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Abstract

Pattern avoidance is a branch of combinatorics that arose in 1968 when Donald
Knuth began studying stack sorting. One central problem in pattern avoidance is
finding the number of permutations of length n that avoid a specific pattern ρ. We
expanded this problem to reverse double lists, or lists built by combining a permutation
with its reverse. We computed the number of reverse double lists of each length that
avoid patterns of up to length four and then conjectured and proved formulas to explain
these sequences.

1 Introduction

The term permutation is familiar to many areas of mathematics. For the purpose of this
research, a permutation, denoted π, of length n is an ordering of the numbers in the set
{1, 2, . . . , n} such that no digits are repeated. The set of permutations of length n is denoted
Sn. We can use reduction to find smaller permutations within larger ones. The reduction
of a list of numbers is the list obtained by replacing the ith smallest numbers in the list with
i. If we reduce the list 5249, we get red(5249) = 3124. A permutation π contains ρ as a
pattern if π has a subsequence that reduces to ρ. On the other hand, π avoids ρ if π has no
subsequence that reduces to ρ. We will denote Sn(ρ) as the set of permutations in Sn that
avoid ρ.

The reverse and complement of a list are significant in pattern avoidance, because
they capture relevant structure. The reverse of a permutation π = π1π2 · · · πn is sim-
ply πr = πnπn−1 · · · π1. The complement of π, denoted πc, is created by replacing the ith

smallest number of π with the ith largest number of π. Furthermore, we use dot diagrams
to give a visual representation of permutations. The numbers in a permutation represent
relative heights. For example, the dot diagram for 23415 is shown in the figure below:
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Figure 1: The dot diagram for 23415.
From any dot diagram, the reverse and complement of a permutation can be easily drawn.
The reverse is simply flipped over the vertical axis while the complement is flipped over the
horizontal axis.

Figure 2: The reverse of 23415. Figure 3: The complement of 23415.

For more background, we will look at other mathematicians who have studied and gen-
eralized pattern avoidance. In 1998, Burnstein [1] considered words or lists with repeated
digits that avoid given patterns. Others have studied pattern avoidance with special sym-
metries. For example, Egge [3] looked at pattern avoidance in permutations π such that
πrc = π, and Ferrari [4] extended these results to reverse-complement invariant words. Our
work considers pattern avoidance in words with a different type of symmetry. Specifically,
we call these wodrs reverse double lists. This research was inspired by Cratty, Erickson, Ne-
gassi, and Pudwell [2]. We continue their research, but with a different structure of double
list. A reverse double list is a permutation prepended to its reverse. We write Rn for the
set of reverse double lists, so Rn = {ππr|π ∈ Sn}. Below is a quick example of how S3 builds
into R3.

S3 = {123, 132, 213, 231, 312, 321}
R3 = {123321, 132231, 213312, 231132, 312213, 321123}

In this paper, we will enumerate and prove how many reverse double lists of each length
avoid permutation patterns of up to length four. However, avoiding patterns of length one,
two, and three proved to be a trivial task, so we will primarily focus on avoiding patterns of
length four.

Since there are 24 patterns of length four, we developed the following theorems, which
show that several patterns are guaranteed to have the same enumeration sequence. As a
result, instead of proving results for each of the 24 individual patterns, we can simply prove
results for the eight equivalence classes of patterns.

Theorem 1.1. A permutation π contains a pattern ρ iff πr contains ρr.

Proof. (⇒) Suppose a permutation π contains the pattern ρ. When reading π from right to
left, (equivalently, reading πr from left to right), there is a copy of ρr using the same digits
that originally reduced to ρ when reading π from left to right.
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(⇐) Suppose πr contains ρr. When reading πr from right to left, there is a copy of ρ using
the same digits that originally reduced to ρr when reading πr from left to right.

By the contrapositive, we obtain the following corollary:

Corollary 1.2. A permutation π avoids a pattern ρ iff πr avoids ρr.

Theorem 1.3. A permutation π contains a pattern ρ iff πc contains ρc.

Proof. (⇒) Suppose a permutation π contains the pattern ρ. Then in πc, the digits that
originally formed ρ will be changed to ρc.
(⇐) Suppose πc contains the pattern ρc. In (πc)c = π, the digits that originally formed ρc

will be changed to ρ.

By the contrapositive, we obtain the following corollary:

Corollary 1.4. A permutation π avoids a pattern ρ iff πc avoids ρc.

Notice that these arguments also apply to reverse double lists. Let Rn(ρ) be the set
of reverse double lists of semilength n avoiding ρ. We say ρ1 is Wilf-equivalent to ρ2 if
|Rn(ρ1)| = |Rn(ρ2)| for n ≥ 1, and we write ρ1 ∼ ρ2. By the results above, ρ1 ∼ (ρ1)

r ∼ (ρ1)
c

for any pattern ρ. A maximal set of patterns that are Wilf-equivalent are called a Wilf class.
Overall, these definitions and theorems will enable us to condense multiple patterns into
equivalence classes.

2 Avoiding Patterns of Length 1, 2, and 3

Determining the number of reverse double lists that avoid patterns of length one and two is
especially trivial. When avoiding patterns of length one, no reverse double list can avoid the
only one length pattern, 1. Since the smallest reverse double list is 11, which contains 1, all
longer lists contain 1 as well. Therefore, |Rn(1)| = 0 for n ≥ 1.

The only two patterns of length two are 12 and 21. By brute force,

|Rn(12)| =
{

1 for n = 1,
0 for n ≥ 2.

By Corollary 1.2 and Corollary 1.4, |Rn(12)| = |Rn(21)|.
Avoiding patterns of length three is less trivial, yet still simple. In this case, there are

six permutation patterns (grouped into two equivalence classes) that we will consider.

Theorem 2.1. |Rn(123)| =


1 for n = 1,
2 for n = 2, 3,
0 for n ≥ 4.

Proof. Suppose ππr = π1π2 · · · πnπn · · · π2π1 ∈ Rn(123).
The cases when n ∈ {1, 2, 3, 4} can be determined using brute force. Since |R4(123)| =

0, there can’t exist any reverse double lists of longer length that avoid 123. Therefore,
|Rn(123)| = 0 for n ≥ 4.
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Now, by Corollaries 1.2 and 1.4, we obtain Corollary 2.2, which follows from Theorem
2.1.

Corollary 2.2. |Rn(321)| = |Rn(123)|.

We will be able to generalize Theorem 2.1 and Corollary 2.2 in Section 4.

Theorem 2.3. |Rn(132)| =
{

1 for n = 1,
2 for n ≥ 2.

Proof. Suppose ππr = π1π2 · · · πnπn · · · π2π1 ∈ Rn(132).
The cases when n ∈ {1, 2} can be verified using brute force.
Assume for contradiction that π1 6= n for n ≥ 3. This implies that π1 = 1 or 2 ≤

π1 ≤ n − 1. If π1 = 1, then there exist 1 and 3 in π, and there exists 2 in πr such that
red(132) = 132. If 2 ≤ π1 ≤ n − 1, then there exists 1 in π, and there exist n and π1 in πr

such that red(1nπ1) = 132. Thus, π1 = n.
Assume for contradiction that π2 6= n−1 for n ≥ 4. This implies π2 = 1 or 2 ≤ π2 ≤ n−2.

If π2 = 1, then there exist 1 and 3 in π, and there exists 2 in πr such that red(132) = 132.
If 2 ≤ π2 ≤ n − 2, then there exists 1 in π, and there exist n − 1 and π2 in πr such that
red(1(n − 1)π2) = 132. Hence, π2 = n − 1. By a similar argument, πi = n − i + 1 for
1 ≤ i ≤ n − 2. Then, πn−1 = 2 and πn = 1 or πn−1 = 1 and πn = 2. Hence, |Rn(132)| = 2
when n ≥ 3. (See Figure 4.)

Figure 4: The 2 reverse double lists when π1 = n.

By Corollaries 1.2 and 1.4, Corollary 2.4 follows from Theorem 2.3.

Corollary 2.4. |Rn(132)| = |Rn(231)| = |Rn(312)| = |Rn(213)|.

Now that we have handled avoiding patterns of lengths less than four, we will move on
to avoiding patterns of length four.

3 Avoiding Patterns of Length 4

This section focuses on avoiding patterns of length four. To begin, we enumerate the reverse
double lists of length 1 ≤ n ≤ 9 that avoid each pattern of length four. Then, we conjecture
and prove formulas that explain these enumerations.
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3.1 Initial Data

Using Sage, we wrote a computer program to enumerate reverse double lists of length 1 ≤ n ≤
9 that avoid each pattern of length four. These results have been collected in Table 1, which
shows the patterns of length four in the left column and the corresponding enumerations in
the right column. By Corollaries 1.2 and 1.4, we know that some patterns are guaranteed
to produce the same enumeration. In Table 1, ρ1 ∼ ρ2 denotes that the patterns ρ1 and ρ2
are reverses or complements of each other.

Generally, there exist eight Wilf classes of length four. At first glance, it appears that
Table 1 gives seven equivalence classes. Upon closer observation, we can see that row five of
the table actually groups two Wilf classes together. This is solely based on the enumeration
{|Rn(ρ)|}9n=1. Observe that 2143 ∼ 3412 are reverses and complements of each other, and
1324 ∼ 4231 are reverses and complements of each other. However, these two pairs are not
otherwise associated by reverses or complements. By coincidence, these two Wilf classes
share the same enumeration for {|Rn(ρ)|}9n=1.

