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1. Abstract

Knot theory is the study of the different ways to embed a circle in
three-dimensional space. Our research concerns how knots behave un-
der crossing changes. In particular, we investigate a partial ordering
of alternating knots. A similar ordering was originally introduced by
Kouki Taniyama in the paper “A Partial Order of Knots”. We amend
Taniyama’s partial ordering and present theorems about the structure
of our ordering for more complicated knots. Our approach is largely
graph theoretic, as we translate each knot diagram into one of two pla-
nar graphs by checkerboard coloring the plane. Of particular interest
are the class of knots known as pretzel knots, as well as knots that have
only one “direct” minor in the partial ordering.

2. Introduction

2.1. Basic Knot Theory. A knot K is a smooth embedding of a
circle S1 in R3. Some of our results generalize to links. A link L is a
smooth embedding of multiple disjoint copies of S1 in R3. Knot the-
orists generally do not want to be walking around with 3-dimensional
objects. That is why it is common to use knot diagrams. A knot
diagram D of K is a way of projecting K on a flat R2 surface. This
projection is one-to-one everywhere except a finite number of points
called crossings where it is two-to-one. At every crossing there is
an unbroken line for the overstrand and a broken line for the under-
strand. The overstrand corresponds to the arc that was initially closer
to the viewer in R3. In our research, we convert these knot diagrams
to graphs.
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The main problem in knot theory is that one knot K may have many
different diagrams that don’t look remotely similar. How do we know
when two knot diagrams represent the same knot?

Figure 1. Knot diagrams of the unknot

The Reidemeister Moves are a set of moves that connect any two
diagrams of the same knot. These moves are local, meaning the knot
is unchanged outside of the exhibited region. They do not change the
underlying knot.

Figure 2. Reidemeister Moves (Image courtesy of [2])

Theorem 1 (Reidemeister). Two diagrams D1 and D2 represent the
same knot K if and only if they may be connected by a finite number
of Reidemeister moves.

The proof is omitted here since this is a standard result. (See [8] for
proof.)

The crossing number c(L) of a link L is the minimum number of
crossings over all diagrams L. A minimal knot diagram is a diagram
D where the number of crossings equals c(L).



3

Our research concerns how knots behave under crossing changes. A
crossing change is a local operation that changes the role of the
overstrand and the understrand at a single crossing. A crossing change
may change the underlying knot. An example of a crossing change is
shown in Figure 3. As with our images for the Reidemeister moves,
it is assumed that the link is unchanged outside of the region shown
below.

Figure 3. Crossing Change

We also focus on prime alternating links, since they have many nice
properties that allow for stronger results. An alternating link is a link
with an alternating diagram, which is a link diagram that alternates
between overstrands and understrands as one travels around each of
the components in a fixed direction. A prime link is a link that cannot
be drawn as a “connect sum” of two non-trivial knots. Below is the
Granny Knot, which is a connect sum of two trefoils.

Figure 4. A Non-Prime Knot

The following two theorems are important results that make alternating
links especially nice to work with. These are both standard results
whose proofs can be found in the literature.

Theorem 2 (Kauffman, Murasugi, and Thistlethwaite). Let L be a
prime alternating link with diagram D. Then D is a minimal diagram
for L if and only if D is a reduced alternating diagram.

The proof is omitted here since this is a standard result. (See [1] for
proof.)

Reduced means that there are no nugatory crossings. A crossing in
a diagram D is a nugatory (removable) crossing if removing a
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neighborhood of that crossing splits the link diagram into two separate
pieces. These are the crossings that can obviously be eliminated to
lower the crossing number of D.

Figure 5. A Nugatory Crossing

Theorem 3 (Tait’s Flyping Conjecture, Menasco & Thistlethwait-
e). Let D1 and D2 be two minimal diagrams of the same alternating
knot K in S2. Then D1 can be transformed into D2 via a series of
flypes.

The proof is omitted here since this is a standard result. (See [7] for
proof.)

