

= −∂H
∂x

(Xt, Yt) + ε2
dB2(t)

dt
.

Here B1(t) and B2(t) are independent standard Brownian motions, and ε1 and ε2
are constants which control the strength of the noise in the x− and y− directions,
respectively.

We are concerned with stability in the sense of global stochastic boundedness.
In particular, we define stability in the following way.
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Definition 2 (Stability). We say that a system is stable if, for all initial conditions
and for all δ > 0, there exists a bound M , such that P (|(Xt, Yt)| ≤M) > 1− δ for
all t.

In the deterministic setting, when ε1 = ε2 = 0, this definition of stability reduces
to the requirement that all of its solution curves be bounded.

For any unstable Hamiltonian system, adding white noise is not sufficient to
stabilize the system since Lebesgue measure is always invariant. This fact can be
seen by observing the structure of the generator corresponding to a Hamiltonian
system and computing its adjoint. For any arbitrary two-dimensional Hamiltonian
system with Hamiltonian function H(x, y) perturbed by white noise, the generator
has the form

Lφ =
∂H

∂y

∂φ

∂x
− ∂H

∂x

∂φ

∂y
+
ε21
2

∂2φ

∂x2
+
ε22
2

∂2φ

∂y2
.

The adjoint to the generator has the form

L∗φ = − ∂
2H

∂x∂y
φ− ∂H

∂y

∂φ

∂x
+
∂2H

∂y∂x
φ+

∂H

∂x

∂φ

∂y
+
ε21
2

∂2φ

∂x2
+
ε22
2

∂2φ

∂y2

= −∂H
∂y

∂φ

∂x
+
∂H

∂x

∂φ

∂y
+
ε21
2

∂2φ

∂x2
+
ε22
2

∂2φ

∂y2
.

From this form it can be seen that when φ is identically equal to a constant, it
satisfies L∗φ = 0, which implies that Lebesgue measure is invariant.

In light of this fact about Hamiltonian systems, we must deterministically modify
a unstable Hamiltonian system if noise-induced stabilization is to occur. However,
we wish to modify a system in such a way so that the behavior of the deterministic
modified system is qualitatively similar to that of the original Hamiltonian system.
Most importantly, we want the modified system to still be unstable in the deter-
ministic setting, and for any initial condition we want the limiting behavior to be
the same as for the original Hamiltonian.

Instead of writing out each entire system, from here on we will refer to a per-
turbed system by its Hamiltonian function and by the modification functions f(x, y)
and g(x, y). After perturbing the Hamiltonian systems, we then add noise to pro-
duce noise-induced stabilization.

Definition 3 (Lyapunov function). A function V (x, y) is called a Lyapunov
function if it satisfies the following three properties:

(i) V (x, y) ∈ C∞(R2)

(ii) lim
r→∞

[
inf

(x,y)∈Bcr
V (x, y)

]
=∞

(iii) lim
r→∞

[
inf

(x,y)∈Bcr
[−(LV )(x, y)]

]
=∞ ,

where L is the generator corresponding to the system.

For our modified stochastic systems, the generator L will have the following
form:

L =
[∂H
∂y
− f

] ∂
∂x

+
[
− ∂H

∂x
− g
] ∂
∂y

+
ε21
2

∂2

∂x2
+
ε22
2

∂2

∂y2
.
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It is well-known that the existence of a Lyapunov function satisfying the above
definition implies that the corresponding system of SDEs is stable.

Now that we have defined the key terms and concepts, we give a brief outline of
the proof technique we will use.

1.2. Proof Method. Three different Hamiltonian systems are examined in sec-
tions 2, 3, and 4 of this paper. Each section will begin with a brief discussion of the
deterministic characteristics of the Hamiltonian system. This will be followed by
an explanation of how the deterministic modifications for that system were chosen
to promote noise-induced stabilization, and then a proof that the resulting system
is indeed stable.

The method of proof is the same for all of the cases studied in this paper. First,
the plane is divided into overlapping regions. Then, local Lyapunov functions are
found for each of those regions. By local Lyapunov function, we mean a function
that satisfies the three conditions in Definition 3 on some subset of the plane.
In some regions, “natural” Lyapunov functions exist, such as the norm to some
power. In other regions (namely, regions where the deterministic dynamics are
unstable), local Lyapunov functions must be constructed using an algorithm that
”propagates” the Lyapunov function from a neighboring region. This technique will
later be discussed in greater detail. The final step of the proof is to patch together
the local Lyapunov functions to create one global Lyapunov function, the existence
of which proves the stability of the system.

Because of the requirement that the global Lyapunov function be infinitely differ-
entiable on all of R2, the local Lyapunov functions for neighboring regions must be
combined smoothly on overlapping regions. This is done with the use of a mollifier
function φ(t), defined as follows:

φ(t) =
1

m

∫ t

−∞
ψ(s)ds with m =

∫ ∞
−∞

ψ(s)ds

and

ψ(t) =

{
exp

(
−1

1−(2t−1)2

)
for 0 < t < 1

0 otherwise.

As an example of how this works, consider two overlapping regions R1 and R2,
with corresponding convex local Lyapunov functions v1(x, y) and v2(x, y). We can
construct some function s(x, y) such that s = 0 on the boundary of R1 and s = 1 on
the boundary ofR2. We can then use the mollifier create a new convex combination,
v12(x, y), on the overlapping region, where

v12(x, y) = φ(s(x, y))v1(x, y) + (1− φ(s(x, y)))v2(x, y).

This creates a function which is equal to v2 on the boundary of R1, equal to v1
on the boundary of R2, and infinitely differentiable on the interior of R1∩R2. The
rest of the proof consists of showing that this newly constructed function satisfies
the third Lyapunov condition as well, making it a local Lyapunov function on the
overlapping region. Once local Lyapunov functions have have been shown to exist
on all regions, and there exist functions on the overlap regions which smoothly
connect the different pieces, a global Lyapnuov function can be constructed for the
entire plane.
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x

y

Figure 1. Phase portrait of the deterministic Hamiltonian system
with h′ > 0

After proving noise-induced stabilization for the three different Hamiltonian sys-
tems, the final section of the paper will address questions that remain to be answered
and suggest directions for future research in this area.

2. Hamiltonian System with H(x, y) = h
(

(xy)2

2

)
We consider the Hamiltonian function

(1) H(x, y) = h

(
(xy)2

2

)
where h is infinitely differentiable on R≥0 and |h′(u)| > 0 when u > 0. The corre-
sponding deterministic Hamiltonian system (xt, yt) is the solution to the following
two-dimensional system of ODEs:

(2)

dxt
dt

=
∂H

∂y
= h′

(
(xtyt)

2

2

)
x2tyt

dyt
dt

= −∂H
∂x

= −h′
(

(xtyt)
2

2

)
xty

2
t .

Using the fact that the Hamiltonian function is constant along the solution path,
the explicit solution can be found as

xt = x0e
x0y0h

′
(

(x0y0)2

2

)
t

yt = y0e
−x0y0h

′
(

(x0y0)2

2

)
t .

Hence both the x-axis and y-axis are a continuum of equilibrium points, but for
any initial condition off the axes, the solution has the property that

(3) yt =
x0y0
xt

.

You can see in Figure 1 that the system is clearly unstable with solutions going
to infinity in each quadrant. However if the addition of noise allows for solutions to
cross between quadrants it appears that the solutions will then change directions
in each quadrant allowing for a quasi-periodic orbit to occur, so that solutions are
bounded and noise induced stabilization can occur.
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Figure 2. Solutions to the original Hamiltonian (left) and modi-
fied deterministic system (right) for identical initial conditions.

2.1. Perturbed Hamiltonian System. In order to choose the precise form for
the additional drift terms, if we let Ht = H(xt, yt) we know for Hamiltonian systems
that Ht is always a constant, so dHt

dt = 0. To enable noise-induced stabilization to
occur, we need to be able to push Ht towards zero. So for this Hamiltonian system
we have

(4)

dxt
dt

= (h′
(

(xtyt)
2

2

)
xtyt −

1

4

∣∣∣∣h′( (xtyt)
2

2

)∣∣∣∣(xtyt)2)xt

dyt
dt

= (−h′
(

(xtyt)
2

2

)
xtyt −

1

4

∣∣∣∣h′( (xtyt)
2

2

)∣∣∣∣(xtyt)2)yt .

As with the original Hamiltonian system, the axes consist of a continuum of
equilibrium points, while for x0y0 > 0, limt→∞ |xt| = ∞ and for x0y0 < 0,
limt→∞ |yt| = ∞. Thus the additional drift terms in the modified Hamiltonian
system given by (4) preserve many of the same qualitative features, including the
instability, of the original Hamiltonian system given by (2). The main difference
of the modified Hamiltonian system is that its convergence to infinity along the
axes is slightly slower than the exponential convergence of the original Hamiltonian
system.

We now consider perturbing the modified Hamiltonian system given by (4) with
additive white noise to form the following two-dimensional system of stochastic
differential equations:

(5)

dXt

dt
= (h′

(
(XtYt)

2

2

)
XtYt −

1

4

∣∣∣∣h′( (XtYt)
2

2

)∣∣∣∣(XtYt)
2)Xt + ε1

dB1(t)

dt

dYt
dt

= (−h′
(

(XtYt)
2

2

)
XtYt −

1

4

∣∣∣∣h′( (XtYt)
2

2

)∣∣∣∣(XtYt)
2)Yt + ε2

dB2(t)

dt
.

The phase portraits shown in Figure 2 shows the difference in solutions from the
original deterministic system to the perturbed system. Solutions in the perturbed
system while unstable in the same way as the original, can be seen to be pushed
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Figure 3. Simulation of the perturbed Hamiltonian system.

towards the axis more quickly giving the desired behavior for noise-induced stabi-
lization to be possible. The simulation in Figure 3 gives a Matlab simulation of
a solution for the perturbed system with added noise, using ε1 = ε2 = 0.01 and
initial condition (1, 1). This shows the quasi-periodic behavior intended, but does
not give a rigorous proof of stability.

2.2. Lyapunov Construction. In order to find local Lyapunov functions, we be-
gin by decomposing the plane into the following regions:

(6)

R1 = {(x, y) : |xy| ≥ c1}
R2 = {(x, y) : |x| ≥ 1, |xy| ≤ c2}
R3 = {(x, y) : |y| ≥ 1, |xy| ≤ c2}

where 0 < c1 < c2. The three regions, R1,R2,R3, cover the entire plane, minus
some ball about the origin, and are depicted in Figure 4. R1 is the “priming region”
where a natural Lyapunov function exists, namely the norm to some power. R2

and R3 are “diffusive regions” where the deterministic dynamics are unstable and
noise is essential to the existence of a local Lyapunov function.

Due to symmetry in x and y, the existence of a local Lyapunov function v2(x, y)
on R2 implies that v3(x, y) = v2(y, x) is a local Lyapunov function on R3. Hence,
it suffices to just prove the existence of local Lyapunov functions on R1 and R2.
The priming region was specifically chosen so that a natural Lyapunov function,
i.e. the norm to some power, exists in the region. In lemma 2.1 we show that this
does indeed hold.
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R1

R1R1

R1

R2R2

R3

R3

y

x

Figure 4. Decomposition of plane into priming and diffusive regions.

Theorem 1. Consider H(x, y) = h
(

(xy)2

2

)
, where h is infinitely differentiable on

R≥0 and |h′(u)| > 0 when u > 0. Then the perturbed Hamiltonian system with

f(x, y) =
1

4

∣∣∣∣∣h′
(

(xy)2

2

)∣∣∣∣∣x3y2 and

g(x, y) =
1

4

∣∣∣∣∣h′
(

(xy)2

2

)∣∣∣∣∣x2y3
exhibits noise-induced stabilization.

Proof. In order to prove this theorem we first need to prove the existence of local
Lyapunov functions satisfying the properties given above. If h′ is negative the
direction of solutions reverses, while maintaining the same unstable behavior. For
the purposes of proving local and global Lyapunov functions we can assume without
loss of generality that h′ is positive.

2.2.1. Priming Region.

Lemma 2.1. For any c1 > 4, v1(x, y) = x2 + y2 is a local Lyapunov function on
R1.

Proof. v1 satisfies the first two properties of a local Lyapunov function, so it only
remains to show the third property. Applying the generator to v1 we obtain

(Lv1)(x, y) = (h′
(

(xy)2

2

)
x2y − 1

4
h′
(

(xy)2

2

)
x3y2)(2x) + (−h′

(
(xy)2

2

)
xy2

− 1

4
h′
(

(xy)2

2

)
x2y3)(2y) + ε21 + ε22
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= (2xy − 1

2
x2y2)h′

(
(xy)2

2

)
x2 + (−2xy − 1

2
x2y2)h′

(
(xy)2

2

)
y2 + ε21 + ε22

= h′
(

(xy)2

2

)
[(2xy − 1

2
x2y2)x2 + (−2xy − 1

2
x2y2)y2] + ε21 + ε22

−(Lv1)(x, y) = h′
(

(xy)2

2

)
[(−2xy +

1

2
x2y2)x2 + (2xy +

1

2
x2y2)y2]− ε21 − ε22.