Pattern ρ {|Rn(ρ)|}9n=1

1234 ∼ 4321 1, 2, 6, 16, 32, 32, 0, 0, 0

1243 ∼ 2134 ∼ 3421 ∼ 4312 1, 2, 6, 16, 34, 62, 102, 156, 226

1324 ∼ 4231, 2143 ∼ 3412 1, 2, 6, 16, 36, 76, 156, 316, 636

1423 ∼ 2314 ∼ 3241 ∼ 4132 1, 2, 6, 16, 36, 80, 178, 394, 870

1432 ∼ 2341 ∼ 3214 ∼ 4123 1, 2, 6, 16, 38, 92, 222, 536, 1294

1342 ∼ 2431 ∼ 3124 ∼ 4213 1, 2, 6, 16, 40, 98, 238, 576, 1392

2413 ∼ 3142 1, 2, 6, 16, 44, 120, 328, 896, 2448

Table 1: The enumeration of reverse double lists that avoid ρ.

3.2 Proofs

After computing the number of the reverse double lists that avoid each pattern of length
four, we conjectured formulas to explain these sequences. In the following section, we will
state and prove formulas for each of these patterns.

3.2.1 Avoiding 1234

To begin, we will look at avoiding the pattern 1234.

Theorem 3.1. |Rn(1234)| =


n! for n ≤ 3,
16 for n = 4,
32 for n = 5, 6,
0 for n ≥ 7.

Proof. The cases when n ≤ 7 can be verified using brute force (see Table 1). Since
|R7(1234)| = 0, there are no reverse double lists of longer length that avoid 1234, so
|Rn(1234)| = 0 for n ≥ 7.
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By Corollaries 1.2 and 1.4, we obtain Corollary 3.2, which follows from Theorem 3.1.

Corollary 3.2. |Rn(1234)| = |Rn(4321)|.

3.2.2 Avoiding 1432

While observing the sequences in the right hand column of Table 1, we noticed that most of
them were recursive. We will highlight this recursive structure by avoiding 1432, which has
the most easily proven formula.

Theorem 3.3. |Rn(1432)| =


n! for n ≤ 3,
16 for n = 4,
2|Rn−1(1432)|+ |Rn−2(1432)| for n ≥ 5.

Proof. Suppose ππr = π1π2 · · · πnπn · · · π2π1 ∈ Rn(1432).
The cases when n ∈ {1, 2, 3, 4} can be verified using brute force.

Case 1. Suppose π1 = n.
Let σσr ∈ Rn−1(1432). Consider nσσrn. The only role n can play in a 1432 pattern is a

4. As a result, it cannot reduce to a 1 to begin the pattern earlier or reduce to a 2 to help
finish the pattern. Therefore, nσσrn ∈ Rn(1432). Figure 5 gives a visual representation of
n added to the beginning and end of σσr. So, there exist |Rn−1(1432)| reverse double lists
with π1 = n.

Figure 5: The |Rn−1(1432)| reverse double lists when π1 = n.

Case 2. Suppose π1 = n− 1 .
Since n − 1 can only play the role of a 3 or a 4 in a 1432 pattern, it cannot play the

role of 1 at the beginning or 2 at the end. Also, n and n− 1 simply switched positions from
Case 1, so n just plays the role that n − 1 did. Hence, there are |Rn−1(1432)| lists where
π1 = n− 1. (See Figure 6.)

Figure 6: The |Rn−1(1432)| reverse double lists when π1 = n− 1.
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Case 3. Suppose π1 = n− 2. Then, π2 = n.
Assume for contradiction that π2 6= n. This implies π2 = n − 1 or 1 ≤ π2 ≤ n − 3. If

π2 = n − 1, then there exists 1 in π, and there exist n, n − 1, and n − 2 in πr such that
red(1n(n− 1)(n− 2)) = 1432. If 1 ≤ π2 ≤ n− 3, then there exist π2 and n in π, and there
exist n − 1 and n − 2 in πr such that red(π2n(n − 1)(n − 2)) = 1432. Thus, if π1 = n − 2,
then π2 = n.

Together, (n − 2)n can only play the role of 24 in a length four pattern. Therefore,
(n− 2)n cannot play the role of 14 in π or 32 in πr. Individually, n can only play the role of
a 4, so it will neither begin nor end a 1432 pattern. Also, n− 2 can only play the role of 2,
3, or 4, so it will not play the role of 1 in the beginning of a 1432 pattern. If n− 2 plays as
a 2 in πr, then n− 1 in πr can play as the 3 and n in π can play as the 4. However, there is
no number to play the role of 1 that precedes n in π. Thus, the remaining positions can be
filled in |Rn−2(1432)| ways. (See Figure 7.)

Figure 7: The |Rn−2(1432)| reverse double lists when π1 = n− 2.

Case 4. Assume for contradiction 1 ≤ π1 ≤ n− 3. This implies π1 = 1 or 2 ≤ π1 ≤ n− 3.
If π1 = 1, then 2 ≤ π2 ≤ n − 2 or π2 ∈ {n − 1, n}. If 2 ≤ π2 ≤ n − 2, then there exist

1 and n in π, and there exist n − 1 and π2 in πr such that red(1n(n − 1)π2) = 1432. If
π2 = n− 1 or π2 = n, then there exist 1, π2, and n− 2 in π, and there exists n− 3 in πr such
that red(1π2(n− 2)(n− 3)) = 1432. Thus, π1 6= 1.

If 2 ≤ π1 ≤ n − 3, then π2 = n or 1 ≤ π2 ≤ n − 1. If π2 = n, then there exist π1, n,
and n − 1 in π, and there exists n − 2 in πr, such that red(π1n(n − 1)(n − 2)) = 1432. If
1 ≤ π2 ≤ n− 1, then two cases must be considered. If π1 < π2, then there exists 1 in π, and
there exist n, π2, and π1 in πr, such that red(1nπ2π1) = 1432. If π1 > π2, then there exist π2
and n in π, and there exist n− 1 and π1 in πr, such that red(π2n(n− 1)π1) = 1432. Thus,
π1 ≥ n− 2.

Therefore, |Rn(1432)| = 2|Rn−1(1432)|+ |Rn−2(1432)| for n ≥ 5.

Now, by Corollaries 1.2 and 1.4, we obtain Corollary 3.4, which follows from Theorem
3.3.

Corollary 3.4. |Rn(1432)| = |Rn(2341)| = |Rn(3214)| = |Rn(4123)|.

3.2.3 Avoiding 1342

When avoiding 1342, Rn(1342) appears to be primarily built from members of Rn−1(1342)
and Rn−2(1342), which is similar to Rn(1432). In Theorem 3.5, we observe that the formulas
for avoiding 1432 and 1342 are very similar except Rn(1342) contains an extra two reverse
double lists compared to Rn(1432).
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Theorem 3.5. |Rn(1342)| =
{
n! for n ≤ 3,
2|Rn−1(1342)|+ |Rn−2(1342)|+ 2 for n ≥ 4.

Proof. Suppose ππr = π1π2 · · · πnπn · · · π2π1 ∈ Rn(1342).
The cases when n ∈ {1, 2, 3} can be verified using brute force.

Case 1. Suppose π1 = n.
Let σσr ∈ Rn−1(1342). Consider nσσrn. Since n can only play the role of a 4 in a 1342

pattern, nσσrn ∈ Rn(1342). So, there are |Rn−1(1342)| reverse double lists with π1 = n.
(See Figure 5.)

Case 2. Suppose π1 = n− 1.
Since n − 1 can only play the role of a 3 or a 4 in a 1342 pattern, it will not aid in the

generation of a 1342 pattern. Now, n plays the role that n− 1 played in the reverse double
lists from Case 1. Hence, there are |Rn−1(1342)| lists where π1 = n− 1. (See Figure 6.)

Case 3. Suppose π1 = n− 2. Then, π2 = n− 1.
Assume for contradiction that π2 6= n − 1. This implies that π2 = n or 1 ≤ π2 ≤ n − 3.

If π2 = n, then there exists 1 in π, and there exist n − 1, n, and n − 2 in πr such that
red(1(n − 1)n(n − 2)) = 1342. If 1 ≤ π2 ≤ n − 3, then there exist π2 and n − 1 in π, and
there exist n and n− 2 in πr such that red(π2(n− 1)n(n− 2)) = 1342. Thus, if π1 = n− 2,
then π2 = n− 1.

Together (n− 2)(n− 1) can only play the role of 23 or 34 in π, so it will not aid in the
generation of a 1342 pattern. Individually, n− 1 can only play the role of a 3 or 4, so it will
not play as a 1 in π or 2 in πr. Also, n − 2 cannot play the role of a 1. If n − 2 plays the
role of 2, there exists n in πr to play the role of 4. Now, the only number to play 3 is n− 1
in π. However, numbers that could play the role of a 1 do not precede n− 1 in π. Thus, the
remaining positions can be filled in |Rn−2(1342)| ways. (See Figure 8.)

