
A GENETIC ALGORITHM FOR THE MINIMUM TOLLBOOTH PROBLEM

R. CORBAN HARWOOD, CHRISTOPHER J. KOLLMANN, MATTHEW T. STAMPS

Abstract. This paper considers the minimum tollbooth problem (MINTB) for determining a tolling

strategy in a transportation network that requires the least number of toll locations, and simultaneously

causes the most efficient use of the network. The paper presents a genetic algorithm to solve MINTB,

and reports numerical results on small networks.

1. Introduction

In the United States, one third of all road travel is held under congested conditions [2]. These traffic

delays result in wasted time which translates to wasted money. Since the effectiveness of the economy

depends on an efficient transportation system, it is important to tackle congestion problems rigorously.

While road expansion has proven to provide little (if any) relief, tolling systems have recently been

implemented in large cities such as London. Although roadway tolls are generally seen as either a

revenue source or a hindrance, transportation engineers view them as tools of efficiency. Tolls are

used to deter travelers from roadways with high congestion, thereby allowing the systems to run more

efficiently.

Hearn and Ramana [10] show that, under mild conditions, the set of all valid tolls can be charac-

terized by linear equalities and inequalities. Thus, toll pricing problems of finding the optimal tolls

are either linear programs or linear mixed-integer programs. In [10], examples of linear toll pricing

problems include minimizing the total toll revenues and minimizing the maximum toll on a network.

Additionally, [10] proposes the minimum tollbooth problem (MINTB) as a linear mixed-integer pro-

gram, which has remained relatively unexplored.

The primary goal of toll pricing is to change the traffic flow to run efficiently on a network. Still,

there may be multiple sets of toll locations that optimize the system, where each location necessitates

the cost of setting up an additional toll plaza. Minimizing the number of toll locations while optimizing

the system flow is the goal of MINTB. An investigation of MINTB in Bai’s dissertation [3] provides

the following results. MINTB is NP-complete, when subsidized tolls are allowed. In fact, general

purpose solvers for mixed-integer programs, such as CPLEX, have been unable to produce optimal

solutions for MINTB for a small network with 24 nodes and 76 arcs. Thus, solutions to MINTB resort

to heuristic methods. Bai [4] solves MINTB using a dynamic slope scaling procedure (DSSP), which

is shown to be effective on larger networks, such as Sioux Falls, Hull, and Stockholm. She also creates

Date: August 1, 2005.

Key words and phrases. Genetic Algorithm; Minimum Tollbooth Problem; Toll Pricing.

This research was partially sponsored by the National Science Foundation, grant #033870.

1

2 R. CORBAN HARWOOD, CHRISTOPHER J. KOLLMANN, MATTHEW T. STAMPS

a DSSP-based neighborhood function and uses a simulated annealing method for solving MINTB [4].

However, these local search methods may not always reach a global optimal solution.

Genetic algorithms are well known for their ability to sort through a variety of local optimal solutions

until they converge on a global optimal solution [12]. As one of several evolutionary optimization

methods, the genetic algorithm (GA) uses ideas from natural selection to evaluate, breed, and filter

through random solutions to arrive at an optimal solution after many generations. In the literature,

genetic algorithms have been used to solve a variety of toll-pricing problems. Zhang uses a GA to

determine the optimal toll locations for second-best link-based congestion pricing, where a simulated

annealing method was used to solve for the optimal toll levels [16]. Sumalee uses a genetic algorithm

in conjunction with a branch-tree framework to create a toll set in a cordon-pricing scheme [12].

Thus far, a genetic algorithm has not been used to solve MINTB. That is the main goal of this

paper. The genetic algorithm for MINTB (GAMINTB) randomly generates binary vectors which

represent sets of possible toll locations for a given network. After using a linear programming solver

to determine feasibility and calculate opitmal toll levels, the algorithm divides the toll sets into feasible

and infeasible groups, and ranks them according to their objective values. The algorithm then uses

a weighted selection process to randomly determine which toll vectors should become ‘parents,’ and

it uses the alteration process to introduce new toll vectors. The new population is then evaluated for

feasibility and the process continues, until the algorithm reaches the specified number of generations.

Then, the solution with the minimal number of tollbooths is given.

This paper is organized as follows: In section 2, a clear mathematical model for solving the MINTB

is developed. The genetic algorithm approach is discussed in section 3. Section 4 describes the initial

computational results of the study including the verification of the GA’s solution with a nonlinear

program (NLP) solver. Section 5 discusses two implementation methods for future research. Section

6 concludes the findings of the current research.

