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Abstract

A tree is a vertex-edge graph that is connected and contains no cycles. A 4−equitable labeling of a graph is
an assignment of labels {0, 1, 2, 3} to the vertices. The edge labels are the absolute difference of the labels
of the vertices that they are incident to. The labels must be distributed as evenly as possible amongst the
vertices and they must also be distributed as evenly as possible amongst the edges. We study 4−equitable
labelings of different trees; we found that all caterpillars, symmetric generalizedn−stars, and complete n−ary
trees for all n ∈ N are 4−equitable. We believe that proving all trees are 4-equitable will bring us one step
closer to proving the famous graceful tree conjecture that has been open for half a century.

Introduction

In 1964, Ringel conjectured that K2n+1 can be decomposed into copies of 2n + 1 isomorphic trees with
n vertices regardless of the structure of the tree [5]. In order to attack this conjecture, Rosa introduced
β−valuations. Golomb then called these labelings graceful labelings, a name that is now the standard [4].
A graceful labeling of a graph with e edges is a labeling where each vertex gets a distinct label from the set
{0, 1, ..., e}. Each edge label is the absolute difference of its incident vertices, and all edge labels must also
be distinct [6]. Ringel and Kotzig then conjectured that all trees are graceful. Information on all graceful
labeling results is collected in Gallian’s Dynamic Survey of Graph Labeling [3].

In 1995, Cahit generalized graceful labelings to k−equitable labelings. A k−equitable labeling is a la-
beling such that the vertices are labeled with the numbers {0, 1, ..., k − 1} where the labels are distributed
as evenly as possible. The edge labels are defined as the absolute difference of the vertices it is incident
to, the same as the graceful labelings. The edge labels must also be distributed evenly. Cahit conjectured
that all trees are k−equitable [1]. He then went on to prove all trees are 2−equitable, and specific trees are
3−equitable [2]. It is known that paths and 1−centipedes are k−equitable for all k ∈ N and all trees are
3−equitable [7].

We looked at 4−equitable labelings of different sets of trees. In this paper we show that caterpillars,
symmetric generalized n−stars, and complete n−ary trees are all 4−equitable. However, we used different
approaches than those used to prove that all trees are 2− and 3−equitable.

Caterpillars

Definition 1. A labeling of a graph is a function f from the vertex set to some subset of the natural numbers.
The image of a vertex is called its label. We assign the label |f(u)− f(v)| to the edge incident with vertices
u and v. In a 4−equitable labeling, the image of f is the set {0, 1, 2, 3}. We require both the vertex labels
and the edge labels to be as equally distributed as possible, i.e., if vi denotes the number of vertices labeled
i and ei denotes the number of edges labeled i, we require |vi − vj | ≤ 1 and |ei − ej | ≤ 1 for every i, j in
{0, 1, 2, 3}. We will refer to a vertex labeled i as an i−vertex. Likewise, we will refer to an edge labeled i as
an i-edge.
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Definition 2. A caterpillar is a tree where every vertex is at most distance one away from the longest path.
This longest path is called the spine. Any leaves not on the spine are called legs.

Lemma 1. There exists a 4−equitable labeling of the spine where there are at least as many legs connected
to 0− and 3−vertices as there are connected to 1−and 2−vertices.

Proof:
Given any caterpillar, find its spine. Label this path with the pattern 3−0−2−1−1−2−0−3, repeating as
necessary. If the original path labeling led to more legs from 1− and 2−vertices than from 0− and 3−vertices,
then we use the pattern 1−2−0−3−3−0−2−1. We know that there are at least as many legs connected
to 0− and 3−vertices as 1− and 2−vertices, because the second pattern switches every 1 and 2 with 3 and
0, respectively.

Theorem 1. All Caterpillars are 4−equitable

Proof:
Label the caterpillar’s spine so that there are more legs from 0− and 3−vertices than 1− and 2−vertices. If
the path is of length 1 (mod 4) or of length 3 (mod 4), do not label the last vertex. In these two cases, we
will treat the unlabeled edge and vertex as a leg. This means paths of length 0 (mod 4) and 1 (mod 4) will
be treated the same way, and paths of length 2 (mod 4) and 3 (mod 4) will be treated another way. Notice
that this path labeling pattern is 4−equitable at each step; however, this pattern is not unique; for example,
the shifted pattern 1− 2− 0− 3− 3− 0− 2− 1 also provides a labeling of a path that is 4−equitable in each
step. Our original pattern will be modified as necessary.