Now since the function f(u) = −2u + 1
2u

2 is positive and strictly increasing for
u > 4, and since |xy| ≥ c1 > 4 on R1,

−2|xy|+ 1

2
|xy|2 ≥ −2c1 +

1

2
c21 > 0

and

inf
(x,y)∈(R1∩Bcr)

[−(Lv1)(x, y)] ≥ (−2c1 +
1

2
c21)h′

(
(xy)2

2

)
r2 − ε21 − ε22 .

Thus,

inf
(x,y)∈(R1∩Bcr)

[−(Lv1)(x, y)]→∞ as r →∞

and v1 is a local Lyapunov function on R1. �

2.2.2. Diffusive Regions. On the diffusive regions R2 and R3 the deterministic dy-
namics are unstable and the noise terms are essential to the existence of a local Lya-
punov function. Rather than using an ad hoc method to construct local Lyapunov
functions on these regions, we follow the meta-algorithm outlined in [AKM12],
which constructs the local Lyapunov function in a diffusive region as the solution
to a boundary-value problem of the form

(7)

{
(L̃ivi)(x, y) = −gi(x, y) for (x, y) ∈ Ri
vi(x, y) = v1(x, y) for (x, y) ∈ ∂Ri

where L̃i consists of the terms in the generator L that scale dominantly in the
region Ri and gi is chosen so that limr→∞

[
inf(x,y)∈(Ri∩Bcr) gi(x, y)

]
= ∞. This

method can be viewed as “propagating” an obvious Lyapunov function to regions
of the plane where a Lyapunov function is not obvious.

As mentioned previously, due to the symmetry between R2 and R3, it suffices
to only consider the construction of v2 on R2. In R2, the dominant term in the

generator is
ε22
2
∂2

∂y2 . Hence, L̃2 =
ε22
2
∂2

∂y2 . For simplicity, we choose g2(x, y) = kε22x
2,

where k > 0 will be chosen later to ensure that v2 is a local Lyapunov function. The
function g2 does converge to infinity on R2 since R2 consists of the decaying strip
around the x-axis. With this choice for L̃2 and g2, we can find an explicit solution
to the boundary-value problem described by (7), which is given in the lemma below.

Lemma 2.2. For any c2 > 0 and k > 2
max0≤u≤c2 |h

′(u2/2)|
ε22

,

v2(x, y) = x2 +
c22
x2

+ kc22 − kx2y2

is a local Lyapunov function on R2.
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Proof. Since, R2 has x bounded away from zero, v2 ∈ C∞(R2). In order to show
the second local Lyapunov property, note that on R2, |xy| ≤ c2 implies that

inf
(x,y)∈(R2∩Bcr)

v2(x, y) = inf
(x,y)∈(R2∩Bcr)

[x2 +
c22
x2

+ k(c22 − |xy|2)x2]

≥ inf
(x,y)∈(R2∩Bcr)

[x2]→∞ as r →∞ .

As for the third local Lyapunov property,

(Lv2)(x, y) =(h′
(

(xy)2

2

)
x2y − 1

4
h′
(

(xy)2

2

)
x3y2)(2x− 2c22

x3
− 2kxy2) + (−h′

(
(xy)2

2

)
xy2

− 1

4
h′
(

(xy)2

2

)
x2y3)(−2kx2y) + ε21(1 +

3c22
x4
− ky2) + ε22(−kx2)

= 2h′
(

(xy)2

2

)
x3y − 1

2
h′
(

(xy)2

2

)
x4y2 − 2kh′

(
(xy)2

2

)
x3y3 − 2c22y

x
h′
(

(xy)2

2

)
− c22y

2

2
h′
(

(xy)2

2

)
+ 2kh′

(
(xy)2

2

)
x3y3 + kh′

(
(xy)2

2

)
x4y4 + ε21 +

3c22
x4

ε21 − kε21y2 − kε22x2.

= 2h′
(

(xy)2

2

)
x3y − 1

2
h′
(

(xy)2

2

)
x4y2 − 2c22y

x
h′
(

(xy)2

2

)
− c22y

2

2
h′
(

(xy)2

2

)
+ kh′

(
(xy)2

2

)
x4y4

+ ε21(1 +
3c22
x4
− ky2)− kε22x2.

Hence, since |x| ≥ 1 and |xy| ≤ c2 on R2,

inf
(x,y)∈(R2∩Bcr)

[−(Lv2)(x, y)] ≥ inf
(x,y)∈(R2∩Bcr)

[(−2|xy|+ 1

2
|xy|2)h′

(
(xy)2

2

)
x2 − 2c32

− kc42 − ε21(1 + 3c22) + kε22x
2].

The smallest value that −2|xy| + 1
2 |xy|

2 can achieve is -2. Hence, as long as we

choose k > 2
max0≤u≤c2 |h

′(u2/2)|
ε22

, then

inf
(x,y)∈(R2∩Bcr)

[−(Lv2)(x, y)]→∞ as r →∞

and v2 is a local Lyapunov function on R2. �

Therefore, by symmetry,

v3(x, y) = y2 +
c22
y2

+ k̃c22 − k̃x2y2

is a local Lyapunov function on R3, where k̃ > 2
max0≤u≤c2 |h

′(u2/2)|
ε21

. Note that

due to the nature of the deterministic dynamics, it is the noise in the y direction,
ε2 6= 0, that is crucial to the existence of a local Lyapunov function in R2 and it
is the noise in the x direction, ε1 6= 0, that is crucial to the existence of a local
Lyapunov function in R3. Thus, in order to obtain a global Lyapunov function on
the entire plane, noise is needed in both the x and y directions.
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2.2.3. Global Lyapunov Function. Since we have shown the existence of local Lya-
punov functions on regions covering the entire plane, minus some ball about the
origin, we now seek to patch them together to form one smooth, global Lyapunov
function satisfying 3. In addition, s(x, y) is chosen so that it equals zero on the
border of R1 and one on the border of R2, i.e.

s(x, y) =

{
|xy|−c1
c2−c1 for c1 ≤ |xy| ≤ c2

0 otherwise.

Lemma 2.3. There exist constants c1 and c2 with 4 < c1 < c2, such that for any

k > 2
max0≤u≤c2 |h

′(u2/2)|
ε22

,

v12(x, y) = φ(s(x, y))v1(x, y) + (1− φ(s(x, y)))v2(x, y)

is a local Lyapunov function on R1 ∩R2 = {(x, y) : |x| ≥ 1, c1 ≤ |xy| ≤ c2}.

Proof. Applying the generator to v12 we obtain

(Lv12)(x, y) = φ(s(x, y))(Lv1)(x, y) + (1− φ(s(x, y)))(Lv2)(x, y) + E(x, y)

where

E(x, y) = L[φ(s(x, y))](v1(x, y)− v2(x, y))

+ ε21
∂

∂x
[φ(s(x, y))]

∂

∂x
[v1(x, y)− v2(x, y)]

+ ε22
∂

∂y
[φ(s(x, y))]

∂

∂y
[v1(x, y)− v2(x, y)].

From the proofs of the first two lemmas we have, on R1 ∩R2,

(Lv1)(x, y) = (2xy − 1

2
(xy)2)h′

(
(xy)2

2

)
x2 + (−2xy − 1

2
(xy)2)h′

(
(xy)2

2

)
y2 + ε21 + ε22

≤ (2|xy| − 1

2
|xy|2)h′

(
(xy)2

2

)
x2 + (2|xy| − 1

2
|xy|2)h′

(
(xy)2

2

)
y2 + ε21 + ε22

≤ (2c1 −
1

2
c21)h′

(
(xy)2

2

)
x2 + (2c1 −

1

2
c21)h′

(
(xy)2

2

)
y2 + ε21 + ε22

(Lv2)(x, y) = 2h′
(

(xy)2

2

)
x3y − 2c22

x
h′
(

(xy)2

2

)
y − 2h′

(
(xy)2

2

)
kx3y3 − 1

2
h′
(

(xy)2

2

)
x4y2

+
1

2
c22h
′
(

(xy)2

2

)
y2 +

1

2
kh′
(

(xy)2

2

)
x4y4 + 2h′

(
(xy)2

2

)
kx3y3 +

1

2
h′
(

(xy)2

2

)
kx4y4

+ ε21 +
3c22
x4

ε21 − kε21 − kε21y2 − kε22x2

≤ (2|xy| − 1

2
|xy|2)h′

(
(xy)2

2

)
x2 − 2c32 − kc42 − ε21(1 + 3c22)− kε22x2

≤ (2c1 −
1

2
c21)h′

(
(xy)2

2

)
x2 − 2c32 − kc42 − ε21(1 + 3c22)− kε22x2

φ(s(x, y))(Lv1)(x, y) + (1− φ(s(x, y)))(Lv2)(x, y)

≤ φ(s(x, y))(2c1 −
1

2
c21)h′

(
(xy)2

2

)
x2 + φ(s(x, y))(2c1 −

1

2
c21)h′

(
(xy)2

2

)
y2
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+ φ(s(x, y))ε21 + φ(s(x, y))ε22 + (2c1 −
1

2
c21)h′

(
(xy)2

2

)
x2 − 2c32 − kc42

− ε21(1 + 3c22)− kε22x2 − φ(s(x, y))(2c1 −
1

2
c21)h′

(
(xy)2

2

)
x2 + φ(s(x, y))2c32

+ φ(s(x, y))kc42 + φ(s(x, y))ε21(1 + 3c22) + φ(s(x, y))kε22x
2

= (2c1 −
1

2
c21)h′

(
(xy)2

2

)
x2 + kε22x

2 − φ(s(x, y))kε22x
2

φ(s(x, y))(Lv1)(x, y) + (1− φ(s(x, y)))(Lv2)(x, y)

≤ (2|xy| − 1

2
|xy|2 − (1− φ(s(x, y)))kε22)x2 + C

≤ (2c1 −
1

2
c21 − (1− φ(s(x, y)))kε22)x2 + C

where C is a constant.

E(x, y) = (h′
(

(xy)2

2

)
x2y2 − 1

4
h′
(

(xy)2

2

)
x3y3)φ′(s)

(
sgn(x)|y|
c2 − c1

)
(y2 − c22

x2
− kc22 + kx2y2)

+ (−h′
(

(xy)2

2

)
xy2 − 1

4
h′
(

(xy)2

2

)
x2y3)φ′(s)

(
sgn(y)|x|
c2 − c1

)
(y2 − c22

x2
− kc22 + kx2y2)

+
1

2
ε21φ
′′(s)

(
sgn(x)|y|
c2 − c1

)2

(y2 − c22
x2
− kc22 + kx2y2

+
1

2
ε22φ
′′(s)

(
sgn(y)|x|
c2 − c1

)
(y2 − c22

x2
− kc22 + kx2y2)

+ ε21φ
′(s)

(
sgn(x)|y|
c2 − c1

)
(
2c22
x3

+ ky2) + ε22φ
′(s)

(
sgn(y)|x|
c2 − c1

)
(2y + 2kx2y)

= (h′
(

(xy)2

2

)
x2y2 − 1

4
h′
(

(xy)2

2

)
x3y3)φ′(s)

(
sgn(x)|y|
c2 − c1

)
y2

− (h′
(

(xy)2

2

)
x2y2 − 1

4
h′
(

(xy)2

2

)
x3y3)φ′(s)

(
sgn(x)|y|
c2 − c1

)
c22
x2

− (h′
(

(xy)2

2

)
x2y2 − 1

4
h′
(

(xy)2

2

)
x3y3)φ′(s)

(
sgn(x)|y|
c2 − c1

)
kc22

+ (h′
(

(xy)2

2

)
x2y2 − 1

4
h′
(

(xy)2

2

)
x3y3)φ′(s)

(
sgn(x)|y|
c2 − c1

)
kx2y2

+ (−h′
(

(xy)2

2

)
xy2 − 1

4
h′
(

(xy)2

2

)
x2y3)φ′(s)

(
sgn(y)|x|
c2 − c1

)
y2

− (−h′
(

(xy)2

2

)
xy2 − 1

4
h′
(

(xy)2

2

)
x2y3)φ′(s)

(
sgn(y)|x|
c2 − c1

)
c22
x2

− (−h′
(

(xy)2

2

)
xy2 − 1

4
h′
(

(xy)2

2

)
x2y3)φ′(s)

(
sgn(y)|x|
c2 − c1

)
kc22

+ (−h′
(

(xy)2

2

)
xy2 − 1

4
h′
(

(xy)2

2

)
x2y3)φ′(s)

(
sgn(y)|x|
c2 − c1

)
kx2y2
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+
1

2
ε21φ
′′(s)

(
sgn(x)|y|
c2 − c1

)2

y2 − 1

2
ε21φ
′′(s)

(
sgn(x)|y|
c2 − c1

)2
c22
x2
− 1

2
ε21φ
′′(s)

(
sgn(x)|y|
c2 − c1

)2

kc22

+
1

2
ε21φ
′′(s)

(
sgn(x)|y|
c2 − c1

)2

kx2y2 +
1

2
ε22φ
′′(s)

(
sgn(y)|x|
c2 − c1

)
y2 − 1

2
ε22φ
′′(s)

(
sgn(y)|x|
c2 − c1

)
c22
x2

− 1

2
ε22φ
′′(s)

(
sgn(y)|x|
c2 − c1

)
kc22 +

1

2
ε22φ
′′(s)

(
sgn(y)|x|
c2 − c1

)
kx2y2 + ε21φ

′(s)

(
sgn(x)|y|
c2 − c1

)
2c22
x3

+ ε21φ
′(s)

(
sgn(x)|y|
c2 − c1

)
ky2 + ε22φ

′(s)

(
sgn(y)|x|
c2 − c1

)
2y + ε22φ

′(s)

(
sgn(y)|x|
c2 − c1

)
2kx2y

E(x, y) ' 1

2
ε22φ
′′(s)

(
sgn(y)|x|
c2 − c1

)2

kx2y2 − 1

2
ε22φ
′′(s)

(
sgn(y)|x|
c2 − c1

)2

kc22 + 2ε22φ
′
(

sgn(y)|x|
c2 − c1

)
kx2y

=
1

2
kε22φ

′′(s)x2
((

sgn(y)|x|
c2 − c1

)2

y2 −
(

sgn(y)|x|
c2 − c1

)2

c22

)
+ 2ε22φ

′
(

sgn(y)|x|
c2 − c1

)
kx2y

= kε22

(
1

2
φ′′(s)

(
|xy|2 − c22
(c2 − c1)2

)
+ 2φ′(s)

(
|xy|

c2 − c1

))
x2

From explicit computation, we have that on R1 ∩ R2 the asymptotic behavior
of E(x, y) is

E(x, y) ' kε22
[

2φ′(s(x, y))|xy|
c2 − c1

− 1

2
φ′′(s(x, y))

c22 − |xy|2

(c2 − c1)2

]
x2.