An example of a flype is shown in Figure 6. A flype is usually a complex
combination of Reidemeister moves, but just like the basic Reidemeister
moves, it does not change the underlying knot.

Figure 6. Flype Operation

2.2. Partial Orderings of Knots. Kouki Taniyama defined an or-
dering on knots in his paper “A Partial Order of Knots” [9]. We call
this partial ordering the T-Order.

Definition 1. Let K1 and K2 be knots. The T-Order defines K1 ≤ K2

if every diagram of K2 can be transformed into some diagram of K1 via
some number of simultaneous crossing changes.
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In this paper we present a modified version of Taniyma’s T-Ordering
and call it the V-Order.

Definition 2. Let K1 and K2 be prime alternating knots. The V-
Order defines K1 to be a V-minor of K2 if there exists a minimal
diagram of K2 that can be transformed into some diagram of K1 via
simultaneous crossing changes. We then define a proper sequence
of knots (Kn, Kn−1,. . ., K2, K1) if Ki is a V-minor of Ki+1 for all i.
K1 ≤ K2 if there exists a proper sequence containing both K1 and K2,
where K1 appears to the right of K2.

Notice that if K1 is a V-minor of K2, then K1 ≤ K2. We do not
differentiate between a knot, its reflection, and its reverse in the V-
Order. One can verify that the V-Order defines a partial order of
alternating knots, meaning:

(1) K ≤ K for all K.

(2) If K1 ≤ K2 and K2 ≤ K3, then K1 ≤ K3.

(3) If K1 ≤ K2 and K2 ≤ K1, then K1 = K2.

The third condition in the partial ordering definition requires that this
is an ordering on alternating knots. (See Theorem 5 in Section 3.2.)

We represent the V-Order with a Hasse Diagram, which is a graphical
way to represent the relationships in the partial ordering. If two knots
K1 and K2 are connected by an edge on the diagram and K1 is below
K2, then K1 ≤ K2. We verified that the V-Order is identical to the
T-Order through 71, yielding the following Hasse diagram.

31

41

52 51

61 62 63

71

Figure 7. Partial ordering for the first eight prime knots.

Note that our ordering restricts our attention to prime alternating knot-
s and requires that we check only one minimal diagram of a knot K2
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to verify K1 ≤ K2, while Taniyama’s ordering requires that we check
all diagrams of K2. Also notice that if K1 ≤ K2 in the T-order, then
K1 ≤ K2 in the V-order. The converse is not necessarily true a priori,
although we conjecture that it is true for prime alternating knots. (See
Conjecture 1 in Section 5.) A similar ordering to our V-Order was in-
troduced by Diao, Ernst, and Stasiak in “A Partial Ordering Of Knots
And Links Through Diagrammatic Unknotting” [5]. Their ordering
allows for only one crossing change, while ours allows for multiple si-
multaneous crossing changes.

We are especially interested in direct V-minors.

Definition 3. L1 is a direct V-minor of L3 if L1 ≤ L3 and there
does not exists L2 such that L1 ≤ L2 ≤ L3.

Definition 4. L1 is a remote V-minor of L3 if L1 ≤ L3 and there
exists L2 such that L1 ≤ L2 ≤ L3.

For example, in our Hasse Diagram, 31 is a remote V-minor of 71 be-
cause 31 ≤ 51 ≤ 71. However, 31 is a direct V-minor of 51 since there
does not exist a knot K such that 31 ≤ K ≤ 51.

2.3. Graph Theoretical Methods in Knot Theory. By Theorem
1, we know that we can connect the infinite amount of diagrams of one
knot via Reidemeister Moves, but it is tedious to constantly redraw the
diagram for a knot every time we perform a Reidemeister Move. For
this reason, we converted knot diagrams to signed planar graphs.

The procedure for converting a knot diagram to a graph is as follows:

(1) “Checkerboard” color the knot diagram so that every crossing
borders two “white” regions and two “gray” regions. Then mark
the crossings by dropping a mark counterclockwise from the
overstrand.

(2) Pick a color and place a vertex inside each region of this fixed
color.