Now that we have the spine labeled 4−equitably, we must label the legs. Once we have labeled the spine
to have at least as many legs from 0− and 3− vertices as 1− and 2−vertices, we note the remaining unla-
beled vertices and what they are connected to. We then label the legs in groups of four using the following
labelings if possible. Start with the first pattern and use as many times as possible before starting with the
next pattern.

1. If there is 1 unlabeled leg available on each vertex label 1, 0, 2, 3, then create edges 1− 0, 0− 3, 2− 2,
and 3− 1

2. If there are 2 unlabeled legs available on 0−vertices and 2 on 2−vertices, then create edges 0−3, 0−1,
2− 2, and 2− 0.

3. If there are 2 unlabeled legs available on 2−vertices and 2 on 3−vertices, then create edges 2−3, 2−2,
3− 1, and 3− 0.

4. If there are 2 unlabeled legs available on 0−vertices and 2 on 1−vertices, then create edges 0−3, 0−2,
1− 1, and 1− 0.

5. If there are 2 unlabeled legs available on 1−vertices and 2 on 3−vertices, then create edges 1−3, 1−1,
3− 0, and 3− 2.

6. If there is 1 unlabeled leg available on a 2−vertex and 3 on 0−vertices, then create edges 0− 0, 0− 2,
0− 3, and 2− 1.

7. If there is 1 unlabeled leg available on a 2−vertex, 1 on a 0−vertex, and 2 on 3−vertices, then create
edges 2− 1, 0− 2, 3− 3, and 3− 0.

8. If there is 1 unlabeled leg available on a 1−vertex and 3 on 3−vertices, then create edges 3− 0, 3− 1,
3− 3, and 1− 2.

9. If there is 1 unlabeled leg available on a 1−vertex, 1 on a 3−vertex, and 2 on 0−vertices, then create
edges 1− 2, 3− 1, 0− 3, and 0− 0.
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10. If there are 2 unlabeled legs available on 0−vertices and 2 on 3−vertices, then create edges 0−0, 0−3,
3− 1, and 3− 2.

11. If there are 4 unlabeled legs available on 0−vertices, then create egdes 0− 0, 0− 1, 0− 2, and 0− 3.

12. If there are 4 unlabeled legs available on 3−vertices, then create egdes 3− 0, 3− 1, 3− 2, and 3− 3.

We have labeled legs in groups of 4, adding 4 distinct vertex labels and 4 distinct edge labels in each step.
This way, the 4−equitability of the caterpillar will be the same as the 4−equitability of the spine. Hence the
distribution of extra edge and vertex labels does not change. If the spine was of length 0 (mod 4), either
path labeling pattern results in a perfectly even set of vertex labels, and one less 0−edge. If the spine was
of length 2 (mod 4), using the pattern results in either an extra 0− and 3−vertex, and an extra 3−edge, or
results in an extra 1− and 2−vertex, and an extra 1−edge. After reducing the amount of unlabeled legs as
much as possible by the previous groupings, we will be left with up to 4 unlabeled vertices. We may have
up to 1 unlabeled leg from a 1−vertex, up to 1 from a 2−vertex, up to 3 from 0−vertices, and up to 3 from
3−vertices. It could also be the case that we may have 2 legs from 1−vertices, 1 from a 0−vertex, and 1
from a 3−vertex, or 2 legs from 2−vertices, 1 from a 0−vertex, and 1 from a 3−vertex. Unfortunately, even
though there are no more than 4 vertices to label, we will need to consider over 20 possibilities. In the rest
of this section, we will present all of these for the sake of completeness.

Case 1. Longest path is 0 (mod 4).

1. If there is one unlabeled leg from a 2−vertex, one from a 1−vertex and two from 0−vertices, create
the edges 1− 1, 2− 3, 0− 2, 0− 0.

2. If there is one unlabeled leg from a 2−vertex, one from a 1−vertex and two from 3−vertices, create
the edges 2− 2, 1− 0, 0− 1, 0− 3.