Now there exists M > 0 such that |φ′(t)| ≤M and |φ′′(t)| ≤M for all t. Then

kε2y

[
2φ′(h(x, y))|xy|

c2 − c1
− 1

2
φ′′(h(x, y))

c22 − |xy|2

(c2 − c1)2

]
≤
∣∣∣kε2y [2φ′(h(x, y))|xy|

c2 − c1
− 1

2
φ′′(h(x, y))

c22 − |xy|2

(c2 − c1)2

] ∣∣∣
=
∣∣∣2φ′(h(x, y))|xy|

c2 − c1
kε2y −

1

2
φ′′(h(x, y))

c22 − |xy|2

(c2 − c1)2
kε2y

∣∣∣
≤
∣∣∣2φ′(h(x, y))|xy|

c2 − c1
kε2y

∣∣∣+
∣∣∣− 1

2
φ′′(h(x, y))

c22 − |xy|2

(c2 − c1)2
kε2y

∣∣∣
=

2|φ′(h(x, y))||xy|
c2 − c1

kε2y +
1

2
|φ′′(h(x, y))|c

2
2 − |xy|2

(c2 − c1)2
kε2y

≤ 2M |xy|
c2 − c1

kε2y +
1

2
M
c22 − |xy|2

(c2 − c1)2
kε2y

=
M

c2 − c1
kε2y

(
2|xy|+ 1

2

c22 − |xy|2

c2 − c1

)
≤ M

c2 − c1
kε2y

(
2c2 +

1

2

c22 − c21
c2 − c1

)
=

M

c2 − c1
kε2y

(
2c2 +

1

2
(c2 + c1)

)
≤ M

c2 − c1
kε2y

(
2c2 +

1

2
(c2 + c2)

)
=

M

c2 − c1
kε2y

(
2c2 + c2

)
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=
3Mc2
c2 − c1

kε2y

for all (x, y) in R1 ∩R2. Therefore, as long as

1

2
c21 − 2c1 > kε22

3Mc2
c2 − c1

,

v12 will satisfy the third local Lyapunov property. This can be achieved by setting
c2 = c1 + 1 and choosing c1 sufficiently large. �

By symmetry, c1 and c2 can also be chosen so that

v13(x, y) = φ(s(x, y))v1(x, y) + (1− φ(s(x, y)))v3(x, y)

is a local Lyapunov function on R1 ∩ R3 = {(x, y) : |y| ≥ 1, c1 ≤ |xy| ≤ c2}. Our
global Lyapunov function, V (x, y) ∈ C∞(R2), can then be constructed so that

V (x, y) =

{
Ṽ (x, y) for x2 + y2 > ρ2

arbitrary positive and smooth for x2 + y2 ≤ ρ2

where ρ > 2c2 and

Ṽ (x, y) =



v1(x, y) for (x, y) ∈ R1 ∩Rc2 ∩Rc3
v2(x, y) for (x, y) ∈ Rc1 ∩R2

v3(x, y) for (x, y) ∈ Rc1 ∩R3

v12(x, y) for (x, y) ∈ R1 ∩R2

v13(x, y) for (x, y) ∈ R1 ∩R3.

Therefore since we have proven the existence of a global Lyapunov function, we
know that this perturbed Hamiltonian system exhibits noise induced stabilization.

�

3. Hamiltonian System with H(x, y) = axmyn

We consider the Hamiltonian function

(8) H(x, y) = axmyn

where a is some nonzero constant, and m and n are positive integers. The corre-
sponding deterministic Hamiltonian system (xt, yt) is the solution to the following
two-dimensional system of ODEs:

(9)

dxt
dt

=
∂H

∂y
= anxmt y

n−1
t

dyt
dt

= −∂H
∂x

= −amxm−1t ynt .

For m,n ≥ 2, the x-axis and the y-axis are a continuum of equilibrium points.
For m = 1 and n ≥ 2, only the x-axis is a continuum of equilibrium points. For
m ≥ 2 and n = 1, only the y-axis is a continuum of equilibrium points. For
m = n = 1, only the origin is an equilibrium point. If xm0 y

n
0 6= 0, then the solution

of the system has the property that

(10) yt = ± n

√∣∣∣∣xm0 yn0xm

∣∣∣∣ .
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x

y

Figure 5. Phase portrait of the deterministic Hamiltonian system
with a > 0 and even m,n with m < n

From this, we can see that the deterministic system is unstable, since either
limt→∞ |xt| =∞ or either limt→∞ |yt| =∞ for any initial condition off of the axes.
Because the solution converges to infinity for certain initial conditions, the system
is unstable according to the definition of stability given in Section 1.

Although the system is unstable, it possesses characteristics which may lead
one to guess that the system will exhibit noise-induced stabilization. For initial
conditions off the axes, the solution to the deterministic process remains within the
same quadrant for all time, approaching positive infinity or negative infinity along
one of the axes as t → ∞. This behavior is visible in Figure 5; different values of
the constants m and n in the Hamiltonian function will make the curve change
its precise shape. Given this shape, one might guess that the addition of white
noise will enable the perturbed process to cross the axis and form a quasi-periodic
behavior. For example, for an initial condition in the first quadrant, it would seem
that the solution curve will cross the x-axis when the curve is sufficiently close to it,
then cross the y-axis, and so on. However, additive white noise is not sufficient for
the existence of an invariant probability measure, as explained in Section 1. Hence
the system with noise is not stochastically bounded.

We wish to modify the Hamiltonian system defined by (11) in order to create
a system which exhibits noise-induced stabilization, and yet retains essentially the
same qualitative behavior of the original deterministic dynamics. Due to the fact
that any unstable Hamiltonian system remains unstable after the addition of white
noise, any modification sufficient to produce noise-induced stabilization must break
the Hamiltonian structure. In order to preserve the qualitative behavior of the
deterministic dynamics, we add a drift term which points towards the axes but
which do not change the limiting behavior of solutions for any initial condition. In
the next section we discuss some intuition for the specific drift terms added in order
to produce noise-induced stabilization in this particular problem. We then apply
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the meta-algorithm for the construction of a Lyapunov function in order to prove
that the perturbed modified Hamiltonian system is indeed stable.

3.1. Perturbed Hamiltonian System. In this problem, we begin with the fol-
lowing deterministic Hamiltonian system:

(11)

dxt
dt

= anxmt y
n−1
t

dyt
dt

= −amxm−1t ynt .

As shown in the previous section, this Hamiltonian system is unstable and remains
unstable after perturbation by additive white noise. We wish to modify (11) in order
to create a new system which exhibits noise-induced stabilization and yet preserves
the qualitative features of the original Hamiltonian system, namely the limiting
behavior of the solution curves for all initial conditions. Our approach is to add drift
terms which point toward the axes, but which scale subdominantly to the original
terms from the unperturbed system near the axis. While the original Hamiltonian
system remained unstable after the addition of white noise, the additional drift
terms in the modified Hamiltonian system should allow for the noise to have a
stabilizing effect. The specific f(x, y) and g(x, y) which allow for noise-induced
stabilization are given by

(12)
f(x, y) = a2n2x2m−1y2n−2 and

g(x, y) = a2m2x2m−2y2n−1.

This gives us the following SP :

(13)

dxt
dt

= (anxm−1t yn−1t − (anxm−1t yn−1t )2)xt

dyt
dt

= (−amxm−1t yn−1t − (amxm−1t yn−1t )2)yt .

This perturbed system has the same set of equilibrium points as the unperturbed
system has. Thus the additional drift terms in the modified Hamiltonian system
given by (13) preserves many of the qualitative features, including the instability,
of the original Hamiltonian system given by (11). Figure 6 shows a side-by-side
comparison of phase portraits for the original system and the modified deterministic
system.

We now consider further modifying the perturbed system given by (13) by the
addition of white noise to form the following two-dimensional system of stochastic
differential equations:

(14)

dXt

dt
= (anXm−1

t Y n−1t − (anXm−1
t Y n−1t )2)Xt + ε1

dB1(t)

dt
dYt
dt

= (−amXm−1
t Y n−1t − (amXm−1

t Y n−1t )2)Yt + ε2
dB2(t)

dt
.

Here B1(t) and B2(t) are independent Brownian motions and ε1, ε2 > 0 represent
the strength of the noise in the x− and y−directions, respectively. Figure 7 displays
a simulation of the solution to (14) with ε1 = ε2 = .01 and initial condition (1, 1),
zoomed in about the origin. While the deterministic system was constrained to stay
in the same quadrant based on its initial condition and converged to infinity along
one of the axes, we observe that the perturbed process exhibits a quasi-periodic
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Figure 6. Solutions to the original Hamiltonian (left) and modi-
fied deterministic system (right) for identical initial conditions

behavior where it travels above and below the axis. While the perturbed process
may travel far out along the axes, it does not go off to infinity and remains stochas-
tically bounded. We prove that the modified Hamiltonian system does indeed
exhibit noise-induced stabilization in the next section through the construction of
a Lyapunov function.

Theorem 2. Consider H(x, y) = axmyn, where a is an arbitrary constant and
m,n are positive integers. Then the perturbed Hamiltonian system with

f(x, y) = a2n2x2m−1y2n−2 and

g(x, y) = a2m2x2m−2y2n−1

exhibits noise-induced stabilization.

3.2. Lyapunov Construction. We begin by decomposing the plane into the fol-
lowing regions:

(15)

R1 = {(x, y) : |x|m−1|y|n−1 ≥ c1}

R2 = {(x, y) : x2 ≥ 1, y2 ≤ 1

2k
, |x|m−1|y|n−1 ≤ c2}

R3 = {(x, y) : y2 ≥ 1, x2 ≤ 1

2k̃
, |x|m−1|y|n−1 ≤ c2}

where 0 < c1 < c2 and c1 < c3. The precise values of the constants will be spec-
ified later to facilitate local Lyapunov function constructions and patching. The
three regions, R1,R2,R3, cover the entire plane, minus some ball about the origin,
similarly to the decomposition of the plane depicted in Figure 4 from Section 2.
R1 is the “priming region” where a natural Lyapunov function exists, namely the
norm to some power. R2 and R3 are “diffusive regions” where the deterministic
dynamics are unstable and noise is essential to the existence of a local Lyapunov
function.

We seek to show the existence of local Lyapunov functions, v1, v2, and v3 on
R1,R2, and R3, respectively.
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Figure 7. A simulation of the modified Hamiltonian system with noise

3.2.1. Priming Region. The priming region was specifically chosen so that a natural
Lyapunov function, i.e. the norm to some power, exists in the region. In Lemma
3.1 we show that this does indeed hold. In the following five lemmas, we assume
without loss of generality that m < n.

Lemma 3.1. For any c1 >
n
|a|m2 , v1(x, y) = x2 + y2 is a local Lyapunov function

on R1.

