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Abstract

Viruses and bacteria responsible for infectious diseases often mutate and are carried
between geographical regions. We consider a mathematical model which begins to
account for these factors. We assume two disjoint populations that only occasionally
comingle, and two strains of a disease present in these populations. Of interest are the
equations describing the dynamics of this system, the conditions under which epidemics
will occur, and the long term behavior of the system under various initial conditions.
We find general conditions under which a state of disease-free equilibrium is stable; we
examine the sensitivity of our system to changes in modeling parameters; and we find
evidence that two disease strains of unequal strength may coexist in a two population
system.
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1 Introduction

Mathematical models can provide insight into the dynamics of many important systems
which impact us on a daily basis. In particular, modeling disease transmission lends itself
nicely to a mathematical approach. Much work has been done on models describing the
dynamics of a single population affected by one or more diseases and on the impact of a
single disease on multiple, connected populations. Many situations are adequately described
by these types of models; in many others, both multiple diseases and multiple populations
must be considered. We offer some first steps into such an analysis by examining two inter-
connected populations affected by two strains of a single infectious disease.

We begin with a brief background discussing the SIR model in order to introduce the basics
of disease modeling. We include an analysis of the system’s initial and long term behavior,
with special attention paid to the impact of the basic reproductive number. Next, we discuss
our two-strain, two-population model, including our modeling assumptions and some gen-
eral tools for metapopulation modeling. We use this information to construct a system of
differential equations describing our model’s behavior. We continue by analyzing the various
equilibrium states our system may exhibit. We consider three possibilities: disease-free, com-
petitive exclusion, and coexistence, in which zero, one, or two strains, respectively, persist
in the population. We conclude with an analysis of the system’s sensitivity with respect to
modeling parameters.

Though the model discussed here is simplified in many ways, as compared with an actual epi-
demic scenario, we are able to provide insight into the general behavior of such occurrences
and suggest possible directions for future research.

2 Background

Before we examine our two-strain, two-population model, we first consider the basic Susceptible-
Infectious-Recovered (SIR) model. Many important concepts are identical between the two
models, and will be easier to introduce in this simpler context. In particular, begining with
this model will allow us to see the basic dynamics of our system, as well as the major pa-
rameters which determine those dynamics. We will consider both the initial and long term
behavior of the system, as well as encounter the basic reproductive number, R0, for the
first time. Understanding the principles on display here will allow for greater insight as we
progress to our full two-strain, two-population model.

2.1 SIR Model

In the SIR model, individuals begin their lives in the susceptible (S) class, enter the infectious
(I) class as they contract the disease, and finally move to the recovered (R) class. We assume
that recovery from the disease grants life-long immunity; thus individuals in the R class never
leave. We assume a closed population; that is, our total population size, N , remains constant
(N = S + I + R). We have a transmission parameter β, which incorporates factors such as
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interpersonal contact rates and transmission probabilities. The per capita rate of recovery
from the disease is γ. This gives an exponential distribution of recovery times, with average

duration of infection
1

γ
. We assume mass action; that is, every individual is equally likely to

contact every other individual in the population. Thus, infection is governed by the standard

incidence term,
βSI

N
.

•S •I •R
infection

//
recovery

//

Figure 1: Flow chart describing an individual’s movement through the SIR model

The closed population assumption allows us to express one of our state variables (S, I, or R
— the variables describing the state of our system) in terms of the other two. We choose to
eliminite R and focus on the dynamics of S and I. The model is described by the system of
differential equations

dS

dt
= −βSI

N
dI

dt
=
βSI

N
− γI

(1)

with initial conditions S(0) = S0 and I(0) = I0.

2.2 Initial Behavior

Suppose we consider the early stages of an epidemic. We have a small number of infectives
and no recovered individuals, while most of the population is suceptible. We can take S0 ≈ N
and simplify our system to

dS

dt
≈ −βI

dI

dt
≈ βI − γI

(2)

We see that
dI

dt
is positive, and thus that I is increasing, if β > γ. Equivalently, we can

write
dI

dt
> 0 if

β

γ
> 1. Similarly, if

β

γ
< 1 we have

dI

dt
< 0 in the outbreak’s initial stage.

Biologically, this means that our system will see an epidemic when
β

γ
> 1, while

β

γ
< 1

implies the disease will die out before an epidemic can take off. Let us think about the
biological interpretation of this quantity: β is the rate at which new infections arise, and
1

γ
is the average duration of infection. Multiplying these quantities, we see that

β

γ
is the
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average number of secondary infections that an infectious individual gives rise to over the
course of his infection. This concept is of paramount importance in any disease model.

Definition 1. We define the basic reproductive number of a disease, denoted R0 to be
the average number of secondary infections that a single infectious individual will give rise
to over the duration of his infection, in an otherwise entirely susceptible population.

As we have seen, in the simple SIR model, R0 =
β

γ
and R0 = 1 provides a threshold

condition on whether we will experience an epidemic. While the particular expression for R0

will change depending on the model employed, the concept remains consistant — including
the threshold value of R0 = 1.

2.3 Equilibrium Analysis

We have seen what happens in the initial stages of a disease outbreak, so a natural next
step is to examine the long term behavior of the system. In particular, we are interested in
finding points of equilibrium — points where each of our state variables are unchanging. If
our state variables are unchanging their derivatives must be 0, so we set

dS

dt
= −βSI

N
= 0

dI

dt
=
βSI

N
− γI = 0.

(3)

Let S∗ and I∗ be the equilibrium values of S and I, respectively. Solving
dI

dt
= 0 gives

I∗ = 0 or
βS

N
− γ = 0 ⇒ S∗ =

γN

β
. If I∗ = 0 then

dS

dt
= 0, is satisfied by any biologically

relevant value of S∗. If S∗ =
γN

β
, then

dS

dt
= 0 is satisfied by I∗ = 0. We discover that

the second point is really just a special case of the first and that our equilibrium point is
(S∗, I∗) = (S∗, 0). Our system is in equilibrium once the disease has died out, while some
number of susceptibles remain.

3 The Two-Strain, Two-Population Model

The simple SIR model provides a broad framework for disease modeling. We, however,
seek to account for the posibilities of disease mutation and of the spread of disease between
geographical regions. We begin this process with the natural extension to an SIR-based
model with two disease strains and two loosely connected populations.