Figure 8: The |Rn−2(1342)| reverse double lists when π1 = n− 2.

Case 4. Suppose π1 = 1. Then π2 = n.
Assume for contradiction that π2 6= n. This implies that π2 = 2 or 3 ≤ π2 ≤ n − 1. If

π2 = 2, then there exist 1 and 3 in π, and there exist 4 and 2 in πr such that red(1342) = 1342.
If 3 ≤ π2 ≤ n − 1, then there exist 1, π2 and n in π, and there exists 2 in πr such that
red(1π2n2) = 1342. Hence, when π1 = 1, π2 = n. By a similar argument, πi = n− i+ 2 for
2 ≤ i ≤ n− 2. Finally, either πn−1 = 2 and πn = 3 or πn−1 = 3 and πn = 2. Thus, there are
two ways to avoid 1342 when π1 = 1. (See Figure 9.)
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Figure 9: The 2 reverse double lists when π1 = 1.

Case 5. Assume for contradiction 2 ≤ π1 ≤ n− 3.
Then π2 = 1, 2 ≤ π2 ≤ n− 2, or π2 ∈ {n− 1, n}. If π2 = 1, then there exist 1 and n− 1

in π, and there exist n and π1 in πr such that red(1(n− 1)nπ1) = 1342. If 2 ≤ π2 ≤ n− 2,
then two cases must be considered. If π1 < π2, then there exist π1 and n − 1 in π, and
there exist n and π2 in πr such that red(π1(n− 1)nπ2) = 1342. If π1 > π2, then there exist
π2 and n − 1 in π, and there exist n and π1 in πr such that red(π2(n − 1)nπ1) = 1342. If
π2 ∈ {n− 1, n}, then there exists 1 in π, and there exist n− 2, π2, and π1 and πr such that
red(1(n− 2)π2π1) = 1342. Hence, π1 ∈ {1, n− 2, n− 1, n}.

Ultimately, |Rn(1342)| = 2|Rn−1(1342)|+ |Rn−2(1342)|+ 2 for n ≥ 4.

With this result, we obtain the following corollary when considering the statements of
Corollaries 1.2 and 1.4.

Corollary 3.6. |Rn(1342)| = |Rn(2431)| = |Rn(3124)| = |Rn(4213)|.

3.2.4 Avoiding 2413

Now, we look at avoiding the pattern 2413. In Theorem 3.7, we observe that the reverse
double lists of length n are built out of the reverse double lists of semilength n−1 and n−2.

Theorem 3.7. |Rn(2413)| =
{
n! for n ≤ 2,
2|Rn−1(2413)|+ 2|Rn−2(2413)| for n ≥ 3.

Proof. Suppose ππr = π1π2 · · · πnπn · · · π2π1 where ππr ∈ Rn(2413).
The cases when n ∈ {1, 2} can be verified using brute force methods.

Case 1. Suppose π1 = n.
Let σσr ∈ Rn−1(2413). Consider nσσrn. Since n can only play the role of a 4 in a 2413

pattern, nσσrn ∈ Rn(2413). So, there are |Rn−1(2413)| reverse double lists with π1 = n.
(See Figure 5.)

Case 2. Suppose π1 = n− 1. Then, π2 = n.
Assume for contradiction that π2 6= n. This implies π2 = 1 or 2 ≤ π2 ≤ n− 2. If π2 = 1,

then there exists 2 in π, and there exist n, 1, and n−1 in πr such that red(2n1(n−1)) = 2413.
If 2 ≤ π2 ≤ n− 2, then there exist π2 and n in π, and there exist 1 and n− 1 in πr such that
red(π2n1(n− 1)) = 2413. Hence, if π1 = n− 1, then π2 = n.

Together, (n − 1)n can only play the role of 34 in π, so they will not play the role of
24 in π or 13 in πr to help generate a 2413 pattern. When considered individually, n − 1
can only play the role of a 3 or 4, so it cannot play the role of 2 at the beginning of a 2413
pattern. If n − 1 plays the role of 3, the numbers 1 in πr and n in π can play the roles of

9



1 and 4 respectively. However, there does not exist a number before n in π to play the role
of 2. Also, n can only play the role of a 4, so it will neither begin nor end a 2413 pattern.
Now, the remaining positions can be filled in |Rn−2(2413)| ways to avoid a 2413 pattern.
(See Figure 10.)

Figure 10: The |Rn−2(2413)| reverse double lists when π1 = n− 1.

Case 3. Suppose π1 = 2. Then, π2 = 1.
Assume for contradiction that π2 6= 1. This implies that π2 = n or 3 ≤ π2 ≤ n − 1. If

π2 = n, then there exist 2, n, and 1 in π, and there exists 3 in πr such that red(2n13) = 2413.
If 3 ≤ π2 ≤ n − 1, then there exist 2 and n in π, and there exist 1 and π2 in πr such that
red(2n1π2) = 2413. Hence, if π1 = 2, then π2 = 1.

Together, 21 can only play the role of 21 in π, so they will neither begin nor end a 2413
pattern. Individually, 2 can only play the role of 1 or 2. If it plays the role of 2 in π, then
there exist 2 and 4 in π, but a number to play the role of a 3 after 1 in πr cannot be found.
Also, 1 can only play the role of 1, so it will neither begin nor end a 2413 pattern. Now, the
remaining positions can be filled in |Rn−2(2413)| ways to avoid a 2413 pattern. (See Figure
11.)

Figure 11: The |Rn−2(2413)| reverse double lists when π1 = 2.

Case 4. Suppose π1 = 1.
Let σσr ∈ Rn−1(2413). Consider (1⊕ σ)(σr 	 1). Since 1 can only play the role of a 1 in

a 2413 pattern, adding 1 to the beginning and end of σσr will not aid in the creation of a
2413 pattern. Thus, there are |Rn−1(2413)| ways to avoid a 2413 pattern. (See Figure 12.)

Figure 12: The |Rn−1(2413)| reverse double lists when π1 = 1.
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Case 5. Assume for contradiction that 3 ≤ π1 ≤ n− 2.
Now, π2 = n, 2 ≤ π2 ≤ n − 1, or π2 = 1. If π2 = n, there exist π1, n, and 1 in π, and

there exists n − 1 in πr such that red(π1n1(n − 1)) = 2413. If 2 ≤ π2 ≤ n − 1, two cases
need to be considered. If π1 > π2, then there exist π2 and n in π, and there exist 1 and π1
in πr such that red(π2n1π1) = 2413. If π1 < π2, then there exist π1 and n in π, and there
exist 1 and π2 in πr such that red(π1n1π2) = 2413. If π2 = 1, there exists 2 in π, and there
exist n, π2, and π1 in πr such that red(2nπ2π1) = 2413. Hence, π1 ∈ {1, 2, n− 1, n}.

Ultimately, |Rn(2413)| = 2|Rn−1(2413)|+ 2|Rn−2(2413)| for n ≥ 3.

Using Corollaries 1.2 and 1.4, Corollary 3.8 follows from Theorem 3.7.

Corollary 3.8. |Rn(2413)| = |Rn(3142)|.

3.2.5 Avoiding 2143

Now, we focus on avoiding the pattern 2143. Theorem 3.9, shows that Rn(2143) is mainly
built out of members of Rn−1(2143).

Theorem 3.9. |Rn(2143)| =
{
n! for n ≤ 3,
2|Rn−1(2143)|+ 4 for n ≥ 4.

Proof. Suppose ππr = π1π2 · · · πnπn · · · π2π1 ∈ Rn(2143).
The cases when n ∈ {1, 2, 3} can be verified using brute force.

Case 1. Suppose π1 = n.
Let σσr ∈ Rn−1(2143). Consider nσσrn. Since n can only play the role of a 4 in a 2143

pattern, nσσrn ∈ Rn(2143). So, there exist |Rn−1(2143)| reverse double lists with π1 = n.
(See Figure 5.)

Case 2. Suppose π1 = n− 1. Then, π2 = 1.
Assume for contradiction that π2 6= 1. This implies π2 = n or 2 ≤ π2 ≤ n− 2. If π2 = n,

then there exists 2 in π, and there exist 1, n, and n−1 in πr such that red(21n(n−1)) = 2143.
If 2 ≤ π2 ≤ n − 2, then there exist π2 and 1 in π, and there exist n and n − 1 in πr such
that red(π21n(n − 1)) = 2143. Hence, if π1 = n − 1, then π2 = 1. By a similar argument,
πi = i− 1 for 2 ≤ i ≤ n− 2. Finally, πn−1 = n− 2 and πn = n or πn−1 = n and πn = n− 2.
Thus, there are 2 ways to avoid a 2143 when π1 = n− 1. (See Figure 13.)

Figure 13: The 2 reverse double lists when π1 = n− 1.
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Case 3. Suppose π1 = 2. Then, π2 = n.
Assume for contradiction that π2 6= n. This implies π2 = 1 or 3 ≤ π2 ≤ n− 1. If π2 = 1,

then there exist 2, 1, and n in π, and there exist n−1 in πr such that red(21n(n−1)) = 2143.
If 3 ≤ π2 ≤ n − 1, then there exist 2 and 1 in π, and there exist n and π2 in πr such that
red(21nπ2) = 2143. Thus, if π1 = 2, π2 = n. By a similar argument, πi = n − i + 2 for
2 ≤ i ≤ n− 2. Finally, πn−1 = 1 and πn = 3 or πn−1 = 3 and πn = 1. Thus, there are 2 ways
to avoid a 2143 pattern when π1 = 2. (See Figure 14.)