Proof. v1 is clearly infinitely differentiable on R1. So, v1 ∈ C∞(R1) and the first
property of a Lyapunov functions holds for v1. Also,

lim
r→∞

[
inf

(x,y)∈(R1∩Bcr)
v1(x, y)

]
= lim
r→∞

[
inf

(x,y)∈(R1∩Bcr)
x2 + y2

]
= lim
r→∞

[
inf

(x,y)∈(R1∩Bcr)
r2
]

=∞,

and so v1 satisfies the second property of a Lyapunov function. So, it only remains
to show the third property. Applying the generator to v1 we obtain

(Lv1)(x, y) = [(anxm−1yn−1)− (anxm−1yn−1)2]x(2x)

+ [−(amxm−1yn−1)− (amxm−1yn−1)2]y(2y) +
1

2
ε21(2) +

1

2
ε22(2)

= [(anxm−1yn−1)− (anxm−1yn−1)2]2x2

+ [−(amxm−1yn−1)− (amxm−1yn−1)2]2y2 + ε21 + ε22

≤ [(|an||x|m−1|y|n−1)− (|an||x|m−1|y|n−1)2]2x2

+ [(|am||x|m−1|y|n−1)− (|am||x|m−1|y|n−1)2]2y2 + ε21 + ε22

≤ [(|an||x|m−1|y|n−1)− (|am||x|m−1|y|n−1)2]2x2
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+ [(|an||x|m−1|y|n−1)− (|am||x|m−1|y|n−1)2]2y2 + ε21 + ε22.

= [(|an||x|m−1|y|n−1)− (|am||x|m−1|y|n−1)2]2(x2 + y2) + ε21 + ε22

= [(|an||x|m−1|y|n−1)− (|am||x|m−1|y|n−1)2]2r2 + ε21 + ε22.

That is,

−(Lv1)(x, y) ≥ [−(|an||x|m−1|y|n−1) + (|am||x|m−1|y|n−1)2]2r2 − ε21 − ε22.

The function p(u) := −|an|u + (|am|u)2 is positive and strictly increasing for
u > n

|a|m2 . Thus, since |x|m−1|y|n−1 ≥ c1 > n
|a|m2 > 0 on R1, we have that

p(|x|m−1|y|n−1) ≥ p(c1) > p(0), and so

−(|an||x|m−1|y|n−1) + (|am||x|m−1|y|n−1)2 ≥ −(|an|c1) + (|am|c1)2 > 0.

Therefore,

−(Lv1)(x, y) ≥ [−(|an|c1) + (|am|c1)2]2r2 − ε21 − ε22

and so

inf
(x,y)∈(R1∩Bcr)

[−(Lv1)(x, y)] ≥ inf
(x,y)∈(R1∩Bcr)

[[−(|an|c1) + (|am|c1)2]2r2 − ε21 − ε22]

which implies

lim
r→∞

[
inf

(x,y)∈(R1∩Bcr)
[−(Lv1)(x, y)]

]
≥ lim
r→∞

[
inf

(x,y)∈(R1∩Bcr)
[[−(|an|c1) + (|am|c1)2]2r2 − ε21 − ε22]

]
=∞

thus proving the third Lyapunov property. Therefore, v1 is a local Lyapunov func-
tion on R1. �

3.2.2. Diffusive Regions. We follow a similar procedure as described in Section
2.2.2 for constructing local Lyapunov functions on the diffusive regions. However,
for this Hamiltonian system, we use the asymptotic behavior of v1 as the boundary
condition instead of the exact v1 for simplicity.

Lemma 3.2. For any c2 > 0 and k > 1
2ε22

,

v2(x, y) = x2(1− ky2)

is a local Lyapunov function on R2.

Proof. v2 is clearly infinitely differentiable on R2. So, v2 ∈ C∞(R2) and the first
property of a Lyapunov functions holds for v2.

In order to show the second local Lyapunov property, note that on R2,

y2 ≤ 1

2k
=⇒ ky2 ≤ 1

2
=⇒ 0 ≤ 1

2
− ky2 =⇒ 1

2
≤ 1− ky2
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and so

inf
(x,y)∈(R2∩Bcr)

v2(x, y) = inf
(x,y)∈(R2∩Bcr)

[x2(1− ky2)]

≥ inf
(x,y)∈(R2∩Bcr)

[
1

2
x2]→∞ as r →∞ .

As for the third local Lyapunov property,

(Lv2)(x, y) = [(anxm−1yn−1)− (anxm−1yn−1)2]x(2x− 2kxy2)

+ [−(amxm−1yn−1)− (amxm−1yn−1)2]y(−2kx2y)

+
1

2
ε21(2− 2ky2) +

1

2
ε22(−2kx2)

= [(anxm−1yn−1)− (anxm−1yn−1)2](2x2 − 2kx2y2)

+ [−(amxm−1yn−1)− (amxm−1yn−1)2](−2kx2y2)

+ ε21(1− ky2) + ε22(−kx2)

' [(anxm−1yn−1)− (anxm−1yn−1)2]2x2 − ε22kx2

≤ [(|an||x|m−1|y|n−1)− (|an||x|m−1|y|n−1)2]2x2 − ε22kx2

That is,

(−Lv2)(x, y) & {[−(|an||x|m−1|y|n−1) + (|an||x|m−1|y|n−1)2]2 + ε22k}x2.

The minimum of q(u) := −|an|u+ (|an|u)2 occurs when u = 1
2|an| . In particular,

the minimum value is equal to − 1
4 . Thus, letting u = |x|m−1|y|n−1, we see that

−(|an||x|m−1|y|n−1) + (|an||x|m−1|y|n−1)2 ≥ −1

4
.

So,

(−Lv2)(x, y) & [−1

4
2 + ε22k]x2 = (−1

2
+ ε22k)x2.

Since k > 1
2ε22
, it follows that − 1

2 + ε22k > 0. Thus,

lim
r→∞

[
inf

(x,y)∈(R2∩Bcr)
[−(Lv2)(x, y)]

]
≥ lim
r→∞

[
inf

(x,y)∈(R2∩Bcr)
[(−1

2
+ ε22k)x2]

]
=∞

and so v2 satisfies the third Lyapunov property. Thus, v2 is a local Lyapunov
function on R2. �

Lemma 3.3. For any c3 > 0 and k̃ > 1
2ε21

,

v3(x, y) = y2(1− k̃x2)

is a local Lyapunov function on R3.

Proof. v3 is clearly infinitely differentiable on R3. So, v3 ∈ C∞(R3) and the first
property of a Lyapunov functions holds for v3.

In order to show the second local Lyapunov property, note that on R3,

x2 ≤ 1

2k̃
=⇒ k̃x2 ≤ 1

2
=⇒ 0 ≤ 1

2
− k̃x2 =⇒ 1

2
≤ 1− k̃x2
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and so

inf
(x,y)∈(R3∩Bcr)

v3(x, y) = inf
(x,y)∈(R3∩Bcr)

[y2(1− k̃x2)]

≥ inf
(x,y)∈(R3∩Bcr)

[
1

2
y2]→∞ as r →∞.

As for the third local Lyapunov property,

(Lv3)(x, y) = [(anxm−1yn−1)− (anxm−1yn−1)2]x(−2k̃y2x)

+ [−(amxm−1yn−1)− (amxm−1yn−1)2]y(2y − 2k̃yx2)

+
1

2
ε21(−2k̃y2) +

1

2
ε22(2− 2k̃x2)

= [(anxm−1yn−1)− (anxm−1yn−1)2](−2k̃y2x2)

+ [−(amxm−1yn−1)− (amxm−1yn−1)2](2y2 − 2k̃y2x2)

+ ε21(−k̃y2) + ε22(1− k̃x2)

' [−(amxm−1yn−1)− (amxm−1yn−1)2]2y2 − ε21k̃y2

≤ [(|am||x|m−1|y|n−1)− (|am||x|m−1|y|n−1)2]2y2 − ε21k̃y2.

That is,

(−Lv3)(x, y) & {[−(|am||x|m−1|y|n−1) + (|am||x|m−1|y|n−1)2]2 + ε21k̃}y2.

The minimum of r(u) := −|am|u+(|am|u)2 occurs when u = 1
2|am| . In particular,

the minimum value is equal to − 1
4 . Thus, letting u = |x|m−1|y|n−1, we see that

−(|am||x|m−1|y|n−1) + (|am||x|m−1|y|n−1)2 ≥ −1

4
.

So,

(−Lv3)(x, y) & [−1

4
2 + ε21k̃]y2 = (−1

2
+ ε21k̃)y2.

Since k̃ > 1
2ε21
, it follows that − 1

2 + ε21k̃ > 0. Thus,

lim
r→∞

[
inf

(x,y)∈(R3∩Bcr)
[−(Lv3)(x, y)]

]
≥ lim
r→∞

[
inf

(x,y)∈(R3∩Bcr)
[(−1

2
+ ε21k)y2]

]
=∞

and so v3 satisfies the third Lyapunov property. Thus, v3 is a local Lyapunov
function on R3. �

Note that due to the nature of the deterministic dynamics, it is the noise in the
y direction, ε2 6= 0, that is crucial to the existence of a local Lyapunov function in
R2 and it is the noise in the x direction, ε1 6= 0, that is crucial to the existence
of a local Lyapunov function in R3. Thus, in order to obtain a global Lyapunov
function on the entire plane, noise is needed in both the x and y directions.
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3.2.3. Global Lyapunov Function. Since we have shown the existence of local Lya-
punov functions on regions covering the entire plane, minus some ball about the
origin, we now seek to patch them together to form one smooth, global Lyapunov
function satisfying 3. Since the local regions overlap, the straightforward approach
is to construct convex combinations of the form

vij(x, y) = φ(s(x, y))vi(x, y) + (1− φ(s(x, y)))vj(x, y)

on the overlap regions such that φ(x, y) is a smooth function with φ(x, y) = 0
on one border and φ(x, y) = 1 on the other (similarly for the overlapping region
between v1 and v3 as well). These convex combinations clearly satisfy the first
two local Lyapunov properties (i.e. the smoothness and growth conditions) on
the appropriate overlap regions. However, it is not guaranteed that the convex
combinations will satisfy the third local Lyapunov property since additional terms
result after the application of the generator.

On R1 ∩R2 we define

v12(x, y) = φ(s(x, y))v1(x, y) + (1− φ(s(x, y)))v2(x, y)

and on R1 ∩R3 we define

v13(x, y) = φ(s(x, y))v1(x, y) + (1− φ(s(x, y)))v3(x, y)

where φ(t) is the standard mollifier that was defined in Section 1.2. In addition,
s(x, y) is chosen so that it equals zero on the border of R1 and one on the border
of R2, i.e.

s(x, y) =
|x|m−1|y|n−1 − c1

c2 − c1
.

Lemma 3.4. There exist constants c1 and c2 with n
|a|m2 < c1 < c2, such that for

any k > 1
2ε22

v12(x, y) = φ(s(x, y))v1(x, y) + (1− φ(s(x, y)))v2(x, y)

is a local Lyapunov function on R1 ∩ R2 = {(x, y) : x2 ≥ 1, y2 ≤ 1
2k , c1 ≤

|x|m−1|y|n−1 ≤ c2}.

Proof. v12 clearly satisfies the first two properties of a local Lyapunov function, so
it only remains to show the third property. Applying the generator to v12 we obtain

(Lv12)(x, y) = D(x, y) + E(x, y)

where

D(x, y) = φ(s(x, y))(Lv1)(x, y) + (1− φ(s(x, y)))(Lv2)(x, y)

and

E(x, y) = L[φ(s(x, y))](v1(x, y)− v2(x, y))

+ ε21
∂

∂x
[φ(s(x, y))]

∂

∂x
[v1(x, y)− v2(x, y)]

+ ε22
∂

∂y
[φ(s(x, y))]

∂

∂y
[v1(x, y)− v2(x, y)],

which can be verified from explicit computation.
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To show that the third Lyapunov property holds, we need to show that

lim
r→∞

[
inf

(x,y)∈(R1∩R2∩Bcr)
−[D(x, y) + E(x, y)]

]
=∞.

We will do this in three steps involving an examination of the behavior of
−D(x, y) or −E(x, y) as r →∞.

(1) First, we will find some A for which Ax2 . −D(x, y).
(2) Second, we will find some B for which Bx2 . −E(x, y).
(3) Third, we will show that we can always choose c1 and c2 so that A + B > 0,
which would imply that the limit inferior above holds, since

(A+B)x2 . −[D(x, y) + E(x, y)] = −(Lv12)(x, y).

Note that φ′(s(x, y)), and φ′′(s(x, y)) exist and are continuous on the interval
[0, 1], it follows from the boundedness theorem that there exists an M > 0 such
that

|φ′(s(x, y))| < M and |φ′′(s(x, y))| < M.

We proceed with Step 1 of the proof. From the expressions for (Lv1)(x, y) and
(Lv2)(x, y) that were calculated in Lemmas 3.1 and 3.3 respectively, on R1 ∩ R2

we have that

(Lv1)(x, y) ≤ [(|an|c1)− (|am|c1)2]2(x2 + y2) + ε21 + ε22

' [(|an|c1)− (|am|c1)2]2x2

and

(Lv2)(x, y) . (
1

2
− ε22k)x2.

Using these inequalities, we find that

D(x, y) = φ(s(x, y))(Lv1)(x, y) + (1− φ(s(x, y)))(Lv2)(x, y)

. φ(s(x, y))
[
[(|an|c1)− (|am|c1)2]2x2

]
+ (1− φ(s(x, y)))

[
[
1

2
− ε22k]x2

]
≤ φ(s(x, y))

[
2[(|an|c1)− (|am|c1)2]x2

]
≤ 2[(|an|c1)− (|am|c1)2]x2

Hence, −D(x, y) & 2[−(|an|c1) + (|am|c1)2]x2. By letting A = 2[−(|an|c1) +
(|am|c1)2], we have found some constant A for which Ax2 . −D(x, y).