Otherwise: If there exists a leg on a 1−vertex, create a 0−edge by labeling the leaf 1. If there exists a leg
on a 2−vertex, create a 0−edge by labeling the leaf 2. If all legs are on 0− and 3−vertices, create edge 0− 0
and/or 3− 3, then use other vertex labels to complete the labeling.

Case 2. Longest path is 2 (mod 4), with extra 3−edge.

If there is exactly one unlabeled leg on both a 0−vertex and a 3−vertex, we will need to go back to the
labeling of the caterpillar’s spine, which we labeled with the pattern 3− 0− 2− 1− 1− 2− 0− 3. In order to
4−equitably label the graph, we will remove the label on the first 3−vertex on the spine, and relabel it with
a 1. Then, we will use the unlabeled legs to create edges 0− 2 and 3− 3, which will result in a 4−equitable
labeling. Otherwise do one of the following:

1. If there are only unlabeled legs from 0−vertices, create edges in the order 0 − 1, 0 − 2, then 0 − 0 as
necessary.

2. If there are only unlabeled legs from 3−vertices, create edges in the order 3 − 1, 3 − 2, then 3 − 3 as
necessary.

3. If there is one unlabeled leg from a 3−vertex, and the rest (at least two) are from 0−vertices, create
the edges in the order 3− 3, 0− 1, 0− 2, 0− 0.

4. If there is one unlabeled leg from a 0−vertex, and the rest (at least two) are from 3−vertices, create
the edges in the order 0− 0, 3− 1, 3− 2, 3− 3.

5. If there is one unlabeled leg from a 2−vertex, and the rest (if any) are from 0−vertices, create the
edges in the order 2− 1, 0− 2, 0− 0.

6. If there is one unlabeled leg from a 2−vertex, and the rest are from 3−vertices, create the edges in the
order 2− 2, 3− 1, 3− 2, 3− 3.
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7. If there is one unlabeled leg from a 2−vertex, one from a 3−vertex and the rest are from 0−vertices,
create the edges in the order 2− 2, 3− 1, 0− 1, 0− 2.

8. If there is one unlabeled leg from a 1−vertex, and the rest are from 0−vertices, create the edges in the
order 1− 1, 0− 2, 0− 1, 0− 0.

9. If there is one unlabeled leg from a 1−vertex, and the rest (if any) are from 3−vertices, create the
edges in the order 1− 2, 3− 1, 3− 3.

10. If there is one unlabeled leg from a 0−vertex, one from a 1−vertex and the rest are from 3−vertices,
create the edges in the order 0− 0, 1− 2, 3− 1, 3− 2.

11. If there is one unlabeled leg from a 2−vertex, one from a 1−vertex and two from 0−vertices, create
the edges 1− 3, 2− 2, 0− 1, 0− 2.

12. If there is one unlabeled leg from a 2−vertex, one from a 1−vertex and two from 3−vertices, create
the edges 2− 2, 1− 0, 3− 1, 3− 2.

Case 3. Longest path is 2 (mod 4), with extra 1−edge.

If there is exactly one unlabeled leg on both a 0−vertex and a 3−vertex, we will need to go back to the
labeling of the caterpillar’s spine, which we labeled with the pattern 1− 2− 0− 3− 3− 0− 2− 1. In order to
4−equitably label the graph, we will remove the label on the first 1−vertex on the spine, and relabel it with
a 0. Then, we will use the unlabeled legs to create edges 0− 1 and 3− 3, which will result in a 4−equitable
labeling. Otherwise, do one of the following:

1. If there are only unlabeled legs from 0−vertices, create edges in the order 0 − 3, 0 − 0, then 0 − 2 as
necessary.

2. If there are only unlabeled legs from 3−vertices, create edges in the order 3 − 0, 3 − 3, then 3 − 1 as
necessary.

3. If there is one unlabeled leg from a 3−vertex, and the rest (at least two) are from 0−vertices, create
the edges in the order 3− 1, 0− 0, 0− 3, 0− 2.

4. If there is one unlabeled leg from a 0−vertex, and the rest (at least two) are from 3−vertices, create
the edges in the order 0− 2, 3− 0, 3− 3, 3− 1.

5. If there is one unlabeled leg from a 2−vertex, and the rest (if any) are from 0−vertices, create the
edges in the order 2− 0, 0− 3, 0− 0.

6. If there is one unlabeled leg from a 2−vertex, and the rest are from 3−vertices, create the edges in the
order 2− 0, 3− 3, 3− 0, 3− 1.