(3) If two of the chosen regions share a crossing, add an edge be-
tween the corresponding vertices in the graph. This edge is
solid if the marking falls within the chosen regions and dotted
if the marking falls within the regions of the other color.

Since we had two choices in Step 2, we get two graphs. These graphs
are signed duals.
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Figure 8. Checkerboard Graphs of 31

We need to know how the Reidemeister moves translate from knot
diagrams to checkerboard graphs. The important thing to note here is
that every Reidemeister move translates to two “graph Reidemeister
moves” that are duals of one another. In Figure 9 below, E and F
represent nodes that may have other edges entering them, while the
small black vertices may only have the edges shown.

E 0 ← R1→ E ← R1→ E 0

E ← R1∗ → E ← R1∗ → E

E F ← R2→ E F ← R2→ E F

E 0 F ← R2∗ → E ∪ F ← R2∗ → E 0 F

E F

J

0
← R3→

E F

J

E F

J

0
← R3∗ →

E F

J

Figure 9. Reidemeister Moves for Graphs
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An important thing to note is that the graph representation of an
alternating knot diagram has either all solid or all dotted edges.

Figure 10. Diagram and Graph of 51

Since our research deals with how knots behave under crossing changes,
we need to translate what a crossing change does to the graph of a knot.
Crossing changes switch the roles of the overstrand and understrand.
In the graph, this changes the marking on the associated edge (dotted
to solid and vice versa).

Figure 11. A Crossing Change and its Graph Representation

We also rely on flypes in many of our proofs. Below are the graph
representations of flypes. Just as with the Reidemeister move graphs,
a flype has two different graph representations that are duals of one
another.
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E 2 F> ←→ E 2 F⊥

E

F

> ←→

F

E

⊥

Figure 12. Graph equivalents of a flype

3. Our Results

3.1. Methods for Expanding the V-Order. Our first goal is to
expand the Hasse Diagram of Subsection 2.2 to 7 crossing prime al-
ternating knots. In order to determine which knots are V-minors of
a particular knot K, we exhaustively check all possible ways to make
simultaneous crossing changes on K’s graph. We check all the different
ways to make one crossing change at a time, and then two crossing
changes at a time up to half of the crossing number of K. The reason
we do not need to change more than half the crossings is because we are
not distinguishing between a knot and its reflection. If changing some
set of crossings yields a diagram of K, then changing the compliment
of that set gives a diagram of the reflection of K. We also save time
by not checking different sets that are combinatorially identical.

Example 1. Take the graph of 75:

Below are all of the fundamentally distinct combinations of crossing
changes.
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∼ = 51 ∼ =52

∼ = 31 ∼ = 41

∼ = 31 ∼ = 62

∼
= 63

Using this graph theoretic technique, we have updated our Hasse Dia-
gram for up to 7 crossing knots.

31

41

52 51

61 62 63

7172 74 77 73 75 76

Figure 13. The V-Order for Prime Alternating Knots
Through 77

See Appendix B for calculations similar to the one in Example 1 that
yield this Hasse Diagram.

3.2. Invariants and the V-Order. From Subsection 3.1, one can see
that there are many cases to check. In order to quickly eliminate many
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possible relationships in the V-order, we prove several results about the
ordering that involve knot invariants. A knot invariant is a function
i : κ→ α from the set of all knots κ to some type of algebraic structure
α. The important thing to note here is that distinct diagrams of the
same knot must get sent to the same value by the invariant, so if an
invariant gives different values for two diagrams, they must not be the
same knot.

The knot invariants we work with are crossing number c(K), bridge
index br(K), and braid index b(K).

Recall that the crossing number c(L) of a link L is the minimum num-
ber of crossings over all diagrams L.

Theorem 4. Let K1 and K2 be knots with K1 ≤K2, then c(K1) ≤
c(K2)

Proof. Let K1 and K2 be knots, where K1 ≤ K2 and c(K2) = n. Then
there exists a minimal diagram D2 of K2 that can be transformed into
a diagram D1 of K1 via some number of simultaneous crossing changes.
D1 has n crossings. Then the crossing number of K1 can be at most
n. �

The following theorem is more specific to our research since our V-order
restricts its attention to alternating knots.