Now we will move on to Step 2 of the proof. For convenience, we reproduce
E(x, y) below.

E(x, y) = L[φ(s(x, y))](v1(x, y)− v2(x, y))
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+ ε21
∂

∂x
[φ(s(x, y))]

∂

∂x
[v1(x, y)− v2(x, y)]

+ ε22
∂

∂y
[φ(s(x, y))]

∂

∂y
[v1(x, y)− v2(x, y)].

Our aim is to find some constant B for which Bx2 . −E(x, y). We will do this
by calculating the terms in the expression for E(x, y) above and determining which
terms of E(x, y) are dominant.

Note that

∂

∂x
[φ(s(x, y))] = φ′(s(x, y))

(m− 1)|x|m−2|y|n−1sgn(x)

c2 − c1
∂

∂y
[φ(s(x, y))] = φ′(s(x, y))

(n− 1)|x|m−1|y|n−2sgn(y)

c2 − c1
∂2

∂x2
[φ(s(x, y))] =

(m− 1)|y|n−1

c2 − c1

[φ′′(s(x, y))(m− 1)|x|2(m−2)|y|n−1

c2 − c1
+ φ′(s(x, y))(m− 2)|x|m−3

]
∂2

∂y2
[φ(s(x, y))] =

(n− 1)|x|m−1

c2 − c1

[φ′′(s(x, y))(n− 1)|x|m−1|y|2(n−2)

c2 − c1
+ φ′(s(x, y))(n− 2)|y|n−3

]
.

We begin by calculating L[φ(s(x, y))]:

L[φ(s(x, y))] = [(anxm−1yn−1)− (anxm−1yn−1)2]x
∂

∂x
[φ(s(x, y))]

+ [−(amxm−1yn−1)− (amxm−1yn−1)2]y
∂

∂y
[φ(s(x, y))]

+
1

2
ε21
∂2

∂x2
[φ(s(x, y))] +

1

2
ε22
∂2

∂y2
[φ(s(x, y))]

= [(anxm−1yn−1)− (anxm−1yn−1)2]xφ′(s(x, y))
(m− 1)|x|m−2|y|n−1sgn(x)

c2 − c1

+ [−(amxm−1yn−1)− (amxm−1yn−1)2]yφ′(s(x, y))
(n− 1)|x|m−1|y|n−2sgn(y)

c2 − c1

+
1

2
ε21

(m− 1)|y|n−1

c2 − c1

[φ′′(s(x, y))(m− 1)|x|2(m−2)|y|n−1

c2 − c1
+ φ′(s(x, y))(m− 2)|x|m−3

]
+

1

2
ε22

(n− 1)|x|m−1

c2 − c1

[φ′′(s(x, y))(n− 1)|x|m−1|y|2(n−2)

c2 − c1
+ φ′(s(x, y))(n− 2)|y|n−3

]
= [(anxm−1yn−1)− (anxm−1yn−1)2]φ′(s(x, y))

(m− 1)|x|m−1|y|n−1

c2 − c1

+ [−(amxm−1yn−1)− (amxm−1yn−1)2]φ′(s(x, y))
(n− 1)|x|m−1|y|n−1

c2 − c1

+
1

2
ε21

(m− 1)|y|n−1

c2 − c1

[φ′′(s(x, y))(m− 1)|x|2(m−2)|y|n−1

c2 − c1
+ φ′(s(x, y))(m− 2)|x|m−3

]
+

1

2
ε22

(n− 1)|x|m−1

c2 − c1

[φ′′(s(x, y))(n− 1)|x|m−1|y|2(n−2)

c2 − c1
+ φ′(s(x, y))(n− 2)|y|n−3

]
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By determining which terms are dominant, we find that

L[φ(s(x, y))] ' 1

2
ε22

(n− 1)|x|m−1

c2 − c1

[φ′′(s(x, y))(n− 1)|x|m−1|y|2(n−2)

c2 − c1
+φ′(s(x, y))(n−2)|y|n−3

]
.

We now calculate v1(x, y)− v2(x, y):

v1(x, y)− v2(x, y) = x2 + y2 − [x2(1− ky2)]

= x2 + y2 − x2 + kx2y2)

= y2 + kx2y2.

We find that

L[φ(s(x, y))](v1(x, y)− v2(x, y))

' 1

2
ε22

(n− 1)|x|m−1

c2 − c1

[φ′′(s(x, y))(n− 1)|x|m−1|y|2(n−2)

c2 − c1
+ φ′(s(x, y))(n− 2)|y|n−3

]
(y2 + kx2y2)

' 1

2
ε22

(n− 1)|x|m−1

c2 − c1

[φ′′(s(x, y))(n− 1)|x|m−1|y|2(n−2)

c2 − c1
+ φ′(s(x, y))(n− 2)|y|n−3

]
kx2y2

=
1

2
ε22

(n− 1)

c2 − c1

[φ′′(s(x, y))(n− 1)(|x|m−1|y|(n−1))2

c2 − c1
+ φ′(s(x, y))(n− 2)|x|m−1|y|n−1

]
kx2

We now calculate ∂
∂x [v1(x, y)− v2(x, y)]:

∂

∂x
[v1(x, y)− v2(x, y)] =

∂

∂x

[
y2 + kx2y2

]
= 2kxy2.

We find that

ε21
∂

∂x
[φ(s(x, y))]

∂

∂x
[v1(x, y)− v2(x, y)]

= ε21φ
′(s(x, y))

(m− 1)|x|m−2|y|n−1sgn(x)

c2 − c1
2kxy2

= ε21φ
′(s(x, y))

(m− 1)|x|m−1|y|n−1

c2 − c1
2ky2

which is bounded.

We now calculate ∂
∂y [v1(x, y)− v2(x, y)]:

∂

∂y
[v1(x, y)− v2(x, y)] =

∂

∂y

[
y2 + kx2y2

]
= 2y + 2kx2y.
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We find that

ε22
∂

∂y
[φ(s(x, y))]

∂

∂x
[v1(x, y)− v2(x, y)]

= ε22φ
′(s(x, y))

(n− 1)|x|m−1|y|n−2sgn(y)

c2 − c1
(2y + 2kx2y)

= ε22φ
′(s(x, y))

(n− 1)|x|m−1|y|n−1

c2 − c1
2 + ε22φ

′(s(x, y))
(n− 1)|x|m−1|y|n−1

c2 − c1
2kx2

' ε22φ′(s(x, y))
(n− 1)|x|m−1|y|n−1

c2 − c1
2kx2

These calculations yield

E(x, y) '1

2
ε22

(n− 1)

c2 − c1

[φ′′(s(x, y))(n− 1)(|x|m−1|y|(n−1))2

c2 − c1
+ φ′(s(x, y))(n− 2)|x|m−1|y|n−1

]
kx2

+ ε22φ
′(s(x, y))

(n− 1)|x|m−1|y|n−1

c2 − c1
2kx2

' kε22
[φ′′(s(x, y))(n− 1)2(|x|m−1|y|n−1)2

2(c2 − c1)2
+
φ′(s(x, y))(n− 1)(n− 2)(|x|m−1|y|n−1)

2(c2 − c1)

+
2φ′(s(x, y))(n− 1)(|x|m−1|y|n−1)

(c2 − c1)

]
x2

≤ kε22
[M(n− 1)2c22

2(c2 − c1)2
+
M(n− 1)(n− 2)c2

2(c2 − c1)
+

2M(n− 1)c2
(c2 − c1)

]
x2.

If we let B = −kε22
[
M(n−1)2c22
2(c2−c1)2 + M(n−1)(n−2)c2

2(c2−c1) + 2M(n−1)c2
(c2−c1)

]
, then we have found

an expression of the form Bx2 . −E(x, y) which is what we wanted to show.
Now we move on to Step 3.
We have

(Lv12)(x, y) = D(x, y) + E(x, y)

. [2|an|c1 − 2(|am|c1)2]x2 + kε22

[M(n− 1)2c22
2(c2 − c1)2

+
M(n− 1)(n− 2)c2

2(c2 − c1)
+

2M(n− 1)c2
(c2 − c1)

]
x2

=

{
2|an|c1 − 2(|am|c1)2 + kε22

[M(n− 1)2c22
2(c2 − c1)2

+
M(n− 1)(n− 2)c2

2(c2 − c1)
+

2M(n− 1)c2
(c2 − c1)

}
x2.

Thus,

(−Lv12)(x, y) = −[D(x, y) + E(x, y)]

& −

{
2|an|c1 − 2(|am|c1)2 + kε22

[M(n− 1)2c22
2(c2 − c1)2

+
M(n− 1)(n− 2)c2

2(c2 − c1)
+

2M(n− 1)c2
(c2 − c1)

]}
x2.

Let c2 = 2c1. Then, c2 − c1 = c2
2 and the equation above becomes

(−Lv12)(x, y) = −[D(x, y) + E(x, y)]
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& −

{
|an|c2 − 2(|am|c2

2
)2 + kε22

[
2M(n− 1)2 +M(n− 1)(n− 2) + 4M(n− 1)

]}
x2

=

{
1

2
a2m2c22 − |an|c2 − kε22

[
2M(n− 1)2 +M(n− 1)(n− 2) + 4M(n− 1)

]}
x2

The coefficient in brackets in the last line (i.e. A+B) is a second-degree polyno-
mial in c2, taking the form d1c

2
2 +d2c2 +d3 for some constants d1, d2, and d3. Since

d1 = 1
2a

2m2, we know that d1 > 0. Thus, as is true for any even-degree polynomial
in c2 with positive leading coefficient, we can choose c2 sufficiently large so that we
make the polynomial positive, implying that A+B > 0. This proves the lemma.

�

Lemma 3.5. There exist constants c1 and c3 with n
|a|m2 < c1 < c3, such that for

any k̃ > 1
2ε21

v13(x, y) = φ(s(x, y))v1(x, y) + (1− φ(s(x, y)))v3(x, y)

is a local Lyapunov function on R1 ∩ R3 = {(x, y) : y2 ≥ 1, x2 ≤ 1
2k̃
, c1 ≤

|x|m−1|y|n−1 ≤ c3}.

Proof. v13 clearly satisfies the first two properties of a local Lyapunov function, so
it only remains to show the third property. Applying the generator to v13 we obtain

(Lv13)(x, y) = D(x, y) + E(x, y)

where

D(x, y) = φ(s(x, y))(Lv1)(x, y) + (1− φ(s(x, y)))(Lv3)(x, y)

and

E(x, y) = L[φ(s(x, y))](v1(x, y)− v3(x, y))

+ ε21
∂

∂x
[φ(s(x, y))]

∂

∂x
[v1(x, y)− v3(x, y)]

+ ε22
∂

∂y
[φ(s(x, y))]

∂

∂y
[v1(x, y)− v3(x, y)],

which can be verified from explicit computation.

To show that the third Lyapunov property holds, we need to show that

lim
r→∞

[
inf

(x,y)∈(R1∩R3∩Bcr)
−[D(x, y) + E(x, y)]

]
=∞.

We will do this in three steps involving an examination of the behavior of
−D(x, y) or −E(x, y) as r →∞.

(1) First, we will find some A for which Ay2 . −D(x, y).
(2) Second, we will find some B for which By2 . −E(x, y).
(3) Third, we will show that we can always choose c1 and c3 so that A + B > 0,
which would imply that the limit inferior above holds, since

(A+B)y2 . −[D(x, y) + E(x, y)] = −(Lv13)(x, y).
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Note that φ′(s(x, y)), and φ′′(s(x, y)) exist and are continuous on the interval
[0, 1], it follows from the boundedness theorem that there exists an M > 0 such
that

|φ′(s(x, y))| < M and |φ′′(s(x, y))| < M.

We proceed with Step 1 of the proof. From the expressions for (Lv1)(x, y) and
(Lv3)(x, y) that were calculated in Lemmas 3.1 and 3.3 respectively, on R1 ∩ R3

we have that

(Lv1)(x, y) ≤ [(|an|c1)− (|am|c1)2]2(x2 + y2) + ε21 + ε22

' [(|an|c1)− (|am|c1)2]2y2

and

(Lv3)(x, y) . (
1

2
− ε21k̃)y2.

Using these inequalities, we find that

D(x, y) = φ(s(x, y))(Lv1)(x, y) + (1− φ(s(x, y)))(Lv3)(x, y)

. φ(s(x, y))
[
[(|an|c1)− (|am|c1)2]2y2

]
+ (1− φ(s(x, y)))

[
[
1

2
− ε21k̃]y2

]
≤ φ(s(x, y))

[
2[(|an|c1)− (|am|c1)2]y2

]
≤ 2[(|an|c1)− (|am|c1)2]y2

Hence, −D(x, y) & 2[−(|an|c1) + (|am|c1)2]y2. By letting A = 2[−(|an|c1) +
(|am|c1)2], we have found some constant A for which Ay2 . −D(x, y).

Now we will move on to Step 2 of the proof. For convenience, we reproduce
E(x, y) below.