7. If there is one unlabeled leg from a 2−vertex, one from a 3−vertex and the rest are from 0−vertices,
create the edges in the order 2− 0, 3− 3, 0− 3, 0− 1.

8. If there is one unlabeled leg from a 1−vertex, and the rest are from 0−vertices, create the edges in the
order 1− 3, 0− 0, 0− 3, 0− 1.

9. If there is one unlabeled leg from a 1−vertex, and the rest (if any) are from 3−vertices, create the
edges in the order 1− 3, 3− 0, 3− 3.

10. If there is one unlabeled leg from a 0−vertex, one from a 1−vertex and the rest are from 3−vertices,
create the edges in the order 0− 0, 1− 3, 3− 0, 3− 3.

11. If there is one unlabeled leg from a 2−vertex, one from a 1−vertex and two from 0−vertices, create
the edges 1− 1, 2− 0, 0− 3, 0− 2.
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12. If there is one unlabeled leg from a 2−vertex, one from a 1−vertex and two from 3−vertices, create
the edges 2− 2, 1− 3, 3− 0, 3− 1.

Now that all cases are accounted for, we can conclude that all caterpillars are 4−equitable.

Symmetric Generalized n−stars
Definition 3. A symmetric generalized n−star for n ≥ 2 is a tree in which all leaves are the same distance
from a central vertex of degree n. The number of leaves in the tree is equal to the maximum degree of the
graph. A level is the set of all vertices the same distance away from the root vertex.

Lemma 2. All symmetric generalized 2−stars are 4−equitable.

Proof
A symmetric generalized 2−star is simply a path. We know that all paths are 4−equitable by following a
path labeling pattern that keeps the path 4−equitable at each step, such as 3 − 0 − 2 − 1 − 1 − 2 − 0 − 3
repeating. We could also use the alternate path labeling pattern 0 − 3 − 1 − 2 − 2 − 1 − 3 − 0 repeating.
Notice that for both, the same sequence of edge labels are produced, namely, 3, 2, 1, 0, 1, 2, 3, 0 repeating.

Lemma 3. All symmetric generalized 3−stars are 4−equitable.

Proof :
Let us consider a symmetric generalized 3−star as a tree rooted at the vertex of maximum degree. We use a
labeling pattern where we label each level at a time such that the tree stays 4−equitable at each step of the
pattern. To do this, we use the 4 subsets of {0, 1, 2, 3} with a cardinality of three as vertex labels and label the
vertices in a way such that the edge differences also produce the 4 subsets of {0, 1, 2, 3}. We start by labeling
the root vertex 0. We then go in a clockwise direction following the pattern 3−2−1, 3−0−2, 0−1−2, 3−1−0.
This takes care of the first four levels of the symmetric generalized 3-star. Now for the next four levels, the
concept is essentialy the same, but since we are not starting from a root vertex of zero, but are continuing
from our 3− 1− 0 leaves, we must start from the beginning, switching path one with path three and keeping
the center path the same. Namely, the vertex labels on the next four levels of the complete generalized 3−star
are 1 − 2 − 3, 2 − 0 − 3, 2 − 1 − 0, 0 − 1 − 3 moving in the same direction. These two patterns alternate as
we label further and further along a symmetric generalized 3−star. At each level, the vertex labels produce
three different edge labels using three different vertex labels, and the star remains 4−equitable at each level.

Lemma 4. All symmetric generalized 4−stars are 4−equitable.

Proof :
With a similar argument, we can also see that all symmetric generalized 4−stars are also 4-equitable. We
begin by labeling the root vertex 0. We then label, following a clockwise motion, the vertices at each level
with 0− 1− 2− 3, then 2− 1− 3− 0. Since we are working with exactly four vertices at each level, we can
simply alternate between these two labelings. What is essential is that we use four different vertex labels
and four different edge labels at each level. Thus, the tree remains 4−equitable as the symmetric generalized
4-star gets larger and larger. Specifically, the edges are distributed evenly and there is one extra zero vertex.

Lemma 5. All symmetric generalized 5−stars are 4−equitable.