3.1 Flow Charts

We begin with a visual depiction of our model. We consider two populations (i = 1 or 2) in
which two strains (α = A or B) of a single infectious disease are present. Our model includes
demography - births and deaths. In this compartmental model, for each population people
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are born into the susceptible (Si) classes, become infected by either strain of the disease and
enter the infectious (Iαi ) classes, and then transition to the recovered (Ri) classes. Individuals
may also leave any class through death.

•S1

•S2

•IA1

•IA2

•IB1

•IB2

•R1

•R2

birth

��

birth

��

death

��

death

��

death

��

death

��

death

��

death

��

death

��

death

��

infection

44

infection
**

infection

44

infection
**

recovery

**

recovery

44

recovery

**

recovery

44

Figure 2: Flow chart describing an individual’s movement through our two-strain, two-
population SIR model

3.2 Assumptions

In order to simplify the model, we make a number of assumptions. To ensure that each
population is closed (Ni is constant) we assume that the per capita birth and death rates are
equal. We further assume that this rate is equal for each population. As in the simple SIR
model, the closed population assumption allows us to reduce the dimension of our system,
while the inclusion of demography ensures that we have a continually replenished supply of
susceptible individuals and that our disease will not die out due simply to lack of susceptibles.

We assume that the mixing between populations is temporary (no permanent immigra-
tion) and subject to preferred mixing. In preferred mixing the majority of each individual’s
interpersonal contacts are with members of her own population. We assume that every in-
dividual follows the same mixing pattern and that the out-of-group mixing proportion for
each population is equal.
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We assume that each individual, regardless of population, has the same contact rate per
unit time. We further assume that any contact between a susceptible and an infective leads
to successful transmission of the disease with probability dependant only on the strain.

Finally, we assume that an infected individual’s recovery rate is indepentent of his pop-
ulation and depends only on the strain he is infected with.

3.3 Metapopulation Modeling Basics

Recall from our discussion of the basic SIR model that finding a value of R0 is a very
important step in analyzing our system’s behavior. Finding an expression for R0 in this
model is not as straightforward as it was in our simple SIR model. We require a more robust
framework in which to express our model.

3.3.1 Mixing Matrix

A mixing matrix describes the manner in which our populations interact. Its entries mij

denote the fraction of contacts made by individuals from group j with individuals from
group i(i, j = 1, 2) [2]. We assume that each population’s out of group mixing proportion is
equal, so for our model

M =
1

1 + ε

 1 ε

ε 1

 (4)

The entries of 1 on the diagonal indicate that most contacts are with members from an
individual’s home group while the ε entries on the off diagonal represent the small remaining
proportion of each group’s contacts. Since these entries represent fractional mixing rates,
we must ensure that each column sums to 1. Thus we scale the entire matrix by a factor of

1

1 + ε
.

3.3.2 Next Generation Matrix

A next generation matrix describes the transmission of a disease through our various sub-
populations. The entry kij is the number of secondary infections caused in populations i
by a single infectious individual in population j [2]. Because we are considering two disease
strains, (A and B) we will have two next generation matrices, (KA and KB), to describe
the transmission of each strain. We now look to actually construct these matrices. Suppose
we introduce a single individual infected with strain α of the disease into population j. The

average duration of infection is
1

γ + µ
. This corresponds to the amount of time our infec-

tious individual has to spread the disease. Determining the rate at which new infections
arise is similarly straightforward. We assumed a constant rate of contact for all individuals;
let a denote this number. We also assumed a probability of transmission only depends on
the strain involved so let pα denote this probability for strain α. The rate at which new
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infections arise is therefore a · pα - the total rate of contact multiplied by the probability
that each contact is effective. We let βα = a · pα denote this rate. Thus the toal number

of new infections caused by this individual is
βα

γα + µ
. Finally, the proportion of these new

infections which arise in populations i is found by multiplying the total number of new cases
by mij, the fractional contact rate with population i. Putting this all together, we find that

kαij = βα ·mij ·
1

γα + µ
. This gives the next generation matrices

KA =


βA

(γA + µ)(1 + ε)

εβA

(γA + µ)(1 + ε)

εβA

(γA + µ)(1 + ε)

βA

(γA + µ)(1 + ε)

 (5)

KB =


βB

(γB + µ)(1 + ε)

εβB

(γB + µ)(1 + ε)

εβB

(γB + µ)(1 + ε)

βB

(γB + µ)(1 + ε)

 (6)

3.3.3 Finding R0

We can use the next generation matrix to find an R0 value for each strain. If we let φαm be a
vector describing the number of invectives in each population after m generations of strain
α, it can be shown [2] that

φαm =
n∑
j=1

cjλ
m
j Ψj, (7)

where cj is a constant and Ψj is an eigenvector of K with the corresponding eigenvalue, λj.
If K has a largest eigenvalue λ1 then for large values of m,

φαm ≈ c1λ
m
1 Ψ1 (8)

That is, the number of incentives increases by a factor of λ1 with each generation. This
matches exactly with our definition of R0. Thus Rα

0 is the dominant eigenvalue of the next
generation matrix, Kα [2].

3.4 Equations

The differential equations describing our system are similar to those of the SIR model (1),

but have more complexity. Note that Ẋ is a shorthand notation for
dX

dt
.
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Ṡ1 = µN1 − µS1 − S1(β
A
11I

A
1 + βA12I

A
2 + βB11I

B
1 + βB12I

B
2 )

Ṡ2 = µN2 − µS2 − S2(β
A
21I

A
1 + βA22I

A
2 + βB21I

B
1 + βB22I

B
2 )

İA1 = S1(β
A
11I

A
1 + βA12I

A
2 )− (γA + µ)IA1

İA2 = S2(β
A
21I

A
1 + βA22I

A
2 )− (γA + µ)IA2

İB1 = S1(β
B
11I

B
1 + βB12I

B
2 )− (γB + µ)IB1

İB2 = S2(β
B
21I

B
1 + βB22I

B
2 )− (γB + µ)IB2

(9)

βαij is the transmission rate of strain α from population j to i. We have βαij =
βαmij

Ni

. We

will write our transmission rates as βαij when we value succinctness and as
βαmij

Ni

when it is

more advantageous to reduce the number of parameters in the system.