2. Problem Description

This section formulates the minimum tollbooth problem using network notation. The transporta-

tion network is represented by sets of arcs and nodes corresponding to a set of roads and a set of

intersections, respectively. An origin-destination (O-D) pair (also known as a commodity) is a pair

of nodes on which a user (traveler) in the system must begin and end. There is usually more than

one path available for each user to travel along for a given commodity. To understand this problem

mathematically, a brief review of the notation is provided. Let G(N,A) denote a network with the

set of nodes N and set of arcs A. The set of origin destination pairs is denoted as K where o(k) and

d(k) are the origin and destination nodes for the O-D pair k. Let Dk denote the demand for O-D

pair k. The demand for an O-D pair k is simply the number of travelers going from the origin to the

destination. Let xk ∈ R|A| represent the flow vector for commodity k. The vector xk is feasible if

it is nonnegative and satisfies Axk = bk where A is the node-arc incidence matrix for G(N,A) and

A GENETIC ALGORITHM FOR THE MINIMUM TOLLBOOTH PROBLEM 3

bk ∈ R|N | is the demand vector defined by

(bk)i =

Dk if i = o(k)

−Dk if i = d(k)

0 otherwise.

The sum of all flows xk over all O-D pairs that pass over a given arc a is denoted va =
∑

k xk
a. It follows,

then, that an aggregate flow vector v is feasible only if v =
∑

k xk, Axk = bk, and xk ≥ 0,∀k ∈ K.

Finally, the cost of each path can be measured by the amount of time it takes to travel from the origin

to the destination for each user. Let s(v) be the travel cost vector for a given flow v in the network.

2.1. User Equilibrium. The User Equilibrium (UE) model is used to describe the behavior of users

on a given traffic network when every user chooses the shortest path available (eg. see [8]). Or

equivalently, a network is at UE only if the cost of every utilized path for each O-D pair is less than

or equal to the cost of every non-utilized path for the respective O-D pair. In mathmeatical terms, a

network G(N,A) is at UE with ṽ being the equilibrium flow if it satisfies the following condition:

s(ṽ)T (v − ṽ) ≥ 0, ∀v ∈ V ,

where V is the set of all feasible aggregate flow vectors for G(N,A).

V = {v|v =
∑

k xk, Axk = bk, xk ≥ 0,∀k ∈ K}.

Under UE, each user chooses the path for their own interests. Collectively, UE may not be in

the best interest for the system as a whole. If too many travelers select the same path, congestion

developes. Typically, the per capita cost of traveling along an arc increases as flow increases, slowing

down the network as a whole, and hence, the original, low cost path becomes high cost. An example

network is offered in section 2.6 to illustrate the user equilibrium model.

2.2. System Optimal. The system model describes the network when it is working as efficiently as

possible. If the total travel cost of a given network is minimal, then the network flow, v̄, is at System

Optimal (SO). Mathematically, a network G(N,A) is at SO with v̄ being the system optimal flow if

v̄ ∈ V satisfies

s(v̄)T v̄ ≤ s(v)T v, ∀v ∈ V .

In the SO model, the network, as a whole, is operating as efficiently as possible. A network at SO

is rarely at UE as well. This is because some travelers may pay higher costs than they would in UE,

as SO minimizes the average cost per user. For an illustration of SO, refer to section 2.6.

2.3. Tolled User Equilibrium. Imposing tolls on a network adds a monetary component to the

cost function in terms of time. The new cost for each arc, composed of time and money, is called the

generalized cost. Let βa denote the toll on arc a, then the generalized cost for arc a is expressed as

(sa(va)+βa). If a traveler has the choice between two paths where Path 1 takes less time than Path 2,

4 R. CORBAN HARWOOD, CHRISTOPHER J. KOLLMANN, MATTHEW T. STAMPS

but Path 1 also costs money, the traveler may be more inept to take Path 2 depending on how much

the toll on Path 1 is. By adding a toll vector β to a network, the user equilibrium, ṽ goes from

s(ṽ)T (v − ṽ) ≥ 0, ∀v ∈ V

to

s(ṽβ + β)T (v − ṽβ) ≥ 0, ∀v ∈ V,

where the new equilibrium ṽβ is called the Tolled User Equilibrium (TUE).

The TUE model describes the network behavior where tolls can be added such that ṽβ = v̄. Tolls

allow the network to operate so that when every user does what is best for themself, they are also

doing what is best for the system.

2.4. Toll Pricing Problems. To find the set of valid toll vectors that will cause TUE to equal SO,

refer to Hearn and Ramana [10]. It states that a toll vector β is valid if there exists a ρ vector for

each O-D pair k satisfying the following:

s(v̄) + β ≥ AT ρk,∀k ∈ K

(s(v̄) + β)T v̄ =
∑

k bT
k ρk .