Figure 14: The 2 reverse double lists when π1 = 2.

Case 4. Suppose π1 = 1.
Let σσr ∈ Rn−1(2143). Consider (1⊕ σ)(σr 	 1). Since 1 can only play the role of a 1 in

a 2143 pattern, adding 1 to the beginning and end of σσr will not aid in the creation of a
2143 pattern. Thus, there are |Rn−1(2143)| ways to avoid a 2143 pattern. (See Figure 12.)

Case 5. Assume for contradiction that 3 ≤ π1 ≤ n− 2.
Then, π2 = 1, 2 ≤ π2 ≤ n − 1, or π2 = n. If π2 = 1, there exist π1, 1, and n in π, and

there exists n−1 in πr such that red(π11n(n−1)) = 2143. If 2 ≤ π2 ≤ n−1, then two cases
must be considered. If π1 < π2, then there exist π1 and 1 in π, and there exist n and π2 in
πr such that red(π11nπ2) = 2143. If π1 > π2, then there exist π2 and 1 in π, and there exist
n and π1 in πr such that red(π21nπ1) = 2143. If π2 = n, then there exists 2 in π, and there
exist 1, n, and π1 in πr such that red(21nπ1) = 2143. Thus, π1 ∈ {1, 2, n, n− 1}.

Ultimately, |Rn(2143)| = 2|Rn−1(2143)|+ 4 for n ≥ 4.

Now, using Corollaries 1.2 and 1.4, Corollary 3.10 follows from Theorem 3.9.

Corollary 3.10. |Rn(2143)| = |Rn(3412)|.

3.2.6 Avoiding 1324

Recall from Table 1 that 2143 ∼ 3412 and 1324 ∼ 4231 shared the same enumeration for
{|Rn(ρ)|}9n=1. When comparing Theorems 3.9 and 3.11, we observe that these two Wilf
classes actually do share the same enumeration for all n ≥ 1. However, going through the
proof of Theorem 3.11, we will see that the reverse double lists that avoid these patterns are
formed in very different ways.

Theorem 3.11. |Rn(1324)| =


1 for n = 1,
2 for n = 2,
6 for n = 3,
2|Rn−1(1324)|+ 4 for n ≥ 4.
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Proof. Suppose ππr = π1π2 · · · πnπn · · · π2π1 ∈ Rn(1324).
The cases when n ∈ {1, 2, 3} can be verified using brute force.

Case 1. Suppose π1 = 1. Then π2 = 2.
Assume for contradiction π2 6= 2. This implies 3 ≤ π2 ≤ n−1 or π2 = n. If 3 ≤ π2 ≤ n−1,

there exist 1, π2, and 2 in π, and there exists n in πr such that red(1π22n) = 1324. If π2 = n,
there exist 1 and 3 in π, and there exist 2 and n in πr such that red(132n) = 1324. Therefore,
when π1 = 1, π2 = 2. By a similar argument, πi = i where 1 ≤ i ≤ n−2. Then πn−1 = n−1
and πn = n or πn−1 = n and πn = n − 1. Thus, there exist two reverse double lists that
avoid 1324 when π1 = 1. (See Figure 15.)

Figure 15: The 2 reverse double lists when π1 = 1.

Case 2. Suppose π1 = n. Then π2 = n− 1.
Assume for contradiction π2 6= n − 1. This implies that π2 = 1 or 2 ≤ π2 ≤ n − 2. If

π2 = 1, there exist 1 and 3 in π, and there exist 2 and n in πr such that red(132n) = 1324.
If 2 ≤ π2 ≤ n − 2, then there exists 1 in π, and there exist n − 1, π2, and n in πr such
that red(1(n − 1)π2n) = 1324. Hence, if π1 = n, then π2 = n − 1. By a similar argument,
πi = n− i+ 1 for 1 ≤ i ≤ n− 2. Then, πn−1 = 2 and πn = 1 or πn−1 = 1 and πn = 2. Thus,
there exist two reverse double lists that avoid 1324 when π1 = n. (See Figure 4.)

Case 3. Suppose π1 = a where 2 ≤ a ≤ n− 1.
Let σσr ∈ Rn−1(1324). In general, ππr ∈ Rn(1324) can be built from lists σσr where

σ1 = a or σ1 = a − 1. To create ππr, every σj ≥ a is increased by 1 and a is prepended to
σ, where 1 ≤ j ≤ n− 1. This gives π1π2 = a(a− 1) or π1π2 = a(a+ 1).

Consider the case when a 6∈ {3, n−2}. Assume for contradiction that π2 6∈ {a−1, a+1}.
This implies π2 = 1, 2 ≤ π2 ≤ a− 2, a+ 2 ≤ π2 ≤ n− 1, or π2 = n. If π2 = 1, then π1 6= 2.
Therefore, there exist 1 and 3 in π, and there exist 2 and a in πr such that red(132a) = 1324.
If 2 ≤ π2 ≤ a − 2, then there exists 1 in π, and there exist a − 1, π2 and a in πr such that
red(1(a − 1)π2a) = 1324. If a + 2 ≤ π2 ≤ n − 1, then there exist a, π2 and a + 1 in π,
and there exists n in πr such that red(aπ2(a + 1)n) = 1324. If π2 = n, then π1 6= n − 1.
Therefore, there exist π1 and n − 1 in π, and there exist n − 2 and n in πr such that
red(π1(n− 1)(n− 2)n) = 1324. Hence, π2 ∈ {a+ 1, a− 1} when a 6∈ {3, n− 2}.

Consider when a = 3 or a = n − 2. If a = 3, then it is possible to have π1π2 = 31 in
addition to π2 = 2 or π2 = 4 as discussed previously. This is because the number 1 can only
play the role of 1, so the subsequence 13 in πr cannot play the role of 24 in a 1324 pattern. If
3 is looked at individually, then it cannot play the 4 in a 1324 pattern. If 3 plays the role of
1, a 1324 pattern is still avoided because σσr avoids 324 after σ1 in π. Similarly, if a = n−2,
then it is possible to have π1π2 = (n− 2)n in addition to π2 = n− 1 or π2 = n− 3. This is
because the number n can only play the role of a 4, so the subsequence (n− 2)n in π cannot

13



play the role of 13 in a 1324 pattern. If n− 2 is looked at individually, then it cannot play
the role of 1 in a 1324 pattern. If n − 2 plays the role of 4, a 1342 pattern is still avoided
because σσr avoids 132 before σ1 in πr. For all other values of π2, a 1324 pattern cannot be
avoided by previous arguments.

In general, when σ1 = i where 1 ≤ i ≤ n − 1, it is possible to build reverse double
lists where π1 = i or π1 = i + 1. So, for each σσr ∈ Rn−1(1324), we can build two lists
that are in Rn(1324). Hence, there exist 2|Rn−1(1324)| reverse double lists when π1 = a for
2 ≤ a ≤ n− 1.

Thus, |Rn(1324)| = 2|Rn−1(1324)|+ 4 for n ≥ 4.

From Theorem 3.11, we can obtain Corollary 3.12. This is due to Corollaries 1.2 and 1.4.

Corollary 3.12. |Rn(1324)| = |Rn(4231)|.

3.2.7 Avoiding 1243

The formula for |Rn(1243)| is a little more complex than for previous patterns. Notice in
Theorem 3.13 that the formula for |Rn(1243)| involves a summation. For this reason, the
proof for avoiding 1243 will use a few new techniques.

Theorem 3.13. |Rn(1243)| =


n! for n ≤ 2,

|Rn−1(1243)|+
n−1∑
i=2

2i for n ≥ 3.

Proof. Suppose ππr = π1π2 · · · πnπn · · · π2π1 ∈ Rn(1243).
The cases when n ∈ {1, 2} can be verified using brute force.

Case 1. Suppose π1 = n.
Let σσr ∈ Rn−1(1243). Consider nσσrn. Since n can only play the role of a 4 in a 1243

pattern, nσσrn ∈ Rn(1243). So, there exist |Rn−1(1243)| reverse double lists with π1 = n.
(See Figure 5.)

Case 2. Suppose π1 = 1. Then, π2 = n.
Assume for contradiction that π2 6= n. This implies 2 ≤ π2 ≤ n − 2 or π2 = n − 1. If

2 ≤ π2 ≤ n − 2, then there exist 1, π2 and n in π, and there exists n − 1 in πr such that
red(1π2n(n − 1)) = 1243. If π2 = n − 1, then there exist 1 and 2 in π, and there exist n
and n − 1 in πr such that red(12n(n − 1)) = 1243. Hence, if π1 = 1, then π2 = n. By a
similar argument, πi = n − i + 2 for 2 ≤ i ≤ n − 2. Finally, either πn−1 = 2 and πn = 3 or
πn−1 = 3 and πn = 2. Thus, there are 2 ways to avoid a 1243 pattern when π1 = 1. (See
Figure 9.)

Case 3. Suppose π1 = n− 1. Then, π2 = n− 2.
Assume for contradiction that π2 6= n − 2. This implies π2 = n or 1 ≤ π2 ≤ n − 3.