Proof :
Notice that we can add a path to a symmetric generalized 4−star to create a symmetric generalized 5−star.
In order to keep the new generalized 5−star 4−equitable at each level, we must choose a vertex label that
will be repeated at each level as well as an edge label to repeated at each level. To do this, we can simply
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label this extra path following the path labeling pattern that starts with 0 that is already the label of the
root vertex and we continue with 3 − 1 − 2 − 2 − 1 − 0 − 3 which we know produces different edge labels
and vertex labels at each step in groups of 4, which is consistent with the labels for the complete generalized
4−star. This results in a 4−equitable labeling of the symmetric generalized star with five leaves.

Lemma 6. All symmetric generalized 6−stars are 4−equitable.

Proof :
With a similar argument, we can add two paths to the symmetric generalized 4−star to create a symmetric
generalized 6−star. Notice in the alternate path labeling pattern : 3−0−2−1−1−2−0−3−3−0−2−1−1
that the vertices and edges are asymmetric about the indicated 0. We will take this vertex label as the label
of the root vertex. The asymmetry of the path labeling pattern about the root vertex is essential for keeping
the symmetric generalized 6−star 4−equitable at each step.

Theorem 2. All symmetric generalized stars are 4−equitable.

To create a 4−equitable labeling of a symmetric generalized n−star for all n ≥ 2 we will connect copies
of a generalized 4−star with one copy of a symmetric generalized m−star where m < 4. i.e, if n = 4k +m,
then we will use k copies of our symmetric generalized 4−star and one copy of our symmetric generalized
m−star if m 6= 1. If m = 1, we use k − 1 copies of the symmetric generalized 4−star and one copy of our
symmetric generalized 5−star.

Complete n−ary Trees

In order to prove all complete n−ary trees are 4−equitable, we first handle binary, ternary, quaternary, and
5−ary trees.

Lemma 7. All Complete Binary Trees are 4-equitable

Proof:
Given any complete binary tree, label the root vertex 3. Label the children of each 0− and 2−vertices 2
and 3; label the children of each 1− and 3−vertices 0 and 1. On level 2 the 4 vertices are labeled 0, 1, 2, 3.
The number of vertices on every future level is a multiple of 4, and the vertex labels are evenly distributed
on each level. The edges between any 3− or 0−vertex and its children are 3 and 2; the edges between any
2− or 1−vertex and its children are 0 and 1. The edge labels between levels 1 and 2 are completely evenly
distributed. The number of edges after every future level is a multiple of 4, and the edge labels are evenly
distributed on each level. Therefore, all complete binary trees are 4−equitable.

We will make use of the following facts to prove all ternary trees are 4−equitable. If a number has the
form (8a+ 3), then 9(8a+ 3) = (8 + 1)(8a+ 3) = 64a+ 8a+ 24 + 3 = 8B + 3. This implies that every odd
exponent of 3 is of the form (8B + 3) and is congruent to 3 (mod 4). If a number has the form (8a + 1),
then 9(8a+ 1) = (8 + 1)(8a+ 1) = 8B + 1. This implies that every even exponent of 3 is of the form 8B + 1
and is congruent to 1 (mod 4).

Claim 1. 3k+1−1
2 ≡ 1 (mod 4) when k is even.

Proof:
If k is even, then k + 1 is odd, so 3(k+1) is of the form 8B + 3, and 8B+3−1

2 = 4B + 1 ≡ 1 (mod 4).

Claim 2. 3k+1 − 1 ≡ 0 (mod 4) when k is odd.
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Proof:
If k is odd, then the exponent is even, so 3k+1 is of the form 8B+1, and 8B+1−1 = 8B, which is divisible by 4.

Lemma 8. All complete ternary trees are 4−equitable.

Proof:
Given any complete ternary tree, label the root vertex 3. Label the children of each 3−vertex with one
0−vertex, one 1−vertex, and one 2−vertex. Label the children of each 2−vertex, with one 0−vertex, one
1−vertex, and one 2−vertex. Label the children of each 1−vertex, with one 1−vertex, one 2−vertex, and
one 3−vertex. Label the children of each 0−vertex with two of the vertices 3 and one of the vertices 0.
The total number of vertices in the tree is given by

∑k
i=0 3i = 3k+1−1

2 . We know that either the number
of vertices or number of edges in the tree is divisible by 4, because each power of 3 is congruent to either
1(mod 4) or 0(mod 4), and the total number of edges is one less than the total number of vertices.