These are essentially the Karush-Kuhn Tucker (KKT) conditions that ensure ṽβ = v̄. Moreover, from

this set of valid toll vectors, a traffic planner can select an optimal toll for any specific objective such

as minimizing total revenue or in the case of this paper, minimizing the total number of tollbooths.

2.5. MINTB. As stated previously, the MINTB objective is to place the fewest number of tollbooths

on a network so that when the system is at TUE, it is also at SO. Mathematically, let y be a binary

vector which corresponds to β so that

ya =

0 if βa = 0

1 if βa > 0.

Then, the objective of the MINTB problem is to minimize
∑

ya subject to:

s(v̄) + β ≥ AT ρk,∀k ∈ K

(s(v̄) + β)T v̄ =
∑

k bT
k ρk

0 ≤ βa ≤ Mya,∀a ∈ A

ya ∈ {0, 1},∀a ∈ A.

The first two constraints guarantee β is a feasible (valid) toll vector. In the last two constraints, M is

merely an arbitrarily large constant ensuring that y and β correspond to one another.

A GENETIC ALGORITHM FOR THE MINIMUM TOLLBOOTH PROBLEM 5

Figure 1. An Example Network

2.6. An Illustrated Example. Figure 1 is a 4-node, 5-arc network with the given costs. Note that

the cost on Arc 5 is dependent on the flow. The cost vector for this network is

s(v) =< 2, 4, 16, 15, v5 + v2
5 > .

Figure 2. User Equilibrium Flows

There are two O-D pairs: 1 to 4 and 2 to 4. The demand on each is 2 cars. The network is at UE

when v =< 2, 1, 1, 0, 3 > . This can be verified by the new cost vector

s(v) =< 2, 4, 16, 15, 12 > .

because, for the first O-D pair, the cost for path 1-4 is 15 and the cost for path 1-3-4 is 14, thus path

1-4 is not utilized. For the other commodity, the cost for both paths is 16, so they are both utilized.

Note that the total travel cost for the system is 60 units of time.

6 R. CORBAN HARWOOD, CHRISTOPHER J. KOLLMANN, MATTHEW T. STAMPS

Figure 3. System Optimal Flows

In Figure 3 the network is at SO. The total travel cost for this flow on the network is approximately

47.67 units of time. This is the minimum travel time for the system as a whole.

Figure 4. Tolled User Equilibrium Flows

Finally, in Figure 4, a toll of 8.1 has been added to Arc 5. This toll raises the generalized costs for

paths 1-3-4 and 2-3-4 such that when the network is at SO, the travel cost for path 1-4 is equal to the

cost on path 1-3-4, so this O-D pair is at UE. Furthermore, the travel cost on 2-3-4 becomes larger

than the travel cost on path 2-4 so this O-D pair is at UE as well. Since both O-D pairs satisfy UE,

the new TUE is the same as the SO.

3. Genetic Algorithm

3.1. Overview. In the past few decades, genetic algorithms have become an increasingly popular

heuristic method for problem-solving. The idea of a genetic algorithm is simple from a theoretical

standpoint; it uses the principles of evolution to narrow the solution set of a problem down until it

gets as close to optimality as possible. Genetic algorithms use the variables of a particular problem to

generate strings of numerical alleles which act like chromosomes. The variables in a genetic algorithm

can be encoded into the strands in a variety of ways, but most algorithms represent them in binary

form. Although the user of a genetic algorithm has some freedom to modify certain parameters or

processes, most genetic algorithms follow the same basic steps (eg. see [15]).

A GENETIC ALGORITHM FOR THE MINIMUM TOLLBOOTH PROBLEM 7

(1) Initialization

The algorithm begins by randomly generating a starting population. Each strand is designed

based on certain parameters which can be modified by the user, including the population size

and the length of each strand.

(2) Evaluation

This portion of the algorithm rates each chromosome by assigning it a fitness score. This

score is based on how well the decoded strand satisfies the algorithm’s objective function. The

strands are then ranked based on their respective fitness scores. This section also determines

whether or not each solution is feasible. The user must decide whether it would be best to

exclude infeasible solutions altogether, penalize them by lowering their respective rankings, or

merely accept their presence without making any changes.

(3) Selection

This process determines which strands from a population will be allowed to reproduce and

create the next generation. There are a variety of ways to determine which strands move on,

but most involve assigning each strand a probability. This selection probability can be uni-

form, but it is generally weighted in order to increase the likelihood that the fittest solutions

will reproduce.