If π2 = n, then there exists 1 in π, and there exist n − 2, n, and n − 1 in πr such that
red(1(n − 2)n(n − 1)) = 1243. If 1 ≤ π2 ≤ n − 3, then there exist π2 and n − 2 in π, and
there exist n and n− 1 in πr such that red(π2(n− 2)n(n− 1) = 1243. Thus, if π1 = n− 1,
π2 = n − 2. By a similar argument, πi = n − i for 1 ≤ i ≤ n − 2. Finally, πn−1 = 1 and
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πn = n or πn−1 = n and πn = 1. Thus there exist 2 ways to avoid a 1243 pattern when
π1 = n− 1. (See Figure 16.)

Figure 16: The 2 reverse double lists when π1 = n− 1.

Case 4. Suppose π1 = a where 2 ≤ a ≤ n− 2.
To avoid a 1243 pattern, π1π2 · · · πa−1 = a(a − 1) · · · 2. The number 1 can take position

πh where a ≤ h ≤ n. The remaining positions must be filled with either n(n − 1) · · · (a +
3)(a+ 2)(a+ 1) or n(n− 1) · · · (a+ 3)(a+ 1)(a+ 2).

Suppose a 6= 2. Assume for contradiction, π2 6= a − 1. This implies 1 ≤ π2 ≤ a − 2 or
a+ 1 ≤ π2 ≤ n. If 1 ≤ π2 ≤ a− 2, there exist π2 and a− 1 in π, and there exist n and a in
πr such that red(π2(a− 1)na) = 1243. On the other hand, consider a + 1 ≤ π2 ≤ n. Then,
there exists 1 in π, and there exist 2, π2, and a in πr such that red(12π2a) = 1243. Hence,
π2 = a− 1. By a similar argument, πj = a− j + 1 where 2 ≤ j ≤ a− 1.

Suppose πa−1 = 2. Assume for contradiction, πa 6∈ {n, 1}. This implies a+1 ≤ πa ≤ n−2
or πa = n − 1. If a + 1 ≤ πa ≤ n − 2, there exist 2, πa, and n in π, and there exists n − 1
in πr such that red(2π2n(n − 1)) = 1243. If πa = n − 1, then there exist 2 and a + 1 in π,
and there exist n and n − 1 in πr such that red(2(a + 1)n(n − 1)) = 1243. Hence, πa = 1
or πa = n. By a similar argument, there are a finite number of possible values for πk where
a + 1 ≤ k ≤ n − 2. If πk−1 = 1, then πk = πk−2 − 1. If πk−1 6= 1, then πk = πk−1 − 1 or
πk = 1.

Finally, a + 2 does not need to precede a + 1 in π. The number 1 can take position πh
where a ≤ h ≤ n, and the remaining positions must be filled with either n(n − 1) · · · (a +
3)(a+ 2)(a+ 1) or n(n− 1) · · · (a+ 3)(a+ 1)(a+ 2).

Since πa−1 = 2 and πh = 1 where a ≤ h ≤ n, there are n− a+ 1 choices for the location
of 1 where 2 ≤ a ≤ n− 2. Furthermore, since a+ 1 and a+ 2 can be interchanged, there are
two choices for how to complete the rest of the list. Let i = n− a+ 1. Since 2 ≤ a ≤ n− 2,

then 2 ≤ n− a ≤ n− 2. This implies 3 ≤ i ≤ n− 1. Since 2(n− a+ 1) = 2i, there are
n−1∑
i=3

2i

reverse double lists that avoid 1243 when π1 = a and 2 ≤ a ≤ n− 2. (See Figure 17.)

Figure 17: The
n−1∑
i=3

2i reverse double lists when 2 ≤ π1 ≤ n− 2.
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Thus,

|Rn(1243)| = |Rn−1(1243)|+ 2 + 2 +
n−1∑
i=3

2i

= |Rn−1(1243)|+
n−1∑
i=2

2i

for n ≥ 3.

When we search for {|Rn(1243)|}9n=1 in the Online Encyclopedia of Integer Sequences
(OEIS) [5], we obtain an interesting result. According to OEIS, {|Rn(1243)|}9n=1 yields the
following equation

|Rn(1243)| = 1

3
(n− 3)3 + 3(n− 3)2 +

20

3
(n− 3) + 6,

which can be further simplified to

|Rn(1243)| = n3

3
− 7n

3
+ 4.

Using the principle of mathematical induction, we can prove

|Rn(1243)| = |Rn−1(1243)|+
n−1∑
i=2

2i

=
n3

3
− 7n

3
+ 4.

Theorem 3.14. |Rn(1243)| = n3

3
− 7n

3
+ 4.

Proof.

Base Case. Let n = 3. Then, |R3(1243)| = 6, and
33

3
− 7(3)

3
+ 4 = 6. Thus, the claim holds

for n = 3.

Inductive Step. Suppose |Rk(1243)| = k3

3
− 7k

3
+ 4 for some k ≥ 4. By Theorem 3.13,

|Rk+1(1243)| = |Rk(1243)|+
k∑

i=2

2i.

16



This means

|Rk+1(1243)| = k3

3
− 7k

3
+ 4 +

k∑
i=2

2i

=
k3

3
− 7k

3
+ 4 + (k + 2)(k − 1)

=
k3

3
− 7k

3
+ 4 + k2 + k − 2

=
k3

3
+ k2 + k +

1

3
− 7k

3
− 7

3
+ 4

=
1

3
(k + 1)3 − 7

3
(k + 1) + 4.

Hence, by the principle of mathematical induction, |Rn(1243)| =
n3

3
− 7n

3
+ 4 for n ≥

3.

Now, by Corollaries 1.2 and 1.4, we obtain Corollary 3.15 from Theorem 3.13.

Corollary 3.15. |Rn(1243)| = |Rn(2134)| = |Rn(3421)| = |Rn(4312)|.

3.2.8 Avoiding 1423

When we consider avoiding 1423, we can see that the enumeration is much more complex
than the previous formulas. This formula is stated in Theorem 3.16.

Theorem 3.16.

|Rn(1423)| =


n! for n ≤ 3,
16 for n = 4,

|Rn−1(1423)|+ |Rn−2(1423)|+ 2n+
n−3∑
i=2

2|Ri(1423)| for n ≥ 5.

Proof. Suppose ππr = π1π2 · · · πnπn · · · π2π1 ∈ Rn(1423).
The cases when n ∈ {1, 2, 3, 4} can be verified using brute force.

Case 1. Suppose π1 = n.
Let σσr ∈ Rn−1(1423). Consider nσσrn. Since n can only play the role of a 4 in a 1423

pattern, nσσrn ∈ Rn(1423). So, there exist |Rn−1(1423)| reverse double lists with π1 = n.
(See Figure 5.)

Case 2. Suppose π1 = n− 1. Then, π2 = n.
Assume for contradiction π2 6= n. This implies π2 = 1 or 2 ≤ π2 ≤ n − 2. If π2 = 1,

then there exist 1 and n in π, and there exist 2 and n− 1 in πr such that red(1n2(n− 1)) =
1423. If 2 ≤ π2 ≤ n − 2, then there exists 1 in π and n, π2, and n − 1 in πr such that
red(1nπ2(n− 1)) = 1423. Thus, when π1 = n− 1, π2 = n.
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Together, the numbers (n− 1)n can only play the role of 34 at the beginning of ππr and
the role of a 43 at the end of ππr. Therefore, (n− 1)n will not aid in the creation of a 1423
pattern. When considered individually, n can only play the role of 4. Thus, it will not aid
in the creation of a 1423 pattern. On the other hand, n − 1 can play a 3 or 4. If it plays
the role of a 3 in πr, then n(n− 2) can be found in π to play the role of 42, but there is no
number to play the role of 1 that precedes n. This gives |Rn−2(1423)| reverse double lists
where π1 = n− 1 and π2 = n. (See Figure 10.)

Case 3. Suppose π1 = i+ 1 where 2 ≤ i ≤ n− 3. Then, π2 = i+ 2.
Assume for contradiction π2 6= i+ 2. This implies π2 = 1, 2 ≤ π2 ≤ i, i+ 3 ≤ π2 ≤ n− 1,

or π2 = n. If π2 = 1, then there exist 1 and n in π, and there exist 2 and i + 1 in πr such
that red(1n2(i + 1)) = 1423. If 2 ≤ π2 ≤ i, then there exists 1 in π, and there exist n, π2,
and i + 1 in πr such that red(1nπ2(i + 1)) = 1423. If i + 3 ≤ π2 ≤ n − 1, then there exist
i+ 1 and n in π, and there exist i+ 2 and π2 in πr such that red((i+ 1)n(i+ 2)π2) = 1423.
If π2 = n, then there exist i + 1, n and i + 2 in π, and there exists n − 1 in πr such that
red((i + 1)n(i + 2)(n − 1)) = 1423. Thus, when π1 = i + 1, then π2 = i + 2. By a similar
argument, πj = i+ j where 1 ≤ j ≤ n− i− 3.