Let vl,i be the number of vertices labeled i in level l, and el,i be the number of edges labeled i in level
l. The distribution of vertex labels in level l + 1 is as follows: The number of 0 vertices in level l + 1 is
equal to vl,0 + vl,2 + vl,3; the number of 1 vertices in level l + 1 is equal to vl,1 + vl,2 + vl,3; The number of
2 vertices in level l + 1 is equal to vl,1 + vl,2 + vl,3; and the number of 3 vertices in level l + 1 is equal to
2vl,0 + vl,2. In level 1 we have v1,3 = 0 and v1,1 = v1,2 = v1,0 = 1 and, with the equations for the vertex
label distribution in level l + 1 when l = 1, we see there exists an extra 3−vertex in level 2. Substituting
v2,0 into the previous formulas we get v3,0 = v3,1 = v3,2 = v2,0 + v2,0 + (v2,0 + 1) = 3v1,0 + 1. Also,
v3,3 = 2v2,0 + v1,0 = 3v2,0, so level 3 has one less 3−vertex than 0−, 1−, and 2−vertices. Since every odd
exponent of 3 is congruent to 3 (mod 4), and every even exponent of 3 is congruent to 1(mod 4), the pattern
of having one extra 3−vertex in a level and one extra 0, 1, and 2−vertices in the next level continues to
repeat infinitely. This means if the vertex labels include an extra 3 in one level, then the labels of the next
level include an extra 0, 1, and 2, and the reverse also holds true. Furthermore, because the total number
of vertices in the tree is congruent to either 1(mod 4) or 0(mod 4), the pattern for total vertices in the
tree of an extra 3−vertex and then completely even vertex labels repeats infinitely. A similar argument for
the total number of edge labels shows a repeating pattern of one less 0−edge followed by the edge labels
being distributed completely evenly in the whole graph. Therefore, all complete ternary trees are 4−equitible

Lemma 9. All complete quaternary trees are 4−equitable.

Proof:
Given any complete quaternary tree, let vl,i be the number of vertices labeled i, and el,i be the number of
edges labeled i in level l. Label the root vertex 3. Label the children of each 3−vertex use one 0−vertex,
1−vertex, 2−vertex, and 3−vertex. Label the children of each 2−vertex label three of the vertices 0 and label
one of the vertices 2. Label the children of each 1−vertex label half of the vertices 1 and the other half of the
vertices 2. For children of each 0−vertex label three of the vertices 3 and one of the vertices 1. On level 2 the
vertices are evenly distributed, and the number of children is always divisible by 4. The number of 3−vertices
in level l + 1 is equal to (vl,3 + 3vl,0); the number of 2−vertices in level l + 1 is equal to (vl,3 + vl,2 + 2vl,1);
the number of 1 vertices in level l + 1 is equal to (vl,3 + 2vl,2 + vl,0); and the number of 0 vertices in level
l + 1 is equal to (vl,3 + 3vl,2). We know that v2,0 = v2,1 = v2,2 = v2,3 and v3,0 = v3,1 = v3,2 = v3,3 because
the vertex labels on level 2 are distributed as evenly as possible. Therefore, the equation for each vertex
label in level l + 1 can be written as (4vl,0). This means if the vertex labels are equally distributed on level
l, then they are also equally distributed on level l + 1. This means that the vertex labels are distributed as
evenly as possible at every level for any complete quaternary tree, so then the labels are evenly distributed
for the whole graph. A similar argument shows that the edge labels are distributed as evenly as possible.
Therefore, all complete quaternary trees are 4−equitable.