(4) Alteration

The most popular methods of alteration are crossover and mutation. The crossover process is

designed to take the traits from a set of parents, and pass them on to a new set of (ideally

stronger) offspring. Although there are many ways to implement it, crossover typically in-

volves taking a set of alleles from one parent, and switching them with the alleles of the other

parent strand. Some forms of crossover produce two offspring, while others elect to produce

one child, and allow one of the parent strands to continue on to the next generation. The

mutation process in a genetic algorithm is designed to ensure diversity among the popula-

tion, thereby decreasing the likelihood of convergence on a locally optimal solution. Mutating

a strand usually involves randomly changing some of the numerical values in the offspring.

Some genetic algorithms elect to use the principle of elitism, which automatically sends the

highest ranking parents to the next generation. Others use immigration [1], which will only

breed a percentage of the next generation, and fill the remaining slots with randomly generated

strings. The use of elitism generally helps the algorithm to converge faster, while immigration

slows the convergence rate and increases diversity among the strands.

8 R. CORBAN HARWOOD, CHRISTOPHER J. KOLLMANN, MATTHEW T. STAMPS

(5) Termination

After reproducing, most genetic algorithms are designed to cycle through the evaluation, selec-

tion, and alteration using the new and altered strands as the new parent population. Genetic

algorithms stop after a specified number of generations.

3.2. The Genetic Algorithm for MINTB (GAMINTB). The genetic algorithm for MINTB

begins by generating a population of size N chromosomes which is used to represent the presence of

a set of toll locations. The strands are of length |A|, where |A| is equal to the number of arcs, and

they are indexed so that the ith gene corresponds to the ith arc on the network. Each strand, y, is

binary, where a 0 represents an arc that does not have a tollbooth, and a 1 represents an arc that has

a tollbooth. For example,

y = (0, 1, 0, 0, 1)

would represent a 5-arc network with tolls on arcs 2 and 5. The number of chromosomes can be

changed in our program by modifying the value of N . The algorithm uses an initialization method

comparable to Zhang’s [16] in order to prevent bias among the strands. A random number generator

creates an |A| length strand of random numbers between 0 and 1. These numbers are then rounded

to the nearest integer (0 or 1). The process is repeated until the number of strands is equal to the

specified population size.

After the initial population of toll locations is produced, it must be evaluated in some way. The

y vectors are ranked based on two criteria: feasiblility and the number of tollbooths. A y vector is

feasible if, for its corresponding β, there exists a ρ so that the KKT conditions are satisfied. For

evaluation, the y’s are divided into feasible and infeasible groups and then each group is ranked

according to the fewest number of tolls. For the final rankings, they are regrouped so that feasible

solutions are ranked higher than all of the infeasible solutions. Initially, for deciding on feasibility, the

GAMINTB kept track of β’s and ρ’s for each y. However, since the GAMINTB randomly generates

starting values for all of the populations, it becomes very difficult to find the correct β’s and ρ’s making

it very difficult for the GAMINTB to distinguish between feasible and infeasible y solutions. Thus, in

order to distinguish between feasible and infeasible y’s, the GAMINTB relies on the manual input of

infeasible solutions, with hopes that a high power LP solver can be added at a later time. Two other

methods for handling feasibility will be discussed in Section 5. It is important to consider infeasible

solutions because some of them may be very similar to the optimal solution, and might only require

a slight alteration before they can also be feasible. Because of the ellaborate alteration process in

the GAMINTB, the good qualities of an infeasible solution may be passed down; however, due to the

ranking methods, it is very difficult for infeasible solutions to continue on from one generation to the

next.

After the chromosomes are ranked, a set of parents is chosen to produce the next generation. In

nature, ‘survival of the fittest’ typically applies to reproduction. Although the strongest individuals

A GENETIC ALGORITHM FOR THE MINIMUM TOLLBOOTH PROBLEM 9

have the best chance of survival, they are not the only ones that reproduce. Rather than settling on a

uniform selection probability, GAMINTB bases a strand’s selection probability on its ranking (fitness

score). It uses a weighted selection probability comparable to the one used by Sumalee [12]. The

weighted probability of selection for a strand of rank i is

P (i) =
2((N + 1) − i)

N(N + 1)

where N is the population size. Thus, the likelihood of choosing the strongest strand (i = 1) for

the breeding process is 2
(N+1) , while the probability of choosing the weakest individual (i = N) is

2
N(N+1) . After the selection probability has been determined for each strand, the genetic algorithm

uses a ‘roulette wheel’ selection process to determine the parents [12]. Each slot on the roulette wheel

is assigned an interval between 0 and 1, and the upper and lower bounds are assigned by cumulatively

stacking the selection probabilities. A random number generator is then used to select the strands that

will produce the subsequent generation. If the random number is between the bounds of a specified

slot, that slot’s respective chromosome will be chosen as a parent. The algorithm picks the nearest

even integer to R · N parents, where R is the reproduction rate defined by GAMINTB.