Suppose πk = n−2, where 1 ≤ k ≤ n− i−3. Assume for contradiction πk+1 6= n−1 and
πk+1 6= n. This implies πk+1 ≤ πk, but it was previously proven that πk+1 > πk. Thus, when
πk = n− 2, πk+1 ∈ {n− 1, n}. Ultimately, πn−i−2 = n− 1 and πn−i−1 = n or πn−i−2 = n and
πn−i−1 = n− 1.

Now, the remaining i positions of π can be filled with σ, where σσr ∈ Ri(1423). Since n
and n−1 can be interchanged and there exist |Ri(1423)| reverse double lists for 2 ≤ i ≤ n−3,

there are
n−3∑
i=2

2|Ri(1423)| reverse double lists where π1 = i+ 1. (See Figure 18.)

Figure 18: The
n−3∑
i=2

2|Ri(1423)| reverse double lists when π1 = i+ 1.

Case 4. Suppose π1 = 2. Then, π2 = 1 or π2 = 3.
Assume for contradiction that π2 6∈ {1, 3}. This implies π2 = n or 4 ≤ π2 ≤ n − 1. If

π2 = n, then there exist 2, n, and 3 in π, and there exists n− 1 in πr such that red(2n3(n−
1)) = 1423. If 4 ≤ π2 ≤ n− 1, then there exist 2 and n in π, and there exist 3 and π2 in πr

such that red(2n3π2) = 1423. Therefore, if π1 = 2, then π2 = 1 or π2 = 3.

Subcase 1. Suppose π2 = 3. Then, π3 ∈ {1, 4}.
Assume for contradiction π3 6∈ {1, 4} when n ≥ 6. This implies π3 = n or 5 ≤ π3 ≤ n−1.

If π3 = n, then there exist 2, n, and n − 2 in π, and there exists n − 1 in πr such that
red(2n(n − 2)(n − 1)) = 1423. If 5 ≤ π3 ≤ n − 1, then there exist 2 and n in π, and there
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exist 4 and π3 in πr such that red(2n4π3) = 1423. Thus, if π2 = 3, then π3 = 1 or π3 = 4.
By a similar argument, there are a finitely many possible values where πi for 3 ≤ i ≤ n− 3.
If πi−1 = 1, then πi = πi−2 + 1. If πi−1 6= 1, then πi = 1 or πi = πi−1 + 1. Finally, numbers
n− 1 and n can be interchanged while still avoiding a 1423 pattern.

Since there are n− 2 possible positions 1 can take and n− 1 and n can be interchanged,
this gives 2(n− 2) reverse double lists when π1 = 2 and π2 = 3. (See Figure 19.)

Figure 19: The 2(n− 2) reverse double lists when π1 = 2 and π2 = 3.

Subcase 2. Suppose π2 = 1. Then, π3 = 3.
Assume for contradiction π3 6= 3. This implies π3 = n or 4 ≤ π3 ≤ n − 1. If π3 = n,

then there exist 1, n, and 3 in π, and there exists 4 in πr such that red(1n34) = 1423. If
4 ≤ π3 ≤ n − 1, then there exist 1 and n in π, and there exist 3 and π3 in πr such that
red(1n3π3) = 1423. Thus, if π2 = 1, then π3 = 3. By a similar argument, πi = i for
3 ≤ i ≤ n − 2. Finally, πn−1 = n − 1 and πn = n or πn−1 = n and πn = n − 1, giving two
reverse double lists when π1 = 2 and π2 = 1. (See Figure 20.)

Figure 20: The 2 reverse double lists when π1 = 2 and π2 = 1.

Case 5. Suppose π1 = 1. Then, π2 = 2.
Assume for contradiction π2 6= 2. However, following a similar argument as in Case 4,

Subcase 2, π2 = 2. In general, πi = i for 1 ≤ i ≤ n − 2. Finally, πn−1 = n − 1 and πn = n
or πn−1 = n and πn = n − 1, giving two reverse double lists when π1 = 1 and π2 = 2. (See
Figure 15.)

Hence,

|Rn(1423)| = |Rn−1(1423)|+ |Rn−2(1423)|+ 2 + 2 + 2(n− 2) +
n−3∑
i=2

2|Ri(1423)|

= |Rn−1(1423)|+ |Rn−2(1423)|+ 2n+
n−3∑
i=2

2|Ri(1423)|.

for n ≥ 5.
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This formula, though complex, is the most straightforward to prove when observing the
actual reverse double lists that avoid 1423 and how they are recursively built from smaller
lists. However, upon closer inspection of {|Rn(1423)|}9i=1, we conjecture the formula

|Rn(1423)| = 2|Rn−1(1423)|+ |Rn−3(1423)|+ 2.

Now, using the principle of mathematical induction, we can prove

|Rn(1423)| = |Rn−1(1423)|+ |Rn−2(1423)|+ 2n+
n−3∑
i=2

2|Ri(1423)|

= 2|Rn−1(1423)|+ |Rn−3(1423)|+ 2.

Theorem 3.17. |Rn(1423)| = 2|Rn−1(1423)|+ |Rn−3(1423)|+ 2.

Proof.
Base Case. Let n = 5. Then, |R5(1423)| = 36, and 2|R4(1423)|+ |R2(1423)|+ 2 = 2(16) +
2 + 2 = 36. Thus, the claim holds for n = 5.

Inductive Step. Suppose |Rk(1423)| = 2|Rk−1(1423)| + |Rk−3(1423)| + 2 for some k ≥ 6.
When n = k + 1, Theorem 3.16 gives

|Rk+1(1423)| = |Rk(1423)|+ |Rk−1(1423)|+ 2(k + 1) +

k−2∑
i=2

2|Ri(1423)|

= |Rk(1423)|+ |Rk−1(1423)|+ 2(k + 1) +

k−3∑
i=2

2|Ri(1423)|+ 2|Rk−2(1423)|

= |Rk(1423)|+ 2|Rk−2(1423)|+ |Rk−1(1423)|+ 2k + 2 +
k−3∑
i=2

2|Ri(1423)|. (1)

When n = k, Theorem 3.16 implies

k−3∑
i=2

2|Ri(1423)| = |Rk(1423)| − |Rk−1(1423)| − |Rk−2(1423)| − 2k. (2)

After substituting Equation 2 into Equation 1, this gives

|Rk+1(1423)| = |Rk(1423)|+ 2|Rk−2(1423)|+ |Rk−1(1423)|+ 2k + 2

+ |Rk(1423)| − |Rk−1(1423)| − |Rk−2(1423)| − 2k,

which simplifies to

|Rk+1(1423)| = 2|Rk(1423)|+ |Rk−2(1423)|+ 2

= 2|R(k+1)−1(1423)|+ |R(k+1)−3(1423)|+ 2.
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Hence, by the principle of mathematical induction,

|Rn(1423)| = 2|Rn−1(1423)|+ |Rn−3(1423)|+ 2

for n ≥ 5.

Finally, using Corollaries 1.2 and 1.4, we obtain the following corollary as it follows from
Theorem 3.16.

Corollary 3.18. |Rn(1423)| = |Rn(2314)| = |Rn(3241)| = |Rn(4132)|.

3.3 Final Formulas

Table 2 gives a complete list of the proven formulas for the number of reverse double lists
that avoid each pattern of length four.

Pattern ρ |Rn(ρ)| Formulas Theorem

1234 ∼ 4321 0 (n ≥ 7) 3.1

1243 ∼ 2134 ∼ 3421 ∼ 4312
n3

3
− 7n

3
+ 4 (n ≥ 3) 3.13

1324 ∼ 4231, 2143 ∼ 3412 2|Rn−1(ρ)|+ 4 (n ≥ 4) 3.11, 3.9

1423 ∼ 2314 ∼ 3241 ∼ 4132 2|Rn−1(ρ)|+ |Rn−3(ρ)|+ 2 (n ≥ 5) 3.16

1432 ∼ 2341 ∼ 3214 ∼ 4123 2|Rn−1(ρ)|+ |Rn−2(ρ)| (n ≥ 5) 3.3

1342 ∼ 2431 ∼ 3124 ∼ 4213 2|Rn−1(ρ)|+ |Rn−2(ρ)|+ 2 (n ≥ 4) 3.5

2413 ∼ 3142 2|Rn−1(ρ)|+ 2|Rn−2(ρ)| (n ≥ 3) 3.7

Table 2: Formulas to calculate |Rn(ρ)|.
Notice that while two of the seven formulas are closed-form, the remaining five are re-

cursive. To more easily compute terms late in the sequences represented by these formulas,
it makes sense to create generating functions. Following the general process for turning re-
cursive formulas into generating functions, we obtain Table 3.
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Pattern ρ Generating Function

1324 ∼ 4231, 2143 ∼ 3412
2x4 + 2x3 − x2 + x

2x2 − 3x+ 1

1423 ∼ 2314 ∼ 3241 ∼ 4132
x5 − x4 − 2x3 + x2 − x
−x4 + x3 − 2x2 + 3x− 1

1432 ∼ 2341 ∼ 3214 ∼ 4123
2x4 + x3 + x

−x2 − 2x+ 1

1342 ∼ 2431 ∼ 3124 ∼ 4213
x4 + x3 − x2 + x

x3 + x2 − 3x+ 1

2413 ∼ 3142
x

−2x2 − 2x+ 1

Table 3: Generating functions for the 18 patterns of length four with recursive formulas.