E(x, y) = L[φ(s(x, y))](v1(x, y)− v3(x, y))

+ ε21
∂

∂x
[φ(s(x, y))]

∂

∂x
[v1(x, y)− v3(x, y)]

+ ε22
∂

∂y
[φ(s(x, y))]

∂

∂y
[v1(x, y)− v3(x, y)].

Our aim is to find some constant B for which By2 . −E(x, y). We will do this
by calculating the terms in the expression for E(x, y) above and determining which
terms of E(x, y) are dominant.

Note that

∂

∂x
[φ(s(x, y))] = φ′(s(x, y))

(m− 1)|x|m−2|y|n−1sgn(x)

c3 − c1



30 ANTHONY CONIGLIO, SARAH SPARKS, DANIEL WEITHERS, AND TIFFANY KOLBA

∂

∂y
[φ(s(x, y))] = φ′(s(x, y))

(n− 1)|x|m−1|y|n−2sgn(y)

c3 − c1
∂2

∂x2
[φ(s(x, y))] =

(m− 1)|y|n−1

c3 − c1

[φ′′(s(x, y))(m− 1)|x|2(m−2)|y|n−1

c3 − c1
+ φ′(s(x, y))(m− 2)|x|m−3

]
∂2

∂y2
[φ(s(x, y))] =

(n− 1)|x|m−1

c3 − c1

[φ′′(s(x, y))(n− 1)|x|m−1|y|2(n−2)

c3 − c1
+ φ′(s(x, y))(n− 2)|y|n−3

]
.

We begin by calculating L[φ(s(x, y))]:

L[φ(s(x, y))] = [(anxm−1yn−1)− (anxm−1yn−1)2]x
∂

∂x
[φ(s(x, y))]

+ [−(amxm−1yn−1)− (amxm−1yn−1)2]y
∂

∂y
[φ(s(x, y))]

+
1

2
ε21
∂2

∂x2
[φ(s(x, y))] +

1

2
ε22
∂2

∂y2
[φ(s(x, y))]

= [(anxm−1yn−1)− (anxm−1yn−1)2]xφ′(s(x, y))
(m− 1)|x|m−2|y|n−1sgn(x)

c3 − c1

+ [−(amxm−1yn−1)− (amxm−1yn−1)2]yφ′(s(x, y))
(n− 1)|x|m−1|y|n−2sgn(y)

c3 − c1

+
1

2
ε21

(m− 1)|y|n−1

c3 − c1

[φ′′(s(x, y))(m− 1)|x|2(m−2)|y|n−1

c3 − c1
+ φ′(s(x, y))(m− 2)|x|m−3

]
+

1

2
ε22

(n− 1)|x|m−1

c3 − c1

[φ′′(s(x, y))(n− 1)|x|m−1|y|2(n−2)

c3 − c1
+ φ′(s(x, y))(n− 2)|y|n−3

]
= [(anxm−1yn−1)− (anxm−1yn−1)2]φ′(s(x, y))

(m− 1)|x|m−1|y|n−1

c3 − c1

+ [−(amxm−1yn−1)− (amxm−1yn−1)2]φ′(s(x, y))
(n− 1)|x|m−1|y|n−1

c3 − c1

+
1

2
ε21

(m− 1)|y|n−1

c3 − c1

[φ′′(s(x, y))(m− 1)|x|2(m−2)|y|n−1

c3 − c1
+ φ′(s(x, y))(m− 2)|x|m−3

]
+

1

2
ε22

(n− 1)|x|m−1

c3 − c1

[φ′′(s(x, y))(n− 1)|x|m−1|y|2(n−2)

c3 − c1
+ φ′(s(x, y))(n− 2)|y|n−3

]

By determining which terms are dominant, we find that

L[φ(s(x, y))] ' 1

2
ε21

(m− 1)|y|n−1

c3 − c1

[φ′′(s(x, y))(m− 1)|x|2(m−2)|y|n−1

c3 − c1
+φ′(s(x, y))(m−2)|x|m−3

]
.

We now calculate v1(x, y)− v3(x, y):

v1(x, y)− v3(x, y) = x2 + y2 − [y2(1− k̃x2)]

= x2 + y2 − y2 + k̃x2y2)

= x2 + k̃x2y2.
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We find that

L[φ(s(x, y))](v1(x, y)− v3(x, y))

' 1

2
ε21

(m− 1)|y|n−1

c3 − c1

[φ′′(s(x, y))(m− 1)|x|2(m−2)|y|n−1

c3 − c1
+ φ′(s(x, y))(m− 2)|x|m−3

]
(x2 + k̃x2y2)

' 1

2
ε21

(m− 1)|y|n−1

c3 − c1

[φ′′(s(x, y))(m− 1)|x|2(m−2)|y|n−1

c3 − c1
+ φ′(s(x, y))(m− 2)|x|m−3

]
k̃x2y2

=
1

2
ε21

(m− 1)

c3 − c1

[φ′′(s(x, y))(m− 1)(|x|m−1|y|n−1)2

c3 − c1
+ φ′(s(x, y))(n− 2)|x|m−1|y|n−1

]
k̃y2

We now calculate ∂
∂x [v1(x, y)− v3(x, y)]:

∂

∂x
[v1(x, y)− v3(x, y)] =

∂

∂x

[
x2 + k̃x2y2

]
= 2x+ 2k̃xy2.

We find that

ε21
∂

∂x
[φ(s(x, y))]

∂

∂x
[v1(x, y)− v3(x, y)]

= ε21φ
′(s(x, y))

(m− 1)|x|m−2|y|n−1sgn(x)

c3 − c1
(2x+ 2k̃xy2)

' ε21φ′(s(x, y))
(m− 1)|x|m−1|y|n−1

c3 − c1
2k̃y2.

We now calculate ∂
∂y [v1(x, y)− v3(x, y)]:

∂

∂y
[v1(x, y)− v3(x, y)] =

∂

∂y

[
x2 + k̃x2y2

]
= 2k̃x2y.

We find that

ε22
∂

∂y
[φ(s(x, y))]

∂

∂x
[v1(x, y)− v3(x, y)]

= ε22φ
′(s(x, y))

(n− 1)|x|m−1|y|n−2sgn(y)

c3 − c1
2k̃x2y

= ε22φ
′(s(x, y))

(n− 1)|x|m−1|y|n−1

c3 − c1
2k̃x2

which is bounded.

These calculations yield

E(x, y) ' =
1

2
ε21

(m− 1)

c3 − c1

[φ′′(s(x, y))(m− 1)(|x|m−1|y|n−1)2

c3 − c1
+ φ′(s(x, y))(n− 2)|x|m−1|y|n−1

]
k̃y2
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+ ε21φ
′(s(x, y))

(m− 1)|x|m−1|y|n−1

c3 − c1
2k̃y2

' k̃ε21
[φ′′(s(x, y))(m− 1)2(|x|m−1|y|n−1)2

2(c3 − c1)2
+
φ′(s(x, y))(m− 1)(m− 2)(|x|m−1|y|n−1)

2(c3 − c1)

+
2φ′(s(x, y))(m− 1)(|x|m−1|y|n−1)

(c3 − c1)

]
y2

≤ k̃ε21
[M(m− 1)2c23

2(c3 − c1)2
+
M(m− 1)(m− 2)c3

2(c3 − c1)
+

2M(m− 1)c3
(c3 − c1)

]
y2.

If we let B = −k̃ε21
[
M(m−1)2c23
2(c3−c1)2 + M(m−1)(m−2)c3

2(c3−c1) + 2M(m−1)c3
(c3−c1)

]
, then we have

found an expression of the form By2 . −E(x, y) which is what we wanted to show.
Now we move on to Step 3.
We have

(Lv13)(x, y) = D(x, y) + E(x, y)

. [2|an|c1 − 2(|am|c1)2]y2 + k̃ε21

[M(m− 1)2c23
2(c3 − c1)2

+
M(m− 1)(m− 2)c3

2(c3 − c1)
+

2M(m− 1)c3
(c3 − c1)

]
y2

=

{
2|an|c1 − 2(|am|c1)2 + k̃ε21

[M(m− 1)2c23
2(c3 − c1)2

+
M(m− 1)(m− 2)c3

2(c3 − c1)
+

2M(m− 1)c3
(c3 − c1)

]}
y2.

Thus,

(−Lv13)(x, y) = −[D(x, y) + E(x, y)]

& −

{
2|an|c1 − 2(|am|c1)2 + k̃ε21

[M(m− 1)2c23
2(c3 − c1)2

+
M(m− 1)(m− 2)c3

2(c3 − c1)
+

2M(m− 1)c3
(c3 − c1)

]}
y2.

Let c3 = 2c1. Then, c3 − c1 = c3
2 and the equation above becomes

(−Lv13)(x, y) = −[D(x, y) + E(x, y)]

& −

{
|an|c3 − 2(|am|c3

2
)2 + k̃ε21

[
2M(m− 1)2 +M(m− 1)(m− 2) + 4M(m− 1)

]}
y2

=

{
1

2
a2m2c23 − |an|c3 − k̃ε21

[
2M(m− 1)2 +M(m− 1)(m− 2) + 4M(m− 1)

]}
y2

The coefficient in brackets in the last line (i.e. A+B) is a second-degree polyno-
mial in c3, taking the form d1c

2
3 +d2c3 +d3 for some constants d1, d2, and d3. Since

d1 = 1
2a

2m2, we know that d1 > 0. Thus, as is true for any even-degree polynomial
in c3 with positive leading coefficient, we can choose c3 sufficiently large so that we
make the polynomial positive, implying that A+B > 0. This proves the lemma.

�

Our global Lyapunov function, V (x, y) ∈ C∞(R2), can be constructed so that

V (x, y) =

{
Ṽ (x, y) for x2 + y2 > ρ2

arbitrary positive and smooth for x2 + y2 ≤ ρ2
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where ρ is sufficiently large and

Ṽ (x, y) =



v1(x, y) for (x, y) ∈ R1 ∩Rc2 ∩Rc3
v2(x, y) for (x, y) ∈ Rc1 ∩R2

v3(x, y) for (x, y) ∈ Rc1 ∩R3

v12(x, y) for (x, y) ∈ R1 ∩R2

v13(x, y) for (x, y) ∈ R1 ∩R3.

4. Hamiltonian System with H(x, y) = eαx
2
y2

2

We consider the Hamiltonian function

(16) H(x, y) =
eαx

2

y2

2

where α is some positive constant. The corresponding deterministic Hamiltonian
system (xt, yt) is the solution to the following two-dimensional system of ODEs:

(17)

dxt
dt

=
∂H

∂y
= yte

αx2
t

dyt
dt

= −∂H
∂x

= −αxty2t eαx
2
t .

Hence the x-axis is a continuum of equilibrium points, but for any initial condi-
tion with y0 6= 0, the solution has the property that

(18) yt = y0e
α(x2

0−x
2
t )/2 .

Now that we have solved for yt in terms of x0 and y0, we can substitute into the
expression for dxt and solve for xt.

dxt
dt

= yeαx
2
t

= (y0e
α(x2

0−x
2
t )/2)eαx

2
t∫

eαx
2
t/2dxt =

∫
y0e

αx2
0/2dt

∫
e
−x2t
2/α√
2π/α

dxt =
y0e

αx2
0/2t√

2π/α
+ C

The left-hand side is now the probability distribution function of a normally
distributed random variable xt with mean zero and variance 1

α . This is equivalent
to saying that

√
αxt is normally distributed with mean zero and variance 1. We

use this fact, and the cumulative distribution function Φ, to re-write the left-hand
side of the equation above and continue.

Φ(
√
αxt) =

y0e
αx2

0/2t√
2π/α

+ C

√
αxt = Φ−1

(
y0e

αx2
0/2t√

2π/α
+ C

)
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x

y

Figure 8. Phase portrait of the deterministic Hamiltonian system

for H(x, y) = ex
2
y2

2

xt =
1√
α

Φ−1

(
y0e

αx2
0/2t√

2π/α
+ C

)

If we set t = 0, we can see that C = Φ(
√
αx0). Therefore we have an explicit

solution for xt in this Hamiltonian system:

xt =
1√
α

Φ−1

(
y0e

αx2
0/2t√

2π/α
+ Φ(

√
αx0)

)
Since Φ−1(z) is the inverse of the cumulative distribution function of the standard

normal distribution, it blows up to infinity when z = 0 or 1. Thus, xt blows up when
y0e

αx20/2t√
2π/α

+ Φ(
√
αx0) = 0 or 1. If y0 > 0, the blow-up occurs when the expression is

equal to 1. If y0 < 0, it occurs when the expression is equal to zero. Therefore we
have two different blow-up times, for y0 > 0 and y0 < 0, respectively. They are:

ty0>0 =

√
2π/α(1− Φ(

√
αx0))

y0eαx
2
0/2

ty0<0 =

√
2π/αΦ(

√
αx0)

|y0|eαx
2
0/2

In both cases, xt blows up to infinity in finite time. Because the solution con-
verges to infinity for certain initial conditions, the system is unstable according to
the definition of stability given in Section 1.