µ is our per capita birth and death rate. µN1 is the rate at which individuals are born
into the S1 class and µS1 is the rate at which they leave it via death. Infection is again
governed by the standard incidence term; here, though, susceptible individuals from popu-
lation 1 may become infected with either strain A or B of the disease, and may acquire the
infection from an individual in either population 1 or 2. Ṡ2 is entirely symmetric.

In each of our İαi equations, the positive term corresponds to the individuals exiting the
Si class, after having acquired strain α of the infection. γα +µ is the rate at which individu-
als leave the class, through either recovery or death. As in the SIR model, this implies that

the duration of infection is exponentially distributed, with mean
1

γα + µ
.

Finally, we supress the equations for Ṙi, as the values of Ri can be calculated by Ni −
(Si + IAi + IBi ). This allows us to reduce the dimension of our system and focus solely on the
most interesting population dynamics.

4 Equilibrium Analysis

4.1 Disease-Free

We begin our equilibrium analysis with the simplest type of equilibrium — disease-free. In
this case, neither strain of our disease is present in either of our populations. The enitre
population is susceptible.

4.1.1 Finding Equilibrium Point

By solving

İA1 = S1(β
A
11I

A
1 + βA12I

A
2 )− (γA + µ)IA1 = 0 (10)

for IA1 we find
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IA1 =
−S1(β

A
12I

A
2 )

S1βA11 − (γA + µ)
. (11)

Substituting this expression into İA2 and then factoring gives

0 = IA2

(
−S1S2β

A
12β

A
21

S1βA11 − µ− γA
+ βA22S2 − µ− γA

)
. (12)

Because we are first interested in disease-free equilibrium, we will take IA2 = 0. Plugging
this into our previous expression for IA1 gives IA1 = 0. Through an entirely similar process
we can find that IB1 = IB2 = 0 satisfies İB1 = İB2 = 0.

With these four conditions, we find that Ṡ1 = Ṡ2 = 0 is only satisfied by S1 = N1 and
S2 = N2. We now have our disease free equilibrium point (see Figure 3):

(S1, S2, I
A
1 , I

A
2 , I

B
1 , I

B
2 )

=(N1, N2, 0, 0, 0, 0)
(13)

4.1.2 Stability Analysis

To determine the stability of disease-free equilibrium, we first evaluate the Jacobian matrix,
J , at the equilibrium point:
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J(N1, N2, 0, 0, 0, 0) =


−µ 0 −N1β

A
11 −N1β

A
12 −N1β

B
11 −N1β

B
12

0 −µ −N2β
A
21 −N2β

A
22 −N2β

B
21 −N2β

B
22

0 0 N1β11
A − (µ + γA) N1β

A
12 0 0

0 0 N2β21
A N2β

A
21 − (µ + γA) 0 0

0 0 0 0 N1β11
B − (µ + γB) N1β

B
12

0 0 0 0 N2β21
B N2β

B
21 − (µ + γB)



Next, we find the eigenvalues of J :

λ =



−µ
−µ
βA − γA − µ

−µ+ µε+ γAε+ γA − βA + βAε

1 + ε
βB − γB − µ

−µ+ µε+ γBε+ γB − βB + βBε

1 + ε

(14)

The equilibrium is stable whenever the real component of each eigenvalue is negative. Since
we assume µ > 0 we have −µ < 0 under all conditions. To satisfy

βA − (γA + µ) < 0

we must have

βA < γA + µ⇒ RA
0 =

βA

γA + µ
< 1.

For our fourth eigenvalue, we have

−µ+ µε+ γAε+ γA − βA + βAε

1 + ε
=

(1− ε)βA

1 + ε
− (γA + µ) <

βA − (γA + µ).

Thus, this eigenvalue is also negative whenever RA
0 < 1. By an entirely similar analysis,

we find that our final two eigenvalues are both negative precisely when RB
0 < 1 and so all

eigenvalues are negative if and only if RA
0 , RB

0 < 1. This implies that disease-free equilibrium
is stable iff the R0 value for each strain is less than 1.
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4.1.3 Generalizing Disease-Free Equilibrium

Because disease-free equilibrium is relatively simple, we seek to extend our findings to
metapopulation models considering any number of disease strains and any number of popu-
lations.

Theorem: In a metapopulation consisting of n sub-populations and m disease strains,
whose dynamics are governed by an SIR model with identical assumptions to our 2-strain, 2-
population model, the disease free equilibrium is stable if and only if Rα

0 < 1 for each strain α.

Proof: If we have n populations and m strains, then the differential equations mod-
elling our scenario are given by:

Ṡi = µNi − µSi − Si

(∑
α

n∑
j=1

βαijI
α
j

)

İαi = Si

(
n∑
j=1

βαijI
α
j

)
− (γα + µ)Iαi

(15)

The partial derivatives of our equations with respect to our state variable (S’s and I’s),
evaluated at equilibrium, are:

∂Ṡi
∂Sj

=

{
0 i 6= j

−µ i = j

∂Ṡi
∂Iαj

= −Siβαij

∂İαi
∂Sj

= 0

∂İαi
∂Iκj

=


0 κ 6= α

Siβ
α
ij κ = α, i 6= j

Siβ
α
ij − (γα + µ) κ = α, i = j

(16)

By dividing our Jacobian matrix into 4 blocks, Mij, we see that M21 is the 0-matrix and so
our Jacobian, J , is block upper-triangular. The eigenvalues of J are simply the union of the
eigenvalues of M11 and M22. M11 is diagonal, with diagonal entries −µ, so its eigenvalues
are simply −µ, with multiplicity n. M22 is more complicated, but it too is block diagonal.

It consists of m nxn blocks on the diagonal, composed of the
∂İαi
∂Iαj

entries, while every other

entry is 0. The eigenvalues of M22 are the union of the eigenvalues of each block, Aα.

To find these eigenvalues we will compute |Aα − λI| and find the values of λ which make
this determinant equal to 0. Each of these blocks is of the form:

12



A =


y − x y . . . y

y y − x . . .
...