Theorem 5 (Taniyama). Let K1 and K2 be alternating knots with K1

≤K2, then c(K1) < c(K2)

Proof. Let K1 and K2 be alternating knots, where K1 ≤ K2 and
c(K2) = n. Then there exists a minimal diagram D2 of K2 that can
be transformed into a diagram D1 of K1 by simultaneously changing
some but not all of the crossings in D2. D1 has n crossings. Note that
D1 is not a minimal diagram. By Theorem 2, c(K1) < n. �

The second invariant we work with is the bridge number. The bridge
number of a diagram D of a knot K is the number of local maxes in D.
The bridge number br(K) of a knot K is the minimal bridge number
over all diagrams of K. Note that there is a local minimum for every
local maximum.

An example of a knot diagram D with br(D) = 4 is shown in Figure
14. Here the box represents some (possibly complex) part of the knot
diagram, as long as it contains no local maxima or minima.
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Figure 14. A Knot Diagram With br(D) = 4

Theorem 6. If K1 ≤K2, then br(K1) ≤ br(K2).

Proof. Let K1 and K2 be knots, where K1 ≤ K2 and br(K2) = n.
Then there exists a minimal bridge diagram D2 of K2 that can be
transformed into a diagram D1 of K1 via some number of simultaneous
crossing changes. D1 has n local maxes. Then the bridge number of
K1 can be at most n. �

The last invariant we work with is the braid index. The braid index or
b(K) is the minimal number of“strands” over all braid representations
of a knot.

An example of a braid representation is shown in Figure 15. As with our
figure for bridge number, the box represents some (possibly complex)
part of the knot diagram, as long as it contains no local maxima or
minima.

Figure 15. A General Braid Representation

Theorem 7. If K1 ≤K2, then b(K1) ≤ b(K2).

Proof. Let K1 and K2 be knots, where K1 ≤ K2 and b(K2) = n. Then
there exists a minimal braid diagram D2 of K2 that can be transformed
into a diagram D1 of K1 via some number of simultaneous crossing
changes. D1 has n strands. Then the braid index of K1 can be at most
n. �



13

3.3. Direct V-Minors. We turn our attention to finding direct V-
minors. Recall that K1 is a direct V-minor of K3 if K1 ≤ K3 and there
does not exist K2 such that K1 ≤ K2 ≤ K3. In particular, we search for
V-minors such that c(K1) = c(K2) − 1 because for alternating knots,
that means that nothing can be “in between” by Theorem 5. Hence,
K1 must be a direct V-minor of K2.

Theorem 8. Let K1 and K2 be alternating knots with K1 ≤ K2. Let
G2 be any minimal graph of K2.

(1) In G2, if we switch some but not all of the edges connecting two
vertices, then c(K1) ≤ c(K2)− 2.

(2) In G2, if we switch some but not all of the edges separating two
regions, then c(K1) ≤ c(K2)− 2.

Proof. We are given that K1 and K2 are alternating knots with K1 ≤
K2. Let G2 be an alternating graph of K2. We will switch some but
not all of the edges connecting two vertices. Make some number of
crossing changes to G2 such that one edge is dotted and one edge is
solid between two vertices. In general these edges need not be directly
adjacent. If they are not directly adjacent, we can perform a flype as
shown below:

E

F

>∗ ∼
F

E

⊥∗

This leads to an R2 move, which will reduce the graph to a graph with
at least two edges less than the original G2. Thus, K1 has at most
c(K2)− 2 crossings. Therefore, c(K1) ≤ c(K2)− 2.