Once the parents are selected, they are randomly paired to create offspring. Since the GA relies on

the passing down of good traits from generation to generation, each pair of parents should pass on

each shared allele to one child. Because each y chromosome is a binary strand, each child can only

receive a 0 or 1 for each unshared parent allele. The GAMINTB objective is to minimize the sum

across the strand, so giving each child a 0 for each unshared parent allele seems logical. However,

when implementing this crossover method, the MINTB GA converges to a strand of 0’s, which is most

likely infeasible, and decreases the variety of solutions. Giving the child a 1 in place of the 0 results

in equally bad solutions. Since a critical feature of the GAMINTB is randomness, each child is given

a random binary number wherever the parents disagree.

Research done by Ahuja et. al. [1] shows that immigration is a useful tool for adding diversity into

a GA. The GAMINTB replaces those strands not selected for reproduction with entirely new strands,

following the method used in the initialization phase.

The GAMINTB selects the mearest integer to (M · N) chromosomes for mutation randomly from

the entire population pool, where M is the rate of mutation. Being that each y chromosome is a

binary strand, mutation is merely changing one randomly selected allele from a 0 to a 1 or 1 to a 0

for a chromosome that is selected.

4. Computational Results

4.1. Overview. This section presents the results of the genetic algorithm tested for performance and

implementational comparisons over six small example networks. The six examples are built upon

two basic network structures, the 4-node diamond structure and the 5-node split structure shown in

Figures 5 and 6, respectively.

10 R. CORBAN HARWOOD, CHRISTOPHER J. KOLLMANN, MATTHEW T. STAMPS

Figure 5. A 4-node 5-arc network

Figure 6. A 5-node 6-arc network

The first three example networks were derivations of the 4-node diamond and the last three were

derivations of the 5-node split. The demand for each network was randomly selected, while the cost

function vector for each was decided by the Bureau of Public Roads (BPR) cost function.

Sa(va) = Ta(1 + (
va

Ca

)Pa),

where Sa(va) is the cost function, va is the variable traffic flow on arc a, Ta is the free travel time

constant, Ca is the capacity, and Pa is the delay time factor for arc a. The constants were randomly

selected for each example network as follows:

Ta ∈ [1, 10]

Ca ∈ [10, 25]

Pa ∈ {0, 1, 2, 3, 4}.

To ensure the GAMINTB converged on the optimal solution, LINGO 7, an NLP solver was used

to solve MINTB. For each example network, the GAMINTB converged on the solution produced by

LINGO. Among other tasks, LINGO was also used as the exterior LP solver for the GAMINTB by

determining the set of infeasible solutions for each network. The GAMINTB was programmed and

solved using Fortran. The tests were run on a computer platform with a 2.6 GHz Pentium 4 processor

and 512 Mb of RAM.

The quality of the GAMINTB is defined as the percentage of the final population that is the optimal

solution. It can be used as a measure of both the convergence rate of the GAMINTB and the diversity

A GENETIC ALGORITHM FOR THE MINIMUM TOLLBOOTH PROBLEM 11

created within the GAMINTB. The algortihm performed well if the quality fell between 40% and 60%.

A solution quality in this range indicates that a clear winner was discovered, yet a fare amount of

diversity was introduced throughout the algorithm.

4.2. Implementational Comparison Test. The implementational comparison test compared the

quality of varying levels of immigration and mutation, and quality differences between implementing

uniform and weighted selection. This test demonstrated the effectiveness of each implementational

change according to the GA’s quality and aided in the selection of the rate of reproduction, which

determined the immigration rate, the percentage of chromosomes to mutate, and whether to implement

uniform or weighted probabilities in the selection of parents.

The test was run as follows: for each example network, the GAMINTB was run with mutation

alone, immigration alone, and with both; the tested rates of alteration for each scheme were 20%,

30%, and 40%. The initial population size was 100 and the generation number was 20. The selection

probability was weighted. After the GAMINTB was run, the qualities were recorded. For the effects

of mutation and immigration on the convergence rate, the genetic algorithm yielded the following

results.