...
. . . . . . y

y . . . y y − x


where

y =
εβ

1 + (n− 1)ε

x =
(ε− 1)β

1 + (n− 1)ε
− (γ + µ+ λ).

In each block, the only thing that changes is the letter on β and γ, indicating the strain of the
disease; so finding the eigenvalues of this general block will allow us to find the eigenvalues
of M22. Our challenge, therefore, is first to compute det(A). Consider the sequences ai and
bi defined by:

ai =

{
y − x i = 0

(y − x)ai−1 − iybi−1 i ≥ 1
(17)

and

bi =

{
y i = 0

bi = yai−1 − iybi−1 i ≥ 1
(18)

Let Anxn be an nxn matrix of the form
y − x y . . . y

y y − x . . .
...

...
. . . . . . y

y . . . y y − x



and Bnxn be an nxn matrix of the form
y y . . . y

y y − x . . .
...

...
. . . . . . y

y . . . y y − x

.

Claim: an−1 gives the determinant for Anxn and bn−1 gives the determinant for Bnxn.
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Proof: We prove the claim by induction on n. For n = 1 we have A1x1 = det(A1x1) =
y − x = a0 and B1x1 = det(B1x1) = y = b0.

Now suppose the claim holds for all n < k. First we introduce some notation: Let B0
nxn =

Bnxn and for 1 < i < n let Bi
nxn = Bnxni−1 with the (i− 1)st and ith rows interchanged.

Suppose we perform cofactor expansion along the top row of Anxn. Then we have

det(Anxn) = (y − x)det(A(n−1)x(n−1))− y
n∑
i=0

det(Bi
(n−1)x(n−1))

Notice that for i even we can change Bi
(n−1)x(n−1) to B0

(n−1)x(n−1) by performing an even

number of row switches, and thus det(Bi
(n−1)x(n−1)) = det(B0

(n−1)x(n−1)) = det(B(n−1)x(n−1)).

Similarly, for i odd det(Bi
(n−1)x(n−1)) = −det(B(n−1)x(n−1)). Then we have

det(Anxn) = (y − x)det(A(n−1)x(n−1))− y
n∑
i=0

det(B(n−1)x(n−1))

= (y − x)det(A(n−1)x(n−1))− (n− 1)ydet(B(n−1)x(n−1)).

By the induction hypothesis, (A(n−1)x(n−1)) = an−2 and det(B(n−1)x(n−1) = bn−2 and so

det(Anxn) = (y − x)an−2 − (n− 1)ydetbn−2 = an−1

as claimed.

Performing cofactor expansion along the top row of Bnxn and using the same method as
above, we find

det(Bnxn) = yan−2 − (n− 1)ydetbn−2 = bn−1.

Thus the claim holds for all n. �

Claim: ai and bi have closed forms given by

ai = (−1)i
[
(i+ 1)xiy − xi+1

]
and

bi = (−1)i(xiy).

Proof: We prove the claim by induction on i. For i = 0 we have

a0 = (y − x) = (−1)0
[
x0y − x

]
and

14



b0 = y = (−1)0
(
x0y
)
.

Now suppose that for i = k the claim holds. Then for i = k + 1 we have:

ak+1 =

(y − x)ak − (k + 1)ybk =

(y − x)
[
(−1)k

(
(k + 1)xky − xk+1

)]
− (k + 1)y

[
(−1)kxky

]
=

(−1)k(k + 1)xky2 − (−1)kxk+1y − (−1)k(k + 1)xk+1y − (−1)k(k + 1)xky2 =

− (−1)kxk+1y − (−1)k(k + 1)xk+1y =

(−1)(−1)k
[
xk+1y + (k + 1)xk+1y − xk+2

]
=

(−1)k+1
[
(k + 2)xk+1y − xk+2

]
as claimed. We also have:

bk+1 =

yak − (k + 1)bk =

y
[
(−1)k

(
(k + 1)xky − xk+1

)]
− (k + 1)y

[
(−1)kxky

]
=

(−1)k
[
(k + 1)xky2 − xk+1y

]
− (−1)k(k + 1)xky2 =

(−1)k(−xk+1y) =

(−1)k+1(xk+1y)

as claimed. Thus the claim holds for all i. �
Now that we have an expression for det(A) we can compute the eigenvalues of A.

Claim: The eigenvalues of Anxn are

λ = β − (γ + µ)

with multiplicity 1 and

λ =
(1− ε)β

1 + (n− 1)ε
− (γ + µ)

with multiplicity (n− 1).

Proof: We have just shown that

det(Anxn) = an−1 = (−1)n−1 (nxn−1y − xn) = (−1)n−1xn−1(ny − x).

Substituting in values for x and y as defined above, we have:
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an−1 =

(−1)n−1

[
(ε− 1)β

1 + (n− 1)ε
+ (γ + µ+ λ)

]n−1 [
n

εβ

1 + (n− 1)ε
− (ε− 1)β

1 + (n− 1)ε
+ (γ + µ+ λ)

]
=

(−1)n−1

[
(ε− 1)β

1 + (n− 1)ε
+ (γ + µ+ λ)

]n−1 [
nεβ − (ε− 1)β

1 + (n− 1)ε
− (γ + µ)− λ

]
=

(−1)n−1

[
(ε− 1)β

1 + (n− 1)ε
+ (γ + µ+ λ)

]n−1 [
β ((n− 1)ε+ 1)

(n− 1)ε+ 1
− (γ + µ)− λ

]
=

(−1)n−1

[
(ε− 1)β

1 + (n− 1)ε
+ (γ + µ+ λ)

]n−1

[β − (γ + µ)− λ]

Setting an−1 = 0 we see that(
(ε− 1)β

1 + (n− 1)ε
+ (γ + µ+ λ)

)n−1

= 0

or

(β − (γ + µ)− λ) = 0.

The first case gives

λ = −
(

(ε− 1)β

1 + (n− 1)ε
+ (γ + µ)

)
=

(
(1− ε)β

1 + (n− 1)ε
− (γ + µ)

)
with multiplicity (n− 1). The second case gives

λ = β − (γ + µ)

with multiplicity 1. Thus the eigenvalues of A are as claimed. �
As in the 2-strain, 2-population case of disease-free equilibrium, we have β − (γ + µ) < 1
when R0 < 1. Also as before, we have(

(1− ε)β
1 + (n− 1)ε

− (γ + µ)

)
< β − (γ + µ)

and thus each eigenvalue of A is negative iff R0 < 1. Because A is the general form for each of
our sub-blocks Aα of M22, the eigenvalues of Aα are negative for each α iff Rα

0 < 1 for each α.