Now we will switch some but not all of the edges separating two regions.
First, take the graph G2 of K2. Make some number of crossing changes
such that one edge is dotted and one edge is solid between two regions.
In general these edges need not be directly adjacent either. If they are
not directly adjacent, we can perform a flype as shown below:
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E 2 F G>∗ ∼ E 2 F G⊥∗

This leads to an R2∗ move, which will reduce the graph to a graph
with at least two edges less than the original G2. Thus, K1 has at most
c(K2)− 2 crossings. Therefore, c(K1) ≤ c(K2)− 2. �

It should be noted that this condition, although necessary for obtaining
a direct V-minor with c(K1) = c(K2)− 1, is not sufficient to guarantee
that c(K1) = c(K2) − 1. Example 2 gives one situation where the
conditions are not sufficient.

Example 2. If we change both of the middle edges of the graph of 75,
we drop to the graph of 41, which has c(41) = c(75) − 3, even though
we followed Theorem 8.

→ = 41

4. Polygonal Graphs and Pretzel Links

4.1. Basic Properties. A particularly simple class of links are pretzel
links. A link is a pretzel link if it has a diagram that takes the form
in Figure 16. Here the boxes represent “twist boxes” full of half-twists
in either direction.

Figure 16. Pretzel Knot Diagram and Its Graph
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A pretzel link always has a graph of the form in Figure 16, where
the half-twists translate into parallel edges between adjacent vertices.
We refer to graphs of this type as polygonal graphs. We denote
the pretzel link of Figure 16 by Pv(x1, x2, x3, ..., xv), where v is the
number of vertices in the polygonal graph and xi is the number of
edges connecting the consecutive vertices, vi and vi+1. We define vv to
precede v1.

For our partial ordering, we are only concerned with alternating knots
and are considering the knot and its reflection to be essentially the
same, so we have no need to differentiate between solid and dotted
edges in these types of graphs as it relates to our partial ordering.
However, to differentiate, we use a negative xi when the edges are
dotted and a positive xi when the edges are solid.

Our procedure for drawing a graph given Pv(x1, x2, x3, ..., xv) is as fol-
lows:

(1) Draw v vertices.

(2) Number each vertex in a counterclockwise fashion.

(3) Start with vertex 1 and draw x1 edges between vertices 1 and
2. Then put x2 edges between vertices 2 and 3. Repeat in this
fashion until xv edges have been drawn between vertices v and
1. Draw each edge according to the rule:

• If the xi coordinate is negative, make the edges dotted.

• If the xi cooridinate is positive, make the edges solid.

If, for example, we are given that the polygonal representation of 85 is
P3(3, 3, 2), we draw 3 vertices, v1, v2, v3. We then draw 3 edges between
v1 and v2, 3 edges between v2 and v3, and 2 edges between v3 and v1.

v1

v2

v3

85 = P3(3, 3, 2)
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4.2. Pretzel Links and Our Partial Order. We are interested in
finding knots that have one or two direct V-minors. Pretzel links are
a special class of links that contain many knots with this property. A
particularly simple type of pretzel link that includes most knots with
this property are of the form Pk+2(x, y, 1, 1, 1, . . .).

Theorem 9. If L is a pretzel link with polygonal graph of the form
Pk+2(x, y, 1, 1, 1, . . .), where k 6= 1, then L has two direct V-minors L′

with c(L′) = c(L)− 1. These V-minors have graphs:

. . .

x− 1
k − 1

y consecutive edges

or

. . .

y − 1
k − 1

x consecutive edges

Here the x−1, y−1, and k−1 refer to the number of parallel strands in
the given location. In the case that x = 1, L has only one V-minor of
the form Pk+1(y, 2, 1, 1, 1, . . .). Equivalently, if y = 1 then L has only
one V-minor of the form Pk+1(x, 2, 1, 1, 1, . . .).

Proof. Given L as defined above, the dual of Pk+2(x, y, 1, 1, 1, . . .) is:

. . .. . .

k

X K Y

Here X is the subgraph that contains the x consecutive edges on the
left and Y is the subgraph that contains the y consecutive edges on
the right. K is the subgraph that contains the k parallel strands in
between X and Y .