The coefficient of xn in the Taylor series of the function corresponding to ρ is |Rn(ρ)|.
Using algebraic techniques, we can also determine the rate of growth of these sequences using
the highest root of the corresponding characteristic polynomial, which are shown in Table 4.
In other words, |Rn(ρ)| ∼ αn.

Pattern ρ Highest Root α

1324 ∼ 4231, 2143 ∼ 3412 2

1423 ∼ 2314 ∼ 3241 ∼ 4132 2
3
+ 1

3
3
√

1
2
(43− 3

√
177) + 1

3
3
√

1
2
(43 + 3

√
177)

1432 ∼ 2341 ∼ 3214 ∼ 4123 1 +
√

2

1342 ∼ 2431 ∼ 3124 ∼ 4213 1 +
√

2

2413 ∼ 3142 1 +
√

3

Table 4: Rate of growth for the 18 patterns of length 4 with recursive formulas.

4 Avoiding Longer Ascending and Descending Patterns

In addition to our research on length four patterns, we also extended our results for avoiding
strictly ascending and descending patterns of length four (1234 and 4321) to strictly ascend-
ing and descending subsequences of any length. To do this, we generalized the Erdős-Szekeres
theorem.

The Erdős-Szekeres theorem states that for r, s ≥ 1, every permutation of length at least
(r − 1)(s− 1) + 1 must contain the pattern 12 · · · r or the pattern s · · · 21.

Seidenberg [6] proved this formula in 1959 using the pigeonhole principle. In his proof,
he takes an arbitrary permutation of length n and labels each digit in the permutation with
a coordinate pair (ai, bi), where ai is the length of the longest ascending subsequence that
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terminates at the ith digit and bi is the length of the longest descending subsequence that
terminates at the ith digit. He then proves that each coordinate pair assigned to a digit of
the permutation must be unique. We will call these coordinate pairs labels. Next, he shows
that there are only (r − 1)(s − 1) labels that allow the permutation to avoid the patterns
12 · · · r and s · · · 21 since there are (r−1) valid x-coordinates and (s−1) valid y-coordinates
the label can take. Thus, there are not enough valid labels to allow a permutation of length
(r − 1)(s − 1) + 1 to avoid both an ascending subsequence of length r and a descending
subsequence of length s by the pigeonhole principle.

We now apply the ideas of Erdős, Szekeres, and Siedenberg to reverse double lists that
avoid ascending subsequences and descending subsequences of any length, simultaneously. So
far, we have only avoided one pattern at a time. However, due to the symmetric structure
of reverse double lists, Corollary 1.2 can be used to show that Rn(ρ) = Rn(ρr) (since
(ππr)r = ππr). As a result, generalizing the Erdős-Szekeres theorem is the same thing as
generalizing Theorem 2.1 and Theorem 3.1.

Let’s first work an example. How long can a reverse double list be and still avoid 1234
and 4321? There are nine valid labels that the digits of the reverse double list can have,
which are the labels that contain an x-coordinate of less than 4 and a y-coordinate of less
than 4. Here are the nine labels:

(1, 1)(1, 2)(1, 3)

(2, 1)(2, 2)(2, 3)

(3, 1)(3, 2)(3, 3)

Figure 21: The nine labels with x and y-coordinates less than 4.

Now, we only know that for a permutation that each label must be unique. Some labels
in a reverse double list must be repeated - for example, πn will always have the same label as
(πr)1, since the two digits are adjacent and have the same magnitude. To understand which
labels can be repeated, it is helpful to arrange the labels by their magnitude, or in other
words, the sum of their x-coordinate and y-coordinate. Ordering Figure 21 by magnitude,
we get the following:

magnitude labels
2 (1, 1)
3 (1, 2)(2, 1)
4 (2, 2)(1, 3)(3, 1)
5 (2, 3)(3, 2)
6 (3, 3)

Figure 22: Figure 21 organized by magnitude.

After analyzing which labels can be found in π, we get a very interesting result. Given
the labels in Figure 22, any label (x, y) assigned to a digit in π so that x + y ≥ 5 will force

23



the reverse double list to have a length four ascending subsequence. This occurs because if
a digit p has label (x, y), then there are x − 1 numbers strictly less than p in an ascending
subsequence that precedes p. Similarly, there are y − 1 numbers strictly greater than p in a
descending subsequence that precedes p. However, this means that in πr, these y−1 numbers
will form an ascending subsequence using digits strictly greater than p. Thus, in the entire
reverse double list, we are guaranteed an ascending subsequence that contains at least x− 1
numbers less than p, p itself, and at least y − 1 numbers greater than p. So if x + y ≥ 5,
then there is an ascending subsequence of at least length (x− 1) + 1 + (y − 1) ≥ 4.

In this specific example, only six valid labels for digits in π remain. While this does not
guarantee that |R6(1234, 4321)| > 0, it does guarantee that for n ≥ 7, |Rn(1234, 4321)| = 0
since there are not enough pattern-avoiding labels for π when n ≥ 7.

This result generalizes to the following theorem, which we will now prove:

Theorem 4.1. |Rn(12 · · · r, r · · · 21)| = 0, for n ≥ Tr−1 + 1, where Tr−1 is the (r − 1)th

triangular number.

Proof. Consider π ∈ Rn(12 · · · r, r · · · 21). Observe that no pattern avoiding labels (x, y)
exists of magnitude x+ y ≥ r + 1. If there existed such a label, then the reverse double list
would have an ascending subsequence of at least length (x− 1) + 1 + (y− 1) ≥ r. So the list
would have an ascending subsequence of length r.

This means that the only valid labels to label the digits of π are the labels (x, y), such
that x+ y ≤ r. There are i− 1 labels (x, y) where x, y ≥ 1 and x+ y = i. Thus, there are

r∑
i=2

(i− 1) =
r−1∑
i=1

i = Tr−1

valid labels. This means that the maximum length of π is Tr−1 since this is the maximum
number of pattern-avoiding labels π can use. (Recall that every label in π must be unique.)

Thus, |Rn(12 · · · r, r · · · 21)| = 0 for all n ≥ Tr−1 + 1, since this is the first n where a label
that does not avoid the patterns must be used.

Now that a lower bound for when |Rn(12 · · · r, r · · · 21)| = 0 has been established, the
next reasonable question to ask is, “Is this the lowest possible bound?” In other words,
does |Rn(12 · · · r, r · · · 21)| 6= 0 for all n ≤ Tr−1? It happens, and can be proven, that the
previously established bound is in fact sharp. Let’s first consider the critical case, where
n = Tr−1, and prove that |Rn(12 · · · r, r · · · 21)| 6= 0 for this n. Specifically, we will show
that Rn(12 · · · r, r · · · 21)| ≥ 1 for n = Tr−1, or in other words, when the number of pattern-
avoiding labels is exactly equal to the length of a set of reverse double lists, a reverse double
list that avoids ascending and descending subsequences of length r can be constructed using
these labels.

First, it needs to be shown that it is possible to construct a permutation π so that π
utilizes all n labels.

It turns out that π can always be reverse engineered in a way such that π uses the coordi-
nate pairs so that labels with lower x-coordinates precede labels with higher x-coordinates,
and for labels with the same x-coordinate, labels with lower y-coordinates precede labels
with higher y-coordinates. For example, if r = 4, there are six labels to build π with, shown
below:

24



x-coordinate labels
1 (1, 1)(1, 2)(1, 3)
2 (2, 1)(2, 2)
3 (3, 1)

These labels, now sorted by x-coordinate, need to be assigned by row in the figure above,
going left to right in each row. Let Ja = a · · · 1. Since there are three labels with x-
coordinate 1, two labels with x-coordinate 2, and one label with x-coordinate 3, we can
create the permutation π = J3 ⊕ J2 ⊕ J1 = 321546. Now, it can be verified through brute
force that ππr does not contain an ascending or descending subsequence of length four.

Now, this method of labeling will be generalized to show that we can always build a
permutation π such that when π is built into a reverse double list, it avoids ascending and
descending subsequences of length r. More concisely, we will prove the following theorem:

Theorem 4.2. |Rn(12 · · · r, r · · · 21)| ≥ 1, for n ≤ Tr−1.

Proof. Suppose n = Tr−1. So there are Tr−1 labels to assign. The labels available are shown
below:

(1, 1)
(1, 2)(2, 1)

...
. . .

(1, r − 1) · · · (r − 1, 1)

Figure 23: The Tr−1 labels available, all of which will be used to construct π.

So there are r − 1 labels that have an x-coordinate of 1, r − 2 labels that have an x-
coordinate of 2, and so on and so forth, until the 1 final label that has an x-coordinate of
r − 1 is reached.

There is one specific class of permutation that can always use all Tr−1 available labels.
Let Ja = a · · · 1. Construct the permutation π = Jr−1 ⊕ Jr−2 ⊕ · · · ⊕ J2 ⊕ J1, which is
of length Tr−1. This permutation does indeed contain all the available labels in the order
detailed before.

Let’s first show that the subsequence Jr−1 has the first r − 1 labels in the correct order.
Each of the digits in Jr−1 is the smallest digit seen yet, so it has an x-coordinate of 1.
Now, since the digits labeled are a strictly descending subsequence, each label will have a
y-coordinate one larger than the previous label, giving the correct y-coordinates.