Lemma 10. All complete 5−ary trees are 4−equitable.
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Proof:
Given any complete 5−ary tree, label the root vertex 3. Label the vertices in level 1 using two 0’s, one 1,
one 2, and one 3. Treat one 0−vertex, the 1−vertex, the 2−vertex, and the 3−vertex as a group, this will
be referred to in the future as group 1. Label the children of the 0−vertex 3, the children of the 1−vertex 0,
the children of the 2−vertex 2, and the children of the 3−vertex 1; the vertex and edge labels of this group
are distributed completely evenly. Follow the same pattern of vertex labeling for the children of this group,
and the labels will continue to be distributed completely evenly. Then, from the 0−vertex that was not put
in the group of 4, label the children with two 2−vertices, a 1−vertex, a 3−vertex, and a 0−vertex. Treat the
1−vertex, 2−vertices, and 3−vertex as a separate group. Label the children of the 1−vertex 3, the children
of one 2−vertex 1, the children of the other 2−vertex 2, and the children of the 3−vertex 0; the vertex and
edge labels of this group are distributed completely evenly. From level 3 on, label the children of this group
using the pattern from group 1, labeling the children of the 0−vertices 3, the children of the 1−vertices 0, the
children of the 2−vertices 2, and the children of the 3−vertices 1, so the vertex and edge labels of this group
will be distributed completely evenly. Then, from the 0−vertex in level 2 that was not put in the group of 4,
label the children with two 1−vertices, a 0−vertex, a 2−vertex, and a 3−vertex. Treat the two 1−vertices,
the 0−vertex, and the 2−vertex as a separate group. Label the children of the 0−vertex 3, the children of
one 1−vertex 1, the children of the other 1−vertex 2, and the children of the 2−vertex 0; the vertex and
edge labels of this group are distributed completely evenly. From level 4 on, label the children of this group
using the pattern from group 1, so the vertex and edge labels of this group will be distributed completely
evenly. Then, from the 3−vertex in level 3 that was not put in the group of 4, label the children with two
3−vertices, a 0−vertex, a 1−vertex, and a 2−vertex. Treat one 3−vertex, the 0−vertex, the 1−vertex, and
the 2−vertex as a group. Label the children of this group using the pattern of group 1; the vertex and edge
labels of this group are distributed completely evenly. Then, label the children of the 3−vertex in level 4
that was not put in the group of 4 with two 0−vertices, a 1−vertex, a 2−vertex, and a 3−vertex. Starting
at level 5, repeat the pattern that began at level 1. Using this pattern, an extra 3−vertex exists at level
0; an extra 3−edge, an extra 0−vertex, and an extra 3−vertex exist at level 1; an extra 3−edge, 2−edge,
0−vertex, 2−vertex, and 3−vertex exist at level 2; an extra 3−edge, 2−edge, and 1−edge exist at level 3
with completely even vertex labels; an extra 3−vertex exists at level 4 with completely even edge labels; and
this pattern continues to repeat. Therefore, all complete 5−ary trees are 4−equitable.

Theorem 3. All complete n−ary trees are 4−equitable.

Proof:
Note the congruency between ak+1−1

a−1 and (a+4)k+1−1
a+3 . We know that ak+1−1

a−1 =
∑k

i=1 a
k−i, and (a+4)k+1−1

a+3 =∑k
i=0(a + 4)i =

∑k
i=0(cia

j) where ci = 1 + 4Aj for some Aj . These equations show that the coefficients of
ak+1

a−1 are congruent to the coefficients of (a+4)k+1−1
a+3 (mod 4), so if we increase the number of children by 4

we do not change the congruency (mod 4) of the number of total vertices of the graph.
We know that we can add 4m children to each vertex in a complete n−ary tree, where m ∈ N because
the congruency (mod 4) does not change. We label the new children of each vertex in sets of 4m as if
they were in a complete quaternary tree; labeling them based of the parent vertex. Since the vertex and
edge labels of quaternary trees are distributed completely evenly for each level, adding these labels to any
4−equitably labeled complete n−ary tree will result in a 4−equitable labeling of a complete n + 4−ary
tree. For any complete n−ary tree with a 4−equitable labeling, there exists a 4−equitable labeling for any
complete n+ 4m−ary tree.
Every number is congruent to either 0 (mod 4), 1 (mod 4), 2 (mod 4), or 3 (mod 4), and, as previously
shown, adding 4 to a number that is congruent to x (mod 4) results in a number that is still congruent to x
(mod 4). Since complete binary, ternary, quaternary and 5−ary trees are 4−equitable, all complete n−ary
trees are 4−equitable.
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Conclusion

While these three sets of trees have been proven to be 4−equitable, the question still remains: Are all trees
4−equitable? Of course, the ultimate goal is proving all trees are graceful. The conjecture that all trees are
graceful has been accepted, but no significant progress has been made towards proving this conjecture, even
after half a century.
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[7] David E. Speyer and Zsuzsanna Szaniszló. Every tree is 3-equitable. Discrete Math., 220(1-3):283–289,
2000.

9