Performing crossing changes on the X subgraph will yield:
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. . .. . .

k

X K Y

This graph will reduce with the addition of an edge by performing an
R1 move on a two valent vertex between any two dotted edges in X
and then a series of R3 moves yielding:

. . .

x− 1
k

K Y

This will not change the number of edges in K. After performing an
R2 move on K we get the graph:

. . .

x− 1
k − 1

Y

Changing this graph back to the dual will not give us a polygonal graph
unless x ≤ 2. If x > 2, we will get a graph that looks exactly like this
one, except we have y − 1 instead of x − 1. When x = 2, we have
only one edge on the side marked with x− 1, so it can easily be shown
that when we take the dual we will get Pk+1(y, 2, 1, 1, . . .) with k − 1
coordinates that are 1. If we wanted to change the Y subgraph, we
could just switch the role of x and y in Pk+2(x, y, 1, 1, 1, . . .).

The only other change we can make that is significantly different from
this case and follows the Theorem 8 is to change all crossings in K or
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all crossings in both X and Y . Doing so will yield the following graph
after crossing changes and Reidemeister moves:

y − 1x− 1

k − 2

This graph obviously has c(L) = x−1+y−1+k−2+2 = x+y+k−2
crossings, which is two fewer than the original c(L) = x+ y+ k. There
are no other cases that will follow Theorem 8 and yield a knot with
one fewer crossing than L. �

Note that when x = y for this theorem, we will only have one V-minor
with one fewer crossing than L. Also note that if k = 1, then we have
P3(x, y, 1)→ Py+2(x− 1, 1, 1, . . .), whose dual is Px(y + 1, 1, 1, . . .).

The (p, 2)-torus links and twist knots are special cases of Theorem
9. When x = 1 and y = 1 we have a (p,2)-torus link, which has
polygonal graph Pc(L)(1, 1, 1, . . .). When x = 2 and y = 1, L is a twist
knot, which has polygonal graph Pc(L)−1(2, 1, 1, . . .).

. . .

Figure 17. (p, 2) Torus Knot (diagram courtesy of [4]).

. . .

Figure 18. Twist Knot (diagram courtesy of [4]).

Theorem 10. (p, 2) torus knots have only (p, 2) torus knots as their
V-minors.
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Proof. Consider the graph Pc(K)(1, . . . , 1) of the torus knot. If we
change some, but not all of the crossings, say m crossings, there will
always lie a solid edge next to a dotted edge. This means that we can
always perform an R2 move until the edges are all solid or all dotted.
Every time we perform an R2 move, we lose two edges. Then the graph
will always be P|c(K)−2m|(1, . . . , 1), which is a (p, 2) torus knot. It can
easily be checked that this result holds for the dual. �

Theorem 11. Twist knots have only twist knots as their V-minors.

Proof. Since a twist knot K2 has the graph Pc(K2)−1(2, 1, 1, . . . , 1), it
follows from Theorem 9 that the only direct V-minor of K2 is a twist
knot K1 which has the graph P3(k−1, 1, 1) where k was the number of
1’s in K2’s graph. K1 is a twist knot. Therefore, since any twist knot
has only one direct V-minor that is a twist knot of one fewer crossing,
the only V-minors of any given twist knot are twist knots. �

In Figure 13 in Section 3.1, the (p, 2) torus knots are on the rightmost
branch of the Hasse Diagram, and the twist knots are on the leftmost
branch of the Hasse Diagram.

5. Future Work

Our work revealed several questions that we were not able to address.
The biggest technical problem we face is what we call “The Minimal
Conjecture.”

Conjecture 1. The Minimal Conjecture Given a prime, alternat-
ing knot K2 and some knot K1, if there exists a minimal diagram of
K2 that can be transformed into a diagram of K1 via some number of
simultaneous crossing changes, then every diagram of K2 can be trans-
formed into K1 via some number of simultaneous crossing changes.

Note that Conjecture 1 implies that the V-Order and T-Order are
equivalent for prime alternating knots. This means that our work is a
direct refinement over Taniyama’s original methods.