Now, check that the subsequence Jr−2 has the next r−2 labels in the correct order. Each
digit in Jr−2 is larger than any digit in Jr−1. However, since Jr−1 is strictly descending, only
an ascending subsequence of correct length 2 can be formed between a digit in Jr−1 and
Jr−2 because the digits in Jr−2 are strictly descending. Now, since the digits in Jr−2 are the
largest digits seen yet, and strictly descend, each label will have a y-coordinate one larger
than the previous label, giving the correct y-coordinates.

In general, each digit in Ja, 1 ≤ a ≤ r − 1, will be part of an ascending subsequence of
correct length r− a formed by a single digit in each Jb, 1 ≤ b < a. As before, Ja’s digits are
the biggest set of digits seen yet and strictly descend, so the digits in Ja have the correct
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y-coordinates as well. Thus, all the available labels appear, and they do so in the correct
order.

It now remains to show that when the reverse double list ππr is formed from π = Jr−1⊕
Jr−2 ⊕ · · · ⊕ J2 ⊕ J1, ππ

r avoids both ascending subsequences of length r and descending
subsequences of length r. Observe that when Ia is denoted as 1 · · · a, πr = I1 	 I2 	 · · · 	
Ir−2 	 Ir−1.

This reverse double list will always have the following dot diagram form:

Figure 24: Generalized dot diagram of the constructed reverse double list.

Notice that each Ja is a block of π, and that each Ia is a block of πr. Each of these blocks
are a maximal set of adjacent digits with consecutive values.

Now, Corollary 1.2 states that if a list avoids a pattern, then the reverse of that list
avoids the reverse of that pattern. However, the reverse of a reverse double list is exactly the
same reverse double list. So it is sufficient to show that a reverse double list avoids 1 · · · r in
order to also show that the reverse double list also avoids (1 · · · r)r = r · · · 1.

The synthesized reverse double list does indeed avoid ascending subsequences of length r.
Consider an arbitrary digit d in ππr. What is the length of the longest ascending subsequence
of numbers less than or equal to d that terminates at d? What is the length of the longest
ascending subsequence of numbers strictly greater than d that is found after d? If the
magnitude of these answers combined is less than r, then an ascending subsequence of length
r cannot be found. Condition on whether d is found in an ascending block (Ji) or descending
block (Ii).

Case 1. Suppose d ∈ Ji.
The length of the longest ascending subsequence of numbers less than or equal to d that

terminates at d is simply the number of descending blocks leading up to and including Ji.
Because the blocks in π are strictly descending subsequences, a maximum of one digit can be
taken from each block to create this ascending subsequence. So this subsequence will have
length at most (r−1)− (i−1), since there are r−1 total Ji blocks, i−1 of which are blocks
higher than Ji.

The length of the longest ascending subsequence of numbers strictly greater than d that
is found after d is the larger of the following:

• the number of digits larger than d in Ji.
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• the number of digits in the block Ji−1, which is directly above the block Ji,

Both of these cases can maximally yield i − 1 digits. For example, if d is in J3, there
are at most two digits in J3 that are greater than d, and two digits in the J2 block directly
above d.

So all together, combining the two parts of this case, d can be part of an ascending
subsequence with length that is at most (r − 1)− (i− 1) + (i− 1) = (r − 1). Therefore, an
ascending subsequence of length r cannot be formed.

Case 2. Suppose d ∈ Ii.
The length of the longest ascending subsequence of numbers less than or equal to d that

terminates at d is the number of digits less than or equal to d in Ii, plus the number of Jj
blocks, such that j > i. There are at most i digits less than or equal to d in Ii, and at
most (r − 1)− i number of Ij blocks, yielding an ascending subsequence of maximal length
i+ (r − 1)− i = r − 1.

So, if just a single digit could be found after d such that the digit is greater than d, an
ascending subsequence of length r can be formed. However, the only way such a digit exists
is if d is not the largest digit in Ii. But if d is not the largest digit in Ii, then there are not i
digits less than or equal to d in Ii. Specifically, if there are a digits greater than d found in
Ii, then there are i− a digits less than or equal to d found in Ii.

As a result, the maximum length of an ascending subsequence using d in this case is also
r − 1. Thus, an ascending subsequence of length r cannot be formed.

Therefore, it is possible to construct a specific permutation that uses all Tr−1 available
labels, and the reverse double list built out of this permutation avoids ascending and de-
scending subsequences of length r.

Thus, |Rn(12 · · · r, r · · · 21)| ≥ 1 for n = Tr−1.
Now that the critical case has been proved, consider the synthesized reverse double list

again, except this time remove both digits of magnitude n, the highest magnitude in this list.
These two copies of n only served to help build ascending and descending subsequences, so
when they are removed, the remainder of the reverse double list (which is of length Tr−1− 1
now), will still avoid ascending and descending subsequences of length r. This process can
be iterated successfully until all digits of the reverse double list have been removed, and at
each step the resulting smaller reverse double list will always avoid ascending and descending
subsequences of length r.

So |Rn(12 · · · r, r · · · 21)| ≥ 1 for all n ≤ Tr−1.

So now it has been shown that our bound for reverse double lists avoiding 1 · · · r and
r · · · 1 is indeed the lowest possible bound.

5 Permutation Statistics

After computing formulas for the number of reverse double lists avoiding patterns of up to
length four, it is worth taking a look at how permutation statistics can be applied to reverse
double lists. We will generalize the definitions of three particular permutation statistics so
that they can be applied to reverse double lists.
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The number of left to right maxima in a list, denoted lrmax(π), is the number of
times a number higher than all numbers encountered previously is found while scanning the
list from left to right.

The number of descents in a list, denoted des(π), is the number of times πi > πi+1, 1 ≤
i ≤ n− 1.

The number of inversions in a list, denoted inv(π), is |{(i, j)|πi > πj, i < j}|, or in other
words, the number of pairs of digits in π so that a bigger digit precedes a smaller digit.

Due to the symmetric structure of reverse double lists, permutation statistics follow fairly
trivial patterns.

Proposition 1. lrmax(π) = lrmax(ππr)

Proof. Suppose we have π ∈ Sn, and lrmax(π) = a. Since the digit n ∈ π, there is no
number m ∈ πr such that m > n, since n is the highest digit in ππr. As a result, no m exists
to increase the lrmax above a. So lrmax(π) = lrmax(ππr).

Proposition 2. des(ππr) = n− 1, where n is the length of π.

Proof. Suppose we have ππr ∈ Rn. Consider π. Since the only places descents can occur in
π are between two consecutive numbers, there are then n− 1 spots in π where a descent can
occur. Similarly, there are n − 1 spots in πr. Each of these n − 1 spots must be an ascent
or a descent. Consider the ath spot, 1 ≤ a ≤ n− 1. If the ath spot is a descent, then the ath

spot (while reading from right to left) in πr is an ascent. If the ath spot is an ascent, then
the ath spot (while reading from right to left) in πr is a descent. So there will be exactly
one descent when you consider the ath spot in π (from left to right) and the the ath spot in
πr (from right to left). However, there is one spot we have not considered - the spot created
between πn and πr

1. However, πn = πr
1, so this spot is neither an ascent or descent. Since

there are n− 1 spots in π, there are in total n− 1 descents in ππr.

Proposition 3. inv(ππr) = 2Tn−1, where Tn−1 is the (n− 1)th triangular number.

Proof. Consider each of the digits 2 through n, and consider an arbitrary digit b in this
range. There are b − 1 digits less than b. Each of these b − 1 digits can be found after the
two b’s exactly twice. Consider the digit c, c < b. Then, c either comes before the first b or
after the first b in π. If c comes before the first b in π, then the second c will come after
the second b in πr. So the first c does not create an inversion relative to b, but the second
c creates two inversions. If the first c comes after the first b in π, then the second c comes
before the second b. So the first c creates one inversion relative to b, as does the second c.
So regardless of the positions of the numbers smaller than b, each digit will create exactly
two inversions relative to b. So each b creates 2(b − 1) inversions. Since b = 1 creates no
inversions, the total number of inversions of a reverse double list of length n is

n∑
b=2

2(b− 1) = 2
n∑

b=2

(b− 1) = 2
n−1∑
b=1

b = 2Tn−1.
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When calculating permutation statistics using an entire reverse double list, the results
are fairly straightforward. To expand on this concept, one could choose to look at the
permutation statistics on only the first half of a reverse double list that avoids a specific
pattern.

6 Final Thoughts

In this paper, we analyzed the structure of reverse double lists that avoided patterns of up to
length four, created a bound for when zero reverse double lists avoid ascending/descending
patterns, and briefly looked into permutation statistics. There were several questions result-
ing from our work that could be investigated for future research:

1. Does looking at the permutation statistics for the first half of the reverse double lists
lead to more interesting results?

2. We saw that when avoiding 1234 and 4321, |R5(1234, 4321)| = |R6(1234, 4321)|. We
noticed the same behavior in Sage when avoiding 12345 and 54321 with n = 9 and n = 10.
Why do the last two numbers repeat before the number of ascending/descending avoiding
reverse double lists becomes zero?

3. In many of the proofs, we saw that the last two numbers in π could be interchanged.
Why is this so?
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