Recall that the eigenvalues of our Jacobian, J , were the union of the eigenvalues of blocks
M11 and M22. We have just found the eigenvalues of M22 and determined when they are
negative and M11 had eigenvalues −µ, with multiplicity n, which are always negative. So J
has negative eigenvalues — and thus disease-free equilibrium is stable — iff Rα

0 < 1 for each
strain α. �
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4.2 Competitive Exclusion

Our second type of equilibrium is competitive exclusion. This equilibrium occurs when one
strain in the populations is stronger than the other strain, causing the weaker strain to die
out. Only one strain will be present in the long term of our populations.

4.2.1 Finding Equilibrium Point

Referring to equation (9), we find the equation where İA2 = 0. Using (12), we know to sat-

isfy the expression, IA2 = 0 or

(
−S1S2β

A
12β

A
21

S1βA11 − µ− γA
+ βA22S2 − µ− γA

)
= 0. We also know that

when IA2 = 0, then IA1 = 0. This gives us the equilibrium point for the strain that will die out.

Knowing that strain B can be computed the same way as strain A, and that we want a
strain to be present in the population, we know

IB1 =
−S1(β

B
12I

B
2 )

S1βB11 − (γA + µ)
. (19)

This gave us the equilibrium point for IB1 . We also know that substituting IB1 into İB2 and
then factoring gives

0 = IB2

(
−S1S2β

B
12β

B
21

S1βB11 − µ− γB
+ βB22S2 − µ− γB

)
. (20)

Since we do not want IB2 = 0, we used(
−S1S2β

B
12β

B
21

S1βB11 − µ− γA
+ βB22S2 − µ− γA

)
= 0. (21)

to satisfy the equation.

By solving (ref) for S2 we find

S2 =
γB + µ(

βB21S1β
B
12

S1βB11 − (γB + µ)
+ βB22

)
(22)

By solving

Ṡ2 = µN2 − µS2 − S2(β
A
21I

A
1 + βA22I

A
2 + βB21I

B
1 + βB22I

B
2 ) = 0 (23)

for S1 when S2 satisfies equation (22) IAi = 0 and when IB1 satisfies equation (19), we find

S1 =
−2µ2γB + µ3 + IB2 (γB)2βB22 − µN2β

B
22γ

B + 2IB2 µβ
B
22γ

B + IB2 µ
2βB22 + µ(γB)2 − µ2N2β

B
22

µ2βB11 − βB11IB2 µβB22 + βB11µN2βB22 − βB11IB2 γBβB22 − µβB11γB + IB2 µβ
B
12β

B
21 − µN2βB12β

B
21 + IB2 γ

BβB12β
B
21

Finding our last state variable IB2 , we use Ṡ1 = 0 and all the other solved state variables to
give us an expression all in our parameters. Since IB2 was such a large expression, we use
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zto represent the equation.

We now have our equilibrium point.



S1 =
−µ2N2β

B
22 − µN2β

B
22 + µ3 + 2µ2γB + IB2 β

B
22µ

2 + 2IB2 β
B
22µγ

B + IB2 β
B
22(γB)2

µN2βB
21β

B
12 − µN2βB

22β
B
11 + β11Bµ2 + βB

11µγ
B − IB2 µβB

21β12B + IB2 µβ
B
22β

B
12 − IB2 γBβ12BβB

21 + IB2 γ
BβB

22β
B
11

S2 =
µ+ γB

βB
22 −

S1β
B
12β

B
21

S1βB
11 + (µ+ γB)

IA1 = 0

IA2 = 0

IB1 =
−S1(βB

12I
B
2 )

S1βB
11 − (γB + µ)

IB2 = zB

By using an entirely similar process where the IAi are 0, we can find the competitive exclusion
when strain B is the weak strain.

4.2.2 Stability Analysis

To determine the stability of competitive exclusion equilibrium, we find that our large ex-
plicit solution for our equilibrium point makes proving stability difficult. However, using
simulations in MATLAB, we are able to analyze what is happening in the long term.

By changing the different initial values for the infected classes, we are able to show that
the equilibrium was stable only as long as one R0 ≥ 1 and larger than the other R0 value.
To be more specific, when the R0 of one strain is greater than one and larger than the other
strain’s R0, the weaker strain will be excluded (Figures 4, 5).

4.3 Coexistence

Coexistence, the most complicated form of equilibrium, is even more complicated to solve
explicity in terms of parameters than our previous equilibriums were. Becuase of this, we
have not explicity solved our coexistence equilibrium. However, even without fully solving
the system of equations for a point of equilibrium, it is possible to determine the conditions
for which a coexistence equilibrium can potentially occur.

Recall from previous work with competitive exclusion that solving the system of equations
İA1 = İA2 = İB1 = İB2 = 0 yields the following two equations:

18



0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

Time (weeks)

P
op

ul
at

io
n

Competitive Exclusion

 

 

Susceptibles1
Susceptibles2

Figure 4: RA
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Figure 5: Infectives from Figure 4. Note that strain A is forced to extinction, while strain
B persists.
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0 = IA2
∗
(
−S∗

1S
∗
2β

A
12β

A
21

S∗
1β

A
11 − µ− γA

+ βA22S
∗
2 − µ− γA

)
(24)

0 = IB2
∗
(
−S∗

1S
∗
2β

B
12β

B
21

S∗
1β

B
11 − µ− γB

+ βB22S
∗
2 − µ− γA

)
(25)

In order to find conditions for coexistence, we assume IA1
∗, IA2

∗, IB1
∗ and IB2

∗ 6= 0, so all
strains are present in both populations. To satisfy the previous equations, and ensure that
IA1 , I

A
2 , I

B
1 and IB2 6= 0, the following must be true:

−S∗
1S

∗
2β

A
12β

A
21

S∗
1β

A
11 − µ− γA

+ βA22S
∗
2 − µ− γA = 0 (26)

and
−S∗

1S
∗
2β

B
12β

B
21

S∗
1β

B
11 − µ− γB

+ βB22S
∗
2 − µ− γA = 0. (27)