Table 1. Comparing the Effects of Mutation and Immigration

The Percentage of Optimal Solutions in the Final Generation

Network Mutation Rate Immigration Rate Rate of Both Neither

20% 30% 40% 20% 30% 40% 20% 30% 40% 0%

1 82% 70% 62% 61% 30% 31% 56% 11% 3% 100%

2 79% 74% 73% 75% 50% 32% 59% 37% 15% 100%

3 82% 74% 64% 66% 43% 27% 62% 30% 13% 100%

4 80% 65% 64% 61% 37% 10% 43% 22% 8% 100%

5 82% 76% 67% 70% 38% 35% 45% 12% 14% 100%

6 82% 69% 63% 64% 41% 8% 42% 16% 10% 100%

Table 1 makes it clear that immigration is much more effective in slowing the convergence rate of the

GAMINTB. However, immigration also allowed enough optimal solutions into the final population to

minimize any worries that one might have about the algorithm not converging. The results looked very

promising with the standard immigration rate of 30% that was used by the GAMINTB. Mutation on

the other hand, was not nearly as effective. It did slow the convergence rate, but only after the mutation

rate was raised to an absurdly high level. (A typical mutation rate usually hovers between 2% and

5%)[15]. In most cases, the effect of mutation on the genetic algorithm is minimal. Utilizing crossover

alone lead to an extremely high quality for the GAMINTB, which implied that the solution may have

converged prematurely. Immigration allowed for more variety among the strands and minimized our

12 R. CORBAN HARWOOD, CHRISTOPHER J. KOLLMANN, MATTHEW T. STAMPS

fears of premature convergence. Mutation had a much less drastic impact on the convergence rate,

and it was not essential to the success of our genetic algorithm.

Strong arguments have been made in favor of determining the parents based on a uniform proba-

bility or on a weighted probability. Ahuja, Orlin, and Tiwari argue that biasing selection in favor of

the fitter individuals leads to a faster convergence, and that the use of uniform probability provided

them with better results [1]. Conversely, Sumaleee used a weighted probability with a ‘selection bias’,

which could focus on choosing the better strands [12]. The GAMINTB is flexible in that it can switch

between a uniform probability or a weighted probability, by merely modifying one of the parameters.

For this test, the population size and generation number remained at 100 and 20, respectively. After

testing both schemes, the algorithm generated the following results.

Table 2. Comparing Uniform and Weighted Probability

Network Uniform Weighted

1 7% 30%

2 3% 50%

3 11% 43%

4 1% 37%

5 7% 38%

6 5% 41%

Table 2 supports each of the previous arguments. Both probability methods were able to generate

the optimal solution for MINTB, although the algorithm that used the weighted probability converged

at a much higher rate. However, the convergence rate for the weighted scheme is not high enough to

generate much alarm, while some of the uniform cases were dangerously close to not converging at all.

Thus, it can be concluded that GAMINTB is much more effective when using a weighted selection

probability. The benefits of uniform probability may have been limited by the fact that the algorithm

was only tested on smaller networks. The reliability of weighted probability is certainly higher in these

cases, because the odds of converging on a locally optimal solution are much lower due to the presence

of a smaller solution space.

4.3. Performance Test. The performance test demonstrated the effect of population size and gen-

eration number on run-time and quality. A heuristic approach was used in order to create an efficient

algorithm for solving MINTB and it was important to confirm that the algorithm was, in fact, efficient.

To test how the GAMINTB ran with different population sizes and generation numbers, an experi-

ment was conducted as follows: the mutation rate (percentage of population to be mutated with each

generation) and immigration rate (percentage of population to be filled by immigration with each gen-

eration) were set at zero and thirty percent, respectively and the selection probability was weighted;

A GENETIC ALGORITHM FOR THE MINIMUM TOLLBOOTH PROBLEM 13

the first part of the experiment fixed the number of generations at 100 and ran the GAMINTB with

population sizes of 500, 1000, 1500, and 2000; the next part of the experiment fixed the population

size at 100 and ran the GAMINTB with generation numbers of 500, 1000, 1500, 2000. For each trial,

the CPU time and quality of the GAMINTB were recorded. The following tables display the results.

Table 3. CPU Time for Variable Population Size

Example Population Size

500 1000 1500 2000

1 1.25 4.16 8.83 15.04

2 1.34 4.37 8.97 15.33

3 1.38 4.41 8.90 15.05

4 1.04 3.82 8.06 14.06

5 1.47 4.71 9.59 16.27

6 1.45 4.67 9.4 16.06

Table 3 shows the CPU times with varying population sizes. It is very clear that the CPU time

almost doubled with every linear step. This trend was apparent in all six networks, so it is fair to say

that the CPU time grows exponentially when increasing the population size.