Although the system is unstable, it possesses characteristics which may lead
one to guess that the system will exhibit noise-induced stabilization. For initial
conditions off the x-axis, the solution to the deterministic process remains above
or below the axis for all time, approaching positive (for y0 > 0) or negative (for
y0 < 0) infinity along the axis as yt tends toward (but does not reach) zero. This
behavior is visible in Figure 8; different values of the constant α in the Hamiltonian
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function will make the curve steeper or flatter. Given this shape, one might guess
that the addition of white noise will enable the perturbed process to cross the axis
and form a quasi-periodic behavior, moving to the right above the x-axis and to
the left below the x-axis. However, additive white noise is not sufficient for the
existence of an invariant probability measure, as explained in Section 1. Hence the
system with noise is not stochastically bounded.

We wish to modify the Hamiltonian system defined by (17) in order to create
a system which exhibits noise-induced stabilization, and yet retains essentially the
same qualitative behavior of the original deterministic dynamics. Due to the fact
that any unstable Hamiltonian system remains unstable after the addition of white
noise, any modification sufficient to produce noise-induced stabilization must break
the Hamiltonian structure. In order to preserve the qualitative behavior of the
deterministic dynamics, we add a drift term which points towards the x-axis but
which does not change the limiting behavior of solutions for any initial condition.
In the next section we discuss some intuition for the specific drift terms added in
order to produce noise-induced stabilization in this particular problem. We then
apply the meta-algorithm for the construction of a Lyapunov function in order to
prove that the perturbed modified Hamiltonian system is indeed stable.

4.1. Perturbed Hamiltonian System. In this problem, we begin with the fol-
lowing deterministic Hamiltonian system:

(19)

dxt
dt

= yte
αx2

t

dyt
dt

= −(αxty
2
t )eαx

2
t .

As shown in the previous section, this Hamiltonian system is unstable and remains
unstable after perturbation by additive white noise. We wish to modify (19) in
order to create a new system which exhibits noise-induced stabilization and yet
preserves the qualitative features of the original Hamiltonian system, namely the
limiting behavior of the solution curves for all initial conditions. Our approach is
to add a drift term which points toward the x-axis, but which scales subdominantly
to the original drift terms near the axis. While the original Hamiltonian system
remained unstable after the addition of white noise, the additional drift terms in
the modified Hamiltonian system should allow for the noise to have a stabilizing
effect.

In order to choose the precise form for the additional drift terms f(x, y) and

g(x, y), we analyze the process Ht = y2t e
αx2

t , which is always constant due to the
Hamiltonian structure. As in the previous problems, our initial approach is to
modify the system so that Ht tends toward zero. In this case, we can modify
the system so that dHt = −ãHq

t , where q is some positive integer which can be
chosen to control the strength of the deterministic perturbation. Since dHt =

(d(eαx
2
t ))(y2t ) + (eαx

2
t )(dy2t ), we can deduce that the modified system will have the

desired dHt if we set

(20)
f(x, y) = 0 and

g(x, y) = ay(2q−1)e(q−1)αx
2

.

Intuitively, the reasoning behind only modifying the system in the y direction
is because the desired result is to induce the system with noise to cross over the
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Figure 9. Solutions to the original Hamiltonian (left) and modi-
fied deterministic system (right) for identical initial conditions

x-axis. In addition, if f(x, y) = 0, then the sign of dxt in the modified system is
the same as in the original system for all locations in the plane. This is “good” in
the sense that it preserves the behavior of the original system to a large extent.

Using only the modification given above, local Lyapunov functions were found
for all regions of the plane (subject to constraints on choices of constants). These
Lyapunov functions are identical to the ones used in the proof that follows. How-
ever, no method was found to combine these functions into a global Lyapunov
function which is infinitely differentiable at all points. Therefore a deterministic
modification in the x direction was also made to the system. It was chosen specif-
ically to provide terms which become crucial in the section of the proof dealing
with the combined Lyapunov function v12(x, y). This new modification is given by

f(x, y) = xy6e3αx
2

.
This gives us the following SP :

(21)

dxt
dt

= (yte
αx2

t − xty6t e3αx
2
t )

dyt
dt

= (−(αxty
2
t )eαx

2
t − ay(2q−1)t e(q−1)αx

2
t ).

As in the original Hamiltonian system, the x-axis is a continuum of equilibrium
points, while for y0 > 0, limt→∞xt =∞ and for y0 < 0, limt→∞xt = −∞. Thus the
additional drift terms in the modified Hamiltonian system given by (21) preserves
many of the qualitative features, including the instability, of the original Hamil-
tonian system given by (19). Figure 9 shows a side-by-side comparison of phase
portraits for the original system and the modified deterministic system.

We now consider perturbing the modified system given by (21) with additive
white noise to form the following two-dimensional system of stochastic differential
equations:

(22)

dXt

dt
= (Yte

αX2
t −XtY

6
t e

3αX2
t ) + ε1

dB1(t)

dt
dYt
dt

= (−(αXtY
2
t )eαX

2
t − aY 3

t e
αX2

t )dt+ ε2
dB2(t)

dt
.

Here B1(t) and B2(t) are independent Brownian motions and ε1, ε2 > 0 represent
the strength of the noise in the x and y directions, respectively. Figure 10 displays
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Figure 10. A simulation of the modified Hamiltonian system with noise

a simulation of the solution to (22) with ε1 = ε2 = .01 and initial condition (−1, 1),
zoomed in about the origin. While the deterministic system was constrained to be
above or below the x-axis based on its initial condition and converged to infinity
along the x-axis, we observe that the perturbed process exhibits a quasi-periodic
behavior where it travels above and below the axis. While the perturbed process
does travel far out along the x-axis in either direction, it does not go off to infinity
and remains stochastically bounded. We prove that the modified Hamiltonian
system does indeed exhibit noise-induced stabilization in the next section through
the construction of a Lyapunov function.

Theorem 3. Consider H(x, y) = y2eαx
2

2 , where α is any positive real number.
Then the perturbed Hamiltonian system with

f(x, y) = xy6e3αx
2

and

g(x, y) = ay3eαx
2

where a is any positive real number, exhibits noise-induced stabilization

4.2. Lyapunov Construction. If we can show the existence of a Lyapunov func-
tion which satisfies the conditions given in Section 1, then we have shown that
(Xt, Yt) is positive recurrent, which in turn implies that the system is stochasti-
cally bounded and, hence, stable. Generally, showing the existence of a Lyapunov
function can be quite ad hoc and tedious. However, we apply the systematic method
developed in [AKM12] in order to construct local Lyapunov functions on various
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R2 R2
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y
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Figure 11. Decomposition of plane into priming and diffusive regions.

regions of the plane and then patch them together to form one global, smooth
Lyapunov function.

We begin by decomposing the plane into the following regions:

(23)
R1 = {(x, y) : y2epαx

2

≥ c1}

R2 = {(x, y) : y2epαx
2

≤ c2}

where 0 < c1 < c2. The precise values of these constants, and of the constant p, can
be specified later to facilitate local Lyapunov function constructions and patching.
The two regions, R1 and R2, cover the entire plane, and are depicted in Figure
11. R1 is the “priming region” where a natural Lyapunov function exists, here the
natural logarithm of the Hamiltonian function. R2 is the “diffusive region” where
the deterministic dynamics are unstable and noise is essential to the existence of a
local Lyapunov function.

We seek to show the existence of local Lyapunov functions, v1 and v2, on R1 and
R2,, respectively. As before, we define vi to be a local Lyapunov function on Ri if it
satisfies the three conditions stated in Section 1 everywhere on Ri. After showing
the existence of these local Lyapunov functions, we will patch them together to
form one smooth, global Lyapunov function satisfying the stability conditions for
the whole plane.

4.2.1. Priming Region. The priming region was chosen so that a “natural” Lya-
punov function (the natural logarithm of the Hamiltonian function) exists in the
region (as shown in Lemma 4.1). Note that the boundary is defined by a function
closely related to the Hamiltonian function; any solution curve in our perturbed
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deterministic system will eventually move from the priming region to the diffusive
region because we have made dHt

dt negative.

Lemma 4.1. v1(x, y) = αx2+2 ln |y| is a local Lyapunov function on R1, for p < 1
and q > 1.

Since y 6= 0 on R1, it is clear that v1 is infinitely differentiable. This satisfies
the first Lyapunov condition.

First we need to show that lim|x,y|→∞v1(x, y) = ∞. We will use two cases to
show this. In the first case, when |y| ≥ |x|, v1(x, y) clearly goes to infinity because
|y| goes to infinity. In the second case, when |y| < |x| in R1, we have:

v1(x, y) = αx2 + 2ln|y| ≥ αx2 + 2ln(
√
c1e
− p2αx

2

)

= αx2 + ln(c1) + ln(e−pαx
2

)

= (1− p)αx2 + ln(c1)

Since |x| → ∞ in this case, v1 must also go to infinity, as long as p < 1. Thus v1
satisfies the second Lyapunov condition everywhere on R1.

Now we need to show that lim|x,y|→∞Lv1(x, y) = −∞.

Lv1 = (yeαx
2

− xy6e3αx
2

)(2αx)− (αxy2eαx
2

+ ay(2q−1)e(q−1)αx
2

)(
2

y
) +

ε21
2

(2α) +
ε22
2

(
−2

y2
)

= 2αxyeαx
2

− 2αx2y6e3αx
2

− 2αxyeαx
2

− 2ay(2q−2)e(q−1)αx
2

+ αε21 −
ε22
y2

= −2αx2y6e3αx
2

− 2ay2(q−1)e(q−1)αx
2

+ αε21 −
ε22
y2

If we are in the case where |y| ≥ |x|, then we know that the above expression
goes to negative infinity due to the second term, as long as q > 1. If |y| < |x|, then
we need to continue:

−2αx2y6e3αx
2

− 2ay2(q−1)e(q−1)αx
2

+ αε21 −
ε22
y2
≤ −2αx2[c32e

−3pαx2

]e3αx
2

− 2a[c
(q−1)
1 e−pαx

2(q−1)]e(q−1)αx
2

+ αε21

= −2αc32x
2e(3−3p)αx

2

− 2ac
(q−1)
1 e(q−1)(1−p)αx

2

+ αε21

This expression clearly goes to negative infinity as |x| → ∞ for p < 1. Thus v1
satisfies the third Lyapunov property everywhere on R1.

4.2.2. Diffusive Regions. In the diffusive region R2, the deterministic dynamics are
unstable and the noise terms are essential to the existence of a local Lyapunov
function. This local function, v2, is constructed using the algorithm described in
[AKM12]. It is a solution to a boundary-value problem of the form

(24)

{
(L̃2v2)(x, y) = −g2(x, y) for (x, y) ∈ R2

v2(x, y) ' v1(x, y) for (x, y) ∈ ∂R2



40 ANTHONY CONIGLIO, SARAH SPARKS, DANIEL WEITHERS, AND TIFFANY KOLBA

where L̃2 consists of the terms in the generator L that scale dominantly in the
region R2 and g2 is chosen so that limr→∞

[
inf(x,y)∈(Ri∩Bcr) gi(x, y)

]
= ∞. This

method ensures that the construction satisfies the Lyapunov properties.

In R2, the dominant term in the generator is
ε22
2
∂2

∂y2 . Hence, L̃2 =
ε22
2
∂2

∂y2 . For

simplicity (so that the chosen term is bounded in v2), we choose g2(x, y) = kε22e
pαx2

,
where k > 0 will be chosen later to ensure that v2 is a local Lyapunov function.
The function g2 does converge to infinity on R2 since R2 consists of the decaying
strip around the x-axis. With this choice for L̃2 and g2, we can find an explicit
solution to the boundary-value problem described by (24), which is given in the
theorem below.

Lemma 4.2. v2(x, y) = (1−p)αx2−ky2epαx2

is a local Lyapunov function on R2,
for 3

4 ≥ p and q > 1.

It is clear that v2 is infinitely differentiable, so it satisfies the first Lyapunov
condition. To see that it also satisfies the second condition, note that on R2,

y2epαx
2 ≤ c2, so v2(x, y) ≥ (1 − p)αx2 − kc2. On R2, the only way for |(x, y)| to

approach infinity is with |x| → ∞, so v2(x, y) must also tend toward infinity for
p < 1.