Solving each of these equations for S2, and changing each βαij value into the corresponding
expression involving βA or βB, we find that

S∗
2 =

(µ+ γA)(µN1 + µN1ε+ γAN1 + γAN1ε− S∗
1β

A)N2

βA(S∗
1β

Aε+ µN1 + γAN1 − S∗
1β

A)
(28)

and

S∗
2 =

(µ+ γB)(µN1 + µN1ε+ γBN1 + γBN1ε− S∗
1β

B)N2

βB(S∗
1β

Bε+ µN1 + γBN1 − S∗
1β

B)
(29)

By setting the two previous equations equal and solving for βB, we find the following condi-
tions for coexistence to exist:

βB = (µ+ γB)
βA

γA + µ
(30)

or

β
B

=
N1(−S∗

1γ
BβA + βAγBε2S∗

1 + βAµε2S1 − µS∗
1β

A + γBN1ε + µγBN1ε + µγBN1εγ
A + γBN1γ

A + µγBN1 + µγAN1ε + µ2N1 + µ2N1ε + µγAN1)

S∗
1 (S∗

1β
Aε− S∗

1β
A −N1ε2γA − µN1ε2 + µN1 + γAN1)

Note that if we divide both sides of equation (30) by (µ+γB), the resulting equation defines
a case of coexistence for which RA

0 = RB
0 . The second posibility defines a case where the

R0’s are not equal. This is an interesting and unexpected result, differing from the single
case of coexistence that occurs in one-population models. We will now discuss each type
of coexistence equilibrium, both the simple coexistence in which R0’s are equal, and the
complex coexistence in which R0’s are not equal.

4.3.1 Simple coexistence

Our simple coexistence occurs when RA
0 = RB

0 . At this equilibrium, both strains co-exist
in each population. Based on M ATLAB simulations we believe this equilibrium is stable
(Figures 6, 7).
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4.3.2 Complex coexistence

Let us now return to the complex case of coexistence, in which differing Rα
0 ’s are involved.

We find that the equation for βB with unequal R0’s must hold for this complex case of
coexistence. We can change this equation for βB to one for RB

0 by dividing each side by
(γB + µ), resulting in the condition

RB
0 =

N1(−S∗
1β

A + βAε2S∗
1 + µN1ε+N1εγ

A + γAN1 + µN1)

S∗
1(−S∗

1β
A + S∗

1β
Aε+ µN1 −N1ε2γA − µN1ε2 + γAN1)

(31)

Unfortunately, this expression for RB
0 is in terms of S∗

1 , which is a state variable at equi-
librium. Because of the complexity of our equations, it is difficult to solve for a point of
equilibrium, and therefore anything defined in terms of a state variable at equilibrium is not
easily solvable. Therefore, we rewrite our equation as follows:

S
∗
1 = N1

(
−RA

0 (ε− 1) + RB
0 (1 − ε2)

2RA
0 R

B
0 (1 − ε)

)
±N1


√

(ε− 1)(RB
0 )2ε3 + 2RA

0 R
B
0 ε

2 + (RB
0 )2ε2 + (RA

0 )2ε + 4RB
0 R0Aε− ε(RB

0 )2 + 2RA
0 R0B − (RA

0 )2 − (RB
0 )2

2RA
0 R

B
0 (1 − ε)

 .
This equation for S∗

1 is written entirely in terms of parameters. In order for S∗
1 to be

biologically significant, it must be real, positive, and less than N1. The reasoning for this is
straightforward: since S∗

1 is a subpopulation of N1, it cannot be complex or negative, and
it must be less than or equal to the total population of N1. In order for S∗

1 to be real, the
discriminant must be greater than or equal to 0. This is easy to solve, and we find that
either

RA
0

RB
0

≥ (ε+ 1 + 2
√
ε)(ε+ 1)

(1− ε)
=

(1 + ε)(1− ε)
ε+ 1− 2

√
ε

(32)

or
RA

0

RB
0

≤ (ε+ 1− 2
√
ε)(ε+ 1)

(1− ε)
=

(1 + ε)(1− ε)
ε+ 1 + 2

√
ε
. (33)

Note: It is simple to show that
(ε+ 1 + 2

√
ε)(ε+ 1)

(1− ε)
is indeed equivalent to

(1 + ε)(1− ε)
ε+ 1− 2

√
ε

,

and also that
(ε+ 1− 2

√
ε)(ε+ 1)

(1− ε)
is equal to

(1 + ε)(1− ε)
ε+ 1 + 2

√
ε

.

In order for S∗
1 to be greater than 0 and less than N1, we set the equation for S1 at our

complex coexistence equilibrium equal to 0 and N1, respectively, and solve. We find that in
order for S∗

1 > 0, the only condition to be satisfied is

Rα
0 > 0. (34)

In order for S∗
1 to be less than or equal to N1, we first find the boundary condition, in which

S∗
1 equals N1. This is found to be

RA
0 =

RB
0 ε

2 + ε+ 1−RB
0

−ε+RB
0 ε+ 1−RB

0

. (35)

Solving this numerically in order to find regions in which S∗
1 is less than N1, we find that

using all previous restraints given by equations (31) and (32) in order for S∗
1 to be real, S∗

1

will always be less than the total population. Therefore, our restraints in order for S∗
1 to be

biologically significant can be summed as follows:
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Rα
0 > 0

and either

RA
0

RB
0

≤ (ε+ 1− 2
√
ε)(ε+ 1)

(1− ε)
or

RA
0

RB
0

≤ (ε+ 1− 2
√
ε)(ε+ 1)

(1− ε)
We continue to narrow our range of possibility for complex coexistence by looking at condi-
tions necessary for S∗

2 to be biologically significant. S∗
2 , similar to S∗

1 , must be real, positive,
and less than N2. Solving

−S∗
1S

∗
2β

A
12β

A
21

S∗
1β

A
11 − µ− γA

+ βA22S
∗
2 − µ− γA = 0

and
−S∗

1S
∗
2β

B
12β

B
21

S∗
1β

B
11 − µ− γB

+ βB22S
∗
2 − µ− γA = 0,

this time for S∗
1 , yields the following:

S∗
1 = −N1(−µ2N2ε− 2µN2εγ

A − (γA)2N2ε+ βAS∗
2µ+ βAS∗

2γ
A − µ2N2 − 2µN2γ

A − (γA)2N2)

βA(βAS∗
2ε+ γAN2 − βAS∗

2 + µN2)

and

S∗
1 = −N1(−µ2N2ε− 2µN2εγ

B − (γB)2N2ε+ βBS∗
2µ+ βBS∗

2γ
B − µ2N2 − 2µN2γ

B − (γB)2N2)

βB(βBS∗
2ε+ γBN2 − βBS∗

2 + µN2)
.