Table 4. CPU Time for Variable Generation Size

Example Number of Generations

500 1000 1500 2000

1 0.56 1.16 1.68 2.26

2 0.64 1.29 1.92 2.55

3 0.72 1.43 2.15 2.84

4 0.35 0.70 1.05 1.38

5 0.74 1.47 2.21 2.92

6 0.71 1.42 2.14 2.84

Table 4 shows the CPU times with varying generation numbers. The table revealed a linear cor-

relation for all six examples. Thus, it may be better to increase the number of generations before

increasing the population size.

On the other hand, it is important to look at the quality gains from increasing each. This concept

is illustrated in Tables 5 and 6.

14 R. CORBAN HARWOOD, CHRISTOPHER J. KOLLMANN, MATTHEW T. STAMPS

Table 5. Quality for Variable Generation Size

Example Number of Generations

500 1000 1500 2000

1 24% 38% 38% 37%

2 35% 34% 35% 50%

3 18% 30% 46% 43%

4 35% 35% 40% 37%

5 14% 10% 19% 15%

6 39% 28% 36% 39%

Table 6. Quality for Variable Population Size

Example Population Size

500 1000 1500 2000

1 38% 43% 38% 39%

2 41% 43% 41% 43%

3 38% 46% 44% 41%

4 34% 41% 38% 39%

5 21% 24% 15% 18%

6 36% 38% 36% 32%

Notice that in Table 6 after raising the population size above 1000, the quality began to decrease,

while in Table 5, increasing the number of generations the quality displayed an upward trend for the

six example networks. Because of these trends, it is better to increase the number of generations than

it is to increase the population size as the numbers get very large.

Overall, as illustrated in Figures 7, 8, 9 and 10, increasing the number of generations increases the

total CPU time less rapidly and still produces similar quality results when compared to increasing the

population size. Each of these figures demonstrate the following performance data calculated on the

six networks. Networks 1 through 6 are marked by ⋄, �,△,×, ∗, and ◦, respectively.

A GENETIC ALGORITHM FOR THE MINIMUM TOLLBOOTH PROBLEM 15

Figure 7. CPU Time vs. Population Size

Figure 8. CPU Time vs. Generation Number

Figure 9. Quality vs. Population Size

5. Future Research

5.1. Penalty Method. An alternative method for running the GA without the use of an exterior

LP solver is to relax the KKT conditions and add them into the objective function as a penalty. This

change will resolve the issue of dividing the y’s into feasible and infeasible groups. Instead, they will

all be rated by the number of tolls, but they will also be penalized for not satisfying the constraints.

16 R. CORBAN HARWOOD, CHRISTOPHER J. KOLLMANN, MATTHEW T. STAMPS

Figure 10. Quality vs. Generation Number

To implement this method, the objective function will be composed of three parts. The first of which

is the total number of toll booths, which is our main priority to minimize. The second is adding on a

scalar of
∑

k

(AT ρk − (s(v̄) + β))2

if AT ρk > (s(v̄) + β). This is the penalty for not satisfying the first constraint. The last component

of the objective function is adding on a scalar of

((s(v̄) + β)T v̄ −
∑

k

bT
k ρk)2,

which penalizes y for not satisfying the second constraint. Penalties are weighted because for some

of the infeasible solutions, they can grow to very large quantities, which makes the number of tolls

trivial. By scaling the penalties down, the number of tolls for each y remains important, but the

infeasible solutions are still penalized.

The problem with this method, is that it still depends on accurate β’s and ρ’s, which is difficult

for the GAMINTB. Initial attempts for implementing the penalty method for the GAMINTB yield

promising results; however, a more precise algorithm for obtaining β’s and ρ’s is necessary. When

the β’s or ρ’s are not entirely perfect, the penalty for a feasible solution could be greater than that

of an infeasible solution. These occurrences cause discrepencies and, often, a failure in producing the

optimal solution. Many issues with the penalty method need adequate exploration. It is left for future

research.

5.2. Nested Method. A second alternative to the original genetic algorithm is to nest GA’s for the

toll locations (y), the toll levels (β), and the Lagrangian multipliers (ρ). This means that for each y

chromosome, a GA is used over a population of β chromosomes to find the best β for that y. Similarly,

for each β chromosome, a GA is used over a population of ρ chromosomes to find the best ρ for that

particular y, β pair.