Now we need to show that v2 satisfies the third Lyapunov condition on R2:

Lv2 = (yeαx
2

− xy6e3αx
2

)(2(1− p)αx− 2pkαxy2epαx
2

)− (αxy2eαx
2

+ ay(2q−1)e(q−1)αx
2

)(−2kyepαx
2

)

+
ε21
2

[2(1− p)α− 2pkαy2epαx
2

(2pαx2 + 1)] +
ε22
2

(−2kepαx
2

)

= 2(1− p)αxyeαx
2

− 2pkαxy3e(1+p)αx
2

− 2(1− p)αx2y6e3αx
2

+ 2pkαx2y8e(p+3)αx2

+ 2kαxy3e(1+p)αx
2

+ 2aky2qe(p+q−1)αx
2

+ (1− p)ε21α− ε21pkαy2epαx
2

(2pαx2 + 1)− ε22kepαx
2

= 2(1− p)αxyeαx
2

+ 2(1− p)kαxy3e(1+p)αx
2

+ 2aky2qe(p+q−1)αx
2

+ (1− p)ε21α

− ε21pkαy2epαx
2

(2pαx2 + 1)− ε22kepαx
2

− 2(1− p)αx2y6e3αx
2

+ 2pkαx2y8e(p+3)αx2

≤ 2(1− p)α|x||y|eαx
2

+ 2(1− p)kα|x||y|c2eαx
2

+ 2akcq2e
(p+q−1−pq)αx2

+ (1− p)ε21α

− ε21pkαc2(2pαx2 + 1)− ε22kepαx
2

− 2(1− p)αx2c32e(3−3p)αx
2

+ 2pkαx2c42e
(3−3p)αx2

≤ 2(1− p)α|x|(
√
c2e

−pαx2
2 )eαx

2

+ 2(1− p)kα|x|(
√
c2e

−pαx2
2 )c2e

αx2

+ 2akcq2e
(p+q−1−pq)αx2

+ (1− p)ε21α− ε22kepαx
2

+ c32αx
2(−2(1− p) + 2pkc2)e(3−3p)αx

2

=
α

2
|x|
√
c2e

(1− p2 )αx
2

+ 2(1− p)kα|x|c3/22 e(1−
p
2 )αx

2

+ 2akcq2e
(p+q−1−pq)αx2

+ (1− p)ε21α− ε22kepαx
2

+ c32αx
2(−2(1− p) + 2pkc2)e(3−3p)αx

2

If 3/4 ≥ p and q < 1
1−p , then the last term is dominant. Thus we need the

following inequality to hold:

−2(1− p) + 2pkc2 < 0

pkc2 < 1− p

k <
1− p
pc2
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If this is true, then the coefficient on the dominant term is negative. Thus Lv2
goes to negative infinity on R2, and the third Lyapunov condition is satisfied.

4.2.3. Global Lyapunov Function. We now have local Lyapunov functions covering
the entire plane; in order to show the stability of the system, we need to combine
these local Lyapunov functions into one global Lyapunov function. This will be
done in the same way as for the previous problems, using the mollifier function
φ(t) to create a convex combination of v1 and v2 on the region where R1 and R2

overlap, with the result being differentiable at all points. More formally, we define
v12(x, y) in the overlap region (denoted R12) as follows:

v12(x, y) = φ(s(x, y))v1(x, y) + (1− φ(s(x, y)))v2(x, y).

In this problem, we define s(x, y) = y2epαx
2
−ln(c1)

ln(c2)−ln(c1) so that s(x, y) = 0 on the

boundary of R1 and s(x, y) = 1 on the boundary of R2. We also set c1 = 1 so that

s(x, y) reduces to y2epαx
2

ln(c2)
. Now we can show that v12 is a local Lyapunov function

on the region where R1 and R2 overlap.

Lemma 4.3. For constants 3/4 ≥ p, c1 = 1, c2 > c1, and k < 1−p
pc2

,

v12(x, y) = φ(s(x, y))v1(x, y) + (1− φ(s(x, y)))v2(x, y)

is a local Lyapunov function on R1 ∩R2.

Since v1, v2, and φ(s) are all differentiable on this region, we know that v12 is
differentiable everywhere it is defined. In this region, |x| → ∞ whenever |(x, y)| →
∞. We have already shown that both v1 and v2 tend to infinity as |x| → ∞;
therefore, v12 satisfies the second Lyapunov condition on R12. Now we need to
show that v12 satisfies the third Lyapunov condition.

Applying the generator to v12, we get:

Lv12(x, y) = φ(s(x, y))Lv1(x, y) + (1− φ(s(x, y)))Lv2(x, y)

+ L[φ(s(x, y))](v1(x, y)− v2(x, y))

+ ε21
∂

∂x
[φ(s(x, y))]

∂

∂x
[v1(x, y)− v2(x, y)]

+ ε22
∂

∂y
[φ(s(x, y))]

∂

∂y
[v1(x, y)− v2(x, y)]

Now we will break apart this expression to analyze its terms:

D = φ(s(x, y))Lv1(x, y) + (1− φ(s(x, y)))Lv2(x, y)

E = L[φ(s(x, y))](v1(x, y)− v2(x, y))

+ ε21
∂

∂x
[φ(s(x, y))]

∂

∂x
[v1(x, y)− v2(x, y)]

+ ε22
∂

∂y
[φ(s(x, y))]

∂

∂y
[v1(x, y)− v2(x, y)]

From the proofs for v1 and v2, we know that both of the terms of D approach

negative infinity as |x| → ∞, with dominant terms of order x2e(3−3p)αx
2

. Now we
will look at the first line of E. First, consider (v1 − v2) on R12:

v1 − v2 = pαx2 + 2 ln |y|+ ky2epαx
2
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≥ pαx2 + 2 ln(
√
c1e
−pαx2/2) + kc1

= pαx2 + ln(c1) + ln(e−pαx
2

) + kc1

= ln(c1) + kc1

By choosing c1 = 1, we ensure that v1 − v2 is always positive on this region. Now
we turn to L[φ(s)]. Since we are trying to show that D+E goes to negative infinity,
and we already know that D goes to negative infinity, we only need to consider the
case where E is positive.

L[φ(s)] = (yepαx
2

− xy6e3αx
2

)φ′(s)
∂s

∂x
+ (−xy2epαx

2

− ay(2q−1)e(q−1)αx
2

)φ′(s)
∂s

∂y

+
ε21
2

[φ′(s)
∂2s

∂x2
+ φ′′(s)(

∂s

∂x
)2] +

ε22
2

[φ′(s)
∂2s

∂y2
+ φ′′(s)(

∂s

∂y
)2]

= (yepαx
2

− xy6e3αx
2

)φ′(s)(
2pαxy2epαx

2

ln(c2)
) + (−xy2epαx

2

− ay(2q−1)e(q−1)αx
2

)φ′(s)(
2yepαx

2

ln(c2)
)

+
ε21
2

[φ′(s)(
2pαy2epαx

2

ln(c2
)(2pαx2 + 1) + φ′′(s)(

4p2α2x2y4e2pαx
2

ln(c2)2
)]

+
ε22
2

[φ′(s)
2epαx

2

ln(c2)
+ φ′′(s)(

4y2e2pαx
2

ln(c2)2
)]

=
φ′(s)

ln(c2)
(2pαxy3e2pαx

2

− 2pαx2y8e(3+p)αx
2

) +
φ′(s)

ln(c2)
(−2xy3e2pαx

2

− 2ay2qe(p+q−1)αx
2

)

+
ε21
2

[φ′(s)(
2pαy2epαx

2

ln(c2
)(2pαx2 + 1) + φ′′(s)(

4p2α2x2y4e2pαx
2

ln(c2)2
)]

+
ε22
2

[φ′(s)
2epαx

2

ln(c2)
+ φ′′(s)(

4y2e2pαx
2

ln(c2)2
)]

≤ φ′(s)

ln(c2)
(2pαc2|x||y|epαx

2

− 2pαx2c42e
(3−3p)αx2

) +
φ′(s)

ln(c2)
(2c2|x||y|epαx

2

− 2acq2e
(p+q−1−pq)αx2

)

+
ε21
2

[φ′(s)(
2pαc2
ln(c2

)(2pαx2 + 1) + φ′′(s)(
4p2α2x2c22

ln(c2)2
)]

+
ε22
2

[φ′(s)
2epαx

2

ln(c2)
+ φ′′(s)(

4c2e
pαx2

ln(c2)2
)]

The dominant term in this part of E is of order x2e(3−3p)αx
2

and is always
negative. Now we move on to the second part of E:

ε21
∂

∂x
[φ(s)]

∂

∂x
[v1 − v2] = ε21φ

′(s)
∂s

∂x

∂

∂x
[v1 − v2]

= ε21φ
′(s)(

2pαxy2epαx
2

ln(c2)
)(2pαx+ 2pkαxy2epαx

2

)

≤ ε21|φ′(s)|
ln(c2)

(4p2α2x2y2epαx
2

+ 4p2α2x2y4e2pαx
2

)
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≤ ε21|φ′(s)|
ln(c2)

(4p2α2x2c2 + 4p2α2x2c22)

The dominant terms in this part are order x2, so they are not big enough to affect
the asymptotic behavior of D + E. There is one more part of E that must be
examined. It is:

ε22
∂

∂y
[φ(s)]

∂

∂y
[v1 − v2] = ε22φ

′(s)
∂s

∂y

∂

∂y
[v1 − v2]

= ε22φ
′(s)(

2yepαx
2

ln(c2)
)(

2

y
+ 2kyepαx

2

)

=
ε22φ
′(s)

ln(c2)
(4epαx

2

+ 4ky2e2pαx
2

)

≤ 4ε22φ
′(s)

ln(c2)
(epαx

2

+ kc2e
pαx2

)

The dominant terms here are order epαx
2

: smaller than the dominant terms in D
as long as p ≤ 3/4. Thus we know that, as |x| → ∞, Lv12(x, y) → −∞. This
completes the proof that v12(x, y) is a Lyapunov function on R12.

Now we can define a single global Lyapunov function which is needed to show
that the perturbed Hamiltonian system with noise is stable. We call this function
V (x, y), and define it as follows:

(25) V (x, y) =


v1(x, y) for y2epαx

2

> c2

v2(x, y) for y2epαx
2

< c1

v12(x, y) for c1 ≤ y2epαx
2 ≤ c2

By the lemmas above, we know that V (x, y) satisfies the conditions for stability
given in Section 1. Therefore the stochastic system

dXt

dt
= (Yte

αX2
t −XtY

6
t e

3αX2
t ) + ε1

dB1(t)

dt
dYt
dt

= (−(αXtY
2
t )eαX

2
t − aY 3

t e
αX2

t ) + ε2
dB2(t)

dt
is stable. This completes the proof of Theorem 3.

5. Conclusion

This paper demonstrated three cases in which perturbed Hamiltonian systems
were stabilized by noise. It is likely that there are many other unstable Hamil-
tonian systems which could be modified and then stabilized by noise in a similar
manner. One of the purposes of this paper is to provide a systematic framework for
deterministically perturbing such systems to allow for noise-induced stabilization.
However, we provide no systematic means of identifying Hamiltonian systems which
are candidates for this type of phenomenon. One feature that is common to all of
the systems studied here is a line that forms a continuum of equilibrium points; the
change of sign of dXt and dYt on either side of this line is one of the fundamental
features that allows for noise-induced stabilization to occur.

Another question that remains open is how to identify the smallest possible
perturbation which allows noise-induced stabilization to occur. Modifications of
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larger magnitude can make proof of stability substantially easier, but also entail
greater deterministic deviation from the original system which we sought to sta-
bilize. Our modified deterministic systems exhibit the same limiting behavior as
the original Hamiltonian systems for all initial conditions; we do not know if a
stricter definition of “qualitatively similar behavior” allows for modifications which
enable noise-induced stabilization. Much space remains for further research into
these questions and others related to noise-induced stabilization.

References

[AKM12] Avanti Athreya, Tiffany Kolba, and Jonathan C Mattingly. Propagating lyapunov

functions to prove noise-induced stabilization. Electron. J. Probab, 17(96):1–38, 2012.

[CHM+11] Ben Cooke, David P Herzog, Jonathan C Mattingly, Scott A McKinley, and Scott C
Schmidler. Geometric ergodicity of two–dimensional hamiltonian systems with a

lennard–jones–like repulsive potential. arXiv preprint arXiv:1104.3842, 2011.

[HM+15] David Herzog, Jonathan Mattingly, et al. Noise-induced stabilization of planar flows
i. Electronic Journal of Probability, 20, 2015.

[HSD12] Morris W Hirsch, Stephen Smale, and Robert L Devaney. Differential equations, dy-

namical systems, and an introduction to chaos. Academic press, 2012.
[Kha11] Rafail Khasminskii. Stochastic stability of differential equations, volume 66. Springer

Science & Business Media, 2011.

[Law06] Gregory F Lawler. Introduction to stochastic processes. CRC Press, 2006.
[LS17] Matti Leimbach and Michael Scheutzow. Blow-up of a stable stochastic differential

equation. Journal of Dynamics and Differential Equations, 29(2):345–353, 2017.


	1. Introduction
	1.1. Background & Definitions
	1.2. Proof Method

	2. Hamiltonian System with H(x,y)=h((xy)22)
	2.1. Perturbed Hamiltonian System
	2.2. Lyapunov Construction
	2.2.1. Priming Region
	2.2.2. Diffusive Regions
	2.2.3. Global Lyapunov Function


	3. Hamiltonian System with H(x,y)=axmyn
	3.1. Perturbed Hamiltonian System
	3.2. Lyapunov Construction
	3.2.1. Priming Region
	3.2.2. Diffusive Regions
	3.2.3. Global Lyapunov Function


	4. Hamiltonian System with H(x,y)=ex2y22
	4.1. Perturbed Hamiltonian System
	4.2. Lyapunov Construction
	4.2.1. Priming Region
	4.2.2. Diffusive Regions
	4.2.3. Global Lyapunov Function


	5. Conclusion
	References