Setting the two expressions for S∗
1 equal and solving for βB shows that either

βB =
(γB + µ)βA

µ+ γA
(36)

or

βB =
N2(1 + ε)(γB + µ)(βAS∗

2ε+ γAN2 − βAS∗
2 + µN2)

S∗
2(ε− 1)(βAS∗

2 − γAN2 − µN2ε− γAN2ε− µN2)
(37)

Once again, the first case gives us a case where RA
0 = RB

0 .

We can rewrite the second case in terms of RA
0 and RB

0 :

βB =
N2(1 + ε)(γB + µ)(βAS∗

2ε+ γAN2 − βAS∗
2 + µN2)

S∗
2(ε− 1)(βAS∗

2 − γAN2 − µN2ε− γAN2ε− µN2)

βB

γB + µ
=

N2(1 + ε)(βAS∗
2ε+ (γA + µ)N2 − βAS∗

2)

S∗
2(ε− 1)(βAS∗

2 − (γA + µ)N2 − (γA + µ)N2ε)

RB
0 =

N2(1 + ε)(RA
0 S

∗
2ε+N2 −RA

0 S
∗
2)(γA + µ)

S∗
2(ε− 1)(RA

0 S
∗
2 −N2 −N2ε)(γA + µ)

=
N2(1 + ε)(RA

0 S
∗
2ε+N2 −RA

0 S
∗
2)

S∗
2(ε− 1)(RA

0 S
∗
2 −N2 −N2ε)

(38)
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Solving this equation for S∗
2 gives us

S∗
2 =

(
N2

2RA
0 R

B
0 (ε− 1)

)(
RB

0 µε
2 −RB

0 γ
A −RB

0 µ− βA + βAε2 +RB
0 γ

Aε2

±
√

(ε− 1)(ε+ 1)(βA + εβA −RB
0 γ

A + εRB
0 γ

A −RB
0 µ+ εRB

0 µ)(−βA + εβA +RB
0 γ

A + εRB
0 γ

A +RB
0 µ+ εRB

0 µ)

)
Just as before, we want S∗

2 to be biologically significant. S∗
2 is real when the following

conditions are satisfied:
RA

0

RB
0

≥ 1 + ε

1− ε
(39)

or
RA

0

RB
0

≤ 1− ε
1 + ε

. (40)

Solving for S∗
2 = 0, we find that there is no boundary condition necessary for S∗

2 to be
positive; S∗

2 is always positive.

Finally, the boundary condition for S∗
2 to be less than N2 is

RB
0 =

(ε+ 1)(βAε− βA + γA + µ)

(ε− 1)(−εµ− γAε+ βA − γA − µ)
(41)

Similarly to S∗
1 , the condition that S∗

2 must be less than N2 is satisfied by previous conditions.

All conditions for S∗
1 and S∗

2 to be biologically significant can be combined into the fol-
lowing regions of feasibility of coexistence when RA

0 6= RB
0 :

Rα
0 > 0, (42)

and either
RA

0

RB
0

≤ (ε+ 1− 2
√
ε)(ε+ 1)

1− ε
(43)

or
RA

0

RB
0

≥ (ε+ 1 + 2
√
ε)(ε+ 1)

1− ε
(44)

4.3.3 Simulation

To search for the complex case of coexistence, we have used MATLAB. The program being
used loops through a wide range of parameters in order to find parameter combinations that
satisfy the above conditions. These combinations are used as input into an ode45 solver,
which outputs any results in which all Iαi values are greater than 0. We have run the program
over a large range of values (N1 = 100, 000, N2 = 150, 000, γA = .5, γB = .5, ε from .01 to .99

by .01,
1

µ
from 32 years to 82 years by 1 year, βA from 1 to 50 by .1, and βB from 1 to 50

by .1, with initial conditions S1, S2 calculated based on R0 values and Iαi = 50) and so far
have found no complex coexistence equilibrium. From these results, we hypothesize that if
the complicated coexistence does exist, it is unstable, and likely not biologically significant.
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5 Sensitivity

5.1 Importance of Sensitivity

Sensitivity is a way to quantify how a small change in parameters affects state variables over
time. As such, sensitivity can help us to determine how easily affected our equilibrium is by
small changes in parameters. This, in turn, can help us to analyze how stable the equilibrium
in question is. To minimize the number of parameters we need to deal with, we rewrite our
equations in terms of βA and , using the fact that values of βαij are determined by βα ·mij.
Our rewritten equations are as follows:

Ṡ1 = µN1 − µS1 −
S1

N1(1 + ε)
(βAIA1 + εβAIA2 + βBIB1 + εβBIB2 )

Ṡ2 = µN2 − µS2 −
S2

N2(1 + ε)
(εβAIA1 + βAIA2 + εβBIB1 + βBIB2 )

İA1 =
S1

N1(1 + ε)
(βAIA1 + εβAIA2 )− (γA + µ)IA1

İA2 =
S2

N2(1 + ε)
(εβAIA1 + βAIA2 )− (γA + µ)IA2

İB1 =
S1

N1(1 + ε)
(βBIB1 + εβBIB2 )− (γB + µ)IB1

İB2 =
S2

N2(1 + ε)
(εβBIB1 + βBIB2 )− (γB + µ)IB2

(45)

In order to calculate results, we use previous results [1], based on chain rule, showing that if
we have a system, F , defined in terms of x, the state variables of the system, θ, the parameters

of the system, and time, t, then the matrix of sensitivities (denoted
∂x

∂θ
) satisfies

∂

∂x

∂x

∂θ
=
∂F

∂x

∂x

∂θ
+
∂F

∂θ
, (46)

with initial conditions

∂x(0)

∂θ
= 0m×p

.