In Section 4, we produced many knots with only one direct V-minor.
The only knots we found with one direct V-minor were pretzel knots.
This begs the following conjecture.

Conjecture 2. Pretzel knots are the only prime alternating knots with
one direct V-minor.



20

Below are a few more general topics that we may address in future
research.

Future Topic 1. All (p, 2) torus knots K lack direct V-minors K ′ with
c(K ′) = c(K)−1. Most other knots seem to have at least one V-minor
with c(K ′) = c(K)− 1, but there are still examples of non (p, 2) torus
knots that fail in this regard. 85 and 816 are non-(p, 2) torus knots
K that have no direct V-minors K ′ with c(K ′) = c(K) − 1. Is there
something special about these knots that we can generalize?

Notice that both 85 and 816 also have non-prime V-minors.

∼

Figure 19. 85 ∼ 31#31

∼

Figure 20. 816 ∼ 31#31

Future Topic 2. We would like to expand our work to non-prime
or non-alternating links, or at least find what prime alternating knots
have non-prime or non-alternating knots directly beneath them in our
ordering.

We already have one result about the placement of non-alternating
knots within the V-order:

Theorem 12. Let L1 be a non-alternating link with c(L1) = n. Then
there exists an alternating link L2 where c(L2) = n, such that L1 ≤ L2.

Proof. If L1 is a non-alternating link with c(L1) = n, the minimal graph
for L1 will have both dotted and solid edges, with n edges. If we change
all the dotted edges to solid, we now have a graph of a link L2, with all
solid edges, which, since this projection is alternating, implies that this
graph is a reduced alternating graph of L2. This is equivalent to saying
this graph of L2 is minimal. So we have a minimal graph of L2 with
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crossing number n. We also can see that L1 ≤ L2 since we are able
to transform a minimal diagram of L2 into L1 via crossing changes.
Thus, there does exist an alternating link L2 with c(L2) = n for each
non-alternating link L1 with c(L1) = c(L2) = n, where L1 ≤ L2. �
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Appendix A. Prime Alternating Knots Up to c(K) = 8

Knot Knot Diagram Graph 1 Graph 2

31

41

51

52

61

62
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63

71

72

73

74

75

76
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77

81

82

83

84

85

86

87
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88

89

810

811

812

813

814
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815

816

817

818

Knot diagrams courtesy of [4].
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Appendix B. Expansion of the Hasse Diagram

We perform crossing changes on the initial knot K2 by switching the
solid edges to dotted edges. These are the cases that get us to their
direct V-minors K1.

K2 Crossing Changes Performed K1

31 ∼ 01

41 ∼ 31

51 ∼ 31

52 ∼ 41

61 ∼ 52

62 ∼ 51

62 ∼ 52
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63 ∼ 51

63 ∼ 52

71 ∼ 51

72 ∼ 61

73 ∼ 62

74 ∼ 61

75 ∼ 62

75 ∼ 63

76 ∼ 61
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76 ∼ 62

76 ∼ 63

77 ∼ 61

77 ∼ 62
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Appendix C. Incomplete Expansion of the Hasse Diagram

This is an incomplete list of what alternating knots are direct V-minors
of knots K with c(K) = 8 through 815. Note that flypes may be
necessary to obtain the final knot K1 from the initial knot K2.

K2 Crossing Changes Performed K1

81 ∼ 72

82 ∼ 71

82 ∼ 73

83 ∼ 74

84 ∼ 72

84 ∼ 73

85 ∼ 62
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86 ∼ 75

86 ∼ 76

87 ∼ 71

87 ∼ 73

88 ∼ 72

88 ∼ 75

88 ∼ 76

89 ∼ 71

89 ∼ 75
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810 ∼ 75

811 ∼ 73

811 ∼ 74

811 ∼ 77

812 ∼ 76

812 ∼ 77

813 ∼ 72
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813 ∼ 73

813 ∼ 74

813 ∼ 76

814 ∼ 72

814 ∼ 75

814 ∼ 77

815 ∼ 76
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