As the y chromosomes are evaluated, selected, and bred, so too are the β and ρ chromosomes,

with some changes. First, for evaluation, each β and ρ cannot be evaluated by the original objective,

A GENETIC ALGORITHM FOR THE MINIMUM TOLLBOOTH PROBLEM 17

∑

a ya. They must either be rated as feasible or infeasible by the KKT conditions, or evaluated by

the objective of the penalty method previously discussed.

By internalizing the entire algorithm, the nested method eliminates the need for the exterior LP

solver. Theoretically, this internalization would seem preferable, yet many practical problems still

remain to be sorted out in further research. First, the main problem with the nested method is

that the GA over β is evaluated upon an approximate ρ chromosome and thus the GA over y is

evaluated upon an approximate β, ρ chromosome pair. There is no guarantee that approximations

built upon approximations will converge on the optimal y solution at all. Second, this tri-level nesting

dramatically increases the run time. The original GA ran through g generation loops, where g is the

number of generations, the nested method runs through g3 generation loops. The number of loops

due to the size of the population increases similarly.

6. Conclusions

This paper presents a genetic algorithm as a heuristic method for solving the minimum tollbooth

problem. The algorithm effectively solves MINTB for six small networks, matching the optimal solu-

tions generated by LINGO 7. The numerical results show that when searching for a better solution,

the number of generations should be increased before the population size, due to a lower CPU time,

and a higher projected convergence rate. The use of immigration is much more effective in promoting

diversity and lowering the algorithm’s convergence rate than the more traditional mutation process.

This paper concludes that the use of weighed probability in the selection process is better for solving

MINTB, although it is doubtful that uniform probability would be so ineffective on networks with

larger solution spaces. However, due to the lack of an advanced linear programming solver, calcula-

tions cannot be made on larger networks. That problem is open to further research. Other ideas for

future research include penalizing the objective value of solutions that fail to satisfy the optimality

conditions, rather eliminating them entirely. It is also possible that nested genetic algorithms could

be used to solve for an optimal β and ρ, effectively eliminating the need for an LP-solver.

References

1. Ravindra K. Ahuja, James B. Orlin, and Ashish Tiwari, A greedy genetic algorithm for the quadratic assignment

problem, Computers and Operations Research 27 (2000), 917–934.

2. R. Arnott and K. Small, The economics of traffic congestion, American Scientist 82.

3. Lihui Bai, Computational methods for toll pricing models, PhD dissertation, University of Florida, Center for Applied

Optimization, Industrial and Systems Engineering Department, 2004.

4. Lihui Bai, Donald W. Hearn, and Siriphong Lawphongpanich, A heuristic method for the minimum toll booth problem,

2003.

5. Lihui Bai, Donald W. Hearn, and Siriphong Lawphongpanich, Decomposition techniques for the minimum toll revenue

problem, Networks 44 (2004), no. 2, 142–150.

6. Halim Ceylan and Michael G. H. Bell, Genetic algorithm solution for the stochastic equilibrium transportation net-

works under congestion, Transportation Research Part B 39 (2005), 169–185.

18 R. CORBAN HARWOOD, CHRISTOPHER J. KOLLMANN, MATTHEW T. STAMPS

7. Paolo Ferrari, Road network toll pricing and social welfare, Transportation Research Part B 36 (2002), 471–483.

8. M. Florian and D.W. Hearn, Network equilibrium models and algorithms, Handbooks in Operations Research and

Management Science 8 (1995).

9. M. Florian and D.W. Hearn, Network equilibrium and pricing, Handbook of Transportation Science, 2nd Edition

(2003), 373–412.

10. D.W. Hearn and M. Ramana, Solving congestion toll pricing models, Equilibrium and Advanced Transportation

Modeling (1998), 109–124.

11. Simon Shepherd and Agachai Sumalee, A genetic algorithm based approach to optimal toll level and location problems,

Networks and Spatial Economics 4 (2004), 161–179.

12. Agachai Sumalee, Optimal road user charging cordon design: a heuristic optimization approach, Computer-Aided

Civil and Infrastructure Engineering 19 (2004), 377–392.

13. Dirk Thierens, Scalability problems of simple genetic algorithms, Evolutionary Computation 7 (1999), no. 4, 331–352.

14. G. Wang, Z. Wan, X. Wang, and Z. An, Genetic algorithm for solving convex quadratic bilevel programming problems,

(2003).

15. Wayne L. Winston and Munirpallam Venkataramanan, Introduction to mathematical programming, 4th ed.,

Brooks/Cole-Thomson Learning, Pacific Grove, CA, 2003.

16. Xiaoning Zhang, Optimal road pricing in transportation networks, Ph.d. diss., Department of Civil Engineering,

Hong Kong University of Science and Technology, Hong Kong, 2003.