∂F

∂x
is the Jacobian of the model, and can be written as shown in Figure 8.

∂F

∂θ
can be written as shown in Figure 9.
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∂
F

∂
x

=

                      −
µ

−
1

N
1
(1

+
ε
)

( βA
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Using MATLAB ’s ode45 solver, we created a program which produces graphs of sensi-
tivity for given initial state variables and parameters. Using this program, we were able to
analyze the sensitivities of state variables for each form of equilibrium. Now we will look into
both our competitive exclusion and simple coexistence equilibria and analyze IA1 sensitivities
for each.

5.2 Competitive Exclusion
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Figure 10: RA
0 = 13.46, RB

0 = 2.69 Sensitivity of IA1 when B is competitively excluded

ε has little effect on our state variable. This is reasonable, given that ε is related to
mixing, and as such affects when an initial outbreak occurs in a population connected to an
infected population, but little else.

Small changes in βB and γB initially have small effects on IA1 because the B strain is weak
compared to the A strain. After some time, the sensitivities with respect to βB and γB go
to 0 because the B strain dies out. µ’s affect appears very large, but is easily explained.
Because we have not normalized our sensitivities and µ is very small compared to all other
parameters, a unit change in µ has a much larger effect on IA1 than a unit change in any
other parameter. Initially, an increase in µ causes a decrease in IA1 , but as time continues,
the effect of µ eventually becomes slightly positive. Recall that µ is the reciprocal of the
average life span of a population, and is used in both birth and death rates. An increase in
µ relates to an increase in the rate of replenishment in the S classes, and also to an increase
in deaths from each class, including the I classes. Therefore, the effect of µ is as we would
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expect.

IA1 increases as βA is increased and decreases as γA is increased. Since

İA1 =
S1

N1(1 + ε)
(βAIA1 + εβAIA2 )− (γA + µ)IA1 ,

and therefore İA1 is directly related to βA and inversely related to γA, this also makes sense.

Since competitive exclusion is a stable equilibrium when the stronger strain’s R0 is larger
than 1 and larger than the weaker strain’s R0, we expect to see the effects of all parameters
eventually go to 0, so long as a unit change in parameters does not competely change our
R0 values. We see these results in the graph.

5.3 Coexistence
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Figure 11: RA
0 = 3.23, RB

0 = 3.23 Sensitivity of IA1 when R0s are the same

The effect of ε on our state variable is again minimal, as we expect. The effects of βA and
γA on IA1 at our coexistence equilibrium are similar to their effects of IA1 at our competitive
exclusion equilibrium. However, the effects of βB and γB are much more pronounced, since
neither strain is competitively excluded. µ also has a similar effect, although it has a much
more pronounced positive effect on IA1 than in the previous equilibrium. Again, this is
because both strains remain in the population. We also note that the effects of all β and
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γ parameters are more pronounced at the peak of infection, when the largest changes are
occuring in state variables. Finally, as the model approaches a stable equilibrium, the impact
of all parameters on our state variable of interest again goes to 0.

6 Conclusions and Future Directions

6.1 Concluding Remarks

We used differential equations to model a two strain two population infectious disease sys-
tem . We examined the equilibria of such systems and the stability of these points. We
found that in many ways, these points were qualitatively similar to the equilibria of simpler
systems. We also were able to quantify the sensitivity of this model to parameter changes.

In the first section, we offer an introduction to epidemiological modeling by examining the
simple SIR model. We also introduce a general methodology for analyzing such models.
This included finding equilibria and their stability, as well as the importance of R0, both
biologically and as a modeling parameter.

We then consider our two-strain two-population model. We outline the assumptions on
which the model is based and introduce some general tools of metapopulation modeling.
Thus equipped, we construct differential equations to describe the behavior of our system.

In the following section, we conduct an analysis of the system’s equilibria. We find three
types: disease-free, competitive exclusion, and coexistence. We are able to prove that in
systems obeying our stated assumptions the disease free equilibrium is stable regardless of
the number of disease strains and number of populations, exactly when the R0 value for each
strain is less than one. We find simulated evidence that competitive exclusion equilibrium
is stable exactly when R0 of the surviving strain is greater than one and greater than R0 of
the excluded strain. The complexity of our system makes finding an explicit point for coex-
istence equilibrium impractical. However, we have found conditions under which coexistence
can occur. In the first, the R0 value for both strains are equal. In this case, simulations
suggest that the equilibrium is stable. Analysis of the second case, with unequal R0’s proved
more problematic, but we have evidence to suggest that this equilibrium, if even biologically
relevant, is unstable.

We conclude by analyzing the sensitivity of our system to changes in parameter values.
We find that ε has a minor effect on any state variable. The number of individuals infected
by a given strain is positively affected by an increase in that strain’s R0 or a decrease in the
competing strain’s R0. µ’s greatest impact on the system is to shift the timing of disease
outbreaks.

Perhaps the most striking realization of this work was the unexpected quickness with which
the complexity of such models increases. The simultaneous inclusion of just two strains and
two populations complicated the model considerably, when compared with models consider-
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ing only one of these factors. Nonetheless, we have taken some small steps toward a more
general understanding of SIR epidemiological models.

6.2 Future Directions

There remain many research directions which this work only briefly, if at all, begins to ex-
plore. Most obvious is the conclusion of the equilibrium analyses begun here, by proving the
hypothesized stability of our competitive exclusion and coexistence equilibria. Additionally,
resolving the biological relevance of our coexistence case with unequal R0’s would complete
an understanding of this model’s long-term dynamics.

This work also suggests numerous future extensions. Multistrain metapopulation models
may be generalized by considering arbitrary numbers of strains and/or populations, or by
shedding many of the assumptions included here. In particular, removing the assumptions
on our parameters might drastically alter the system’s dynamics. Introducing disease con-
trol methods, such as vaccination or quarantine, to the model may offer insight as to the
preventability of epidemics. Additionally, one could consider a wider class of diseases, which
may not be adequately described by an SIR model. One wonders how the system’s dynamics
would change if the underlying model is, for instance, SIS or SEIR, rather than SIR.
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