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Abstract

The mosaic of an integer n is the array of prime numbers resulting from iterating the Fun-
damental Theorem of Arithmetic on n and on any resulting composite exponents. Bildhauser,
Erickson, Gillman and Tacoma generalized several arithmetic functions and attempted to de-
fine divisors on mosaics. We continue their work by investigating several possible definitions of
multiplication for mosaics.

1 Introduction

Mullin first introduced the concept of a mosaic in 1964 and explored generalizations of common
number theoretic ideas and functions on mosaics in subsequent papers [1964, 1965, 1967]. He
offered the following definition of a mosaic.

Definition 1.1. A mosaic is the array of prime numbers resulting from iterating the Funda-
mental Theorem of Arithmetic on n and on any resulting composite exponents.

Constructing the mosaic of an integer is relatively easy as shown in the following example.
Example 1.1.
n = 1,024,000, 000.
— 216 . 56

— 224 . 52-3

Gillman explored the consequences of partially expanding a mosaic through its first i-levels
[1990]. He offered the following defintion of the levels of a mosaic.

Definition 1.2. Levels of mosaics describe the different tiers of the mosaic.

Not only do the levels refer to the location of individual primes in the mosaic but it also
refers to the structure of the mosaic itself. We can consider the mosaic of n expanded through
the i*" level, denoted by M;(n), as shown in the following example.

Example 1.2.
Let n = 1,024, 000,000
M (n) = 2% .55
My(n) = 22" . 523
2
Ms(n) = 2% .5%3,



Much of Mullin’s and Gillman’s work involved generalizing arithmetic functions. For exam-
ple, Gillman defined the following generalization of the Mébius function.

1 ifn=1
0 if the mosaic of n > 1 has any prime number repeated

* n) =
) (—1)* if the mosaic of n > 1 has no prime repeated, where k is

the number of distinct primes in the mosaic of n.

Note that with this definition, p; is the traditional p function.

Bildhauser, Erickson, Gillman and Tacoma extended this this work by generalizing the €,
w, and A to a mosaic context [2009]. They introduced the concept of a mosaic divisor in hopes
of generalizing functions such as ¢ to mosaics. They offered a more complicated version of the
following definition.

Definition 1.3. A prime i-mivisor is a mosaic which has at most i levels and has a single prime
at the first level. The set of all i-mivisor includes

(a) 1,
(b) P;f“’ﬂl’z’m’ﬁl’”) where 1 < ; < «j, and
(c) a product of 1-relatively prime i-mivisor from part (b).
The following example demonstrates the 3-mivisors of an integer, denoted by Ms5(n).

Example 1.3.
35375 7112
n=2 -3

The prime S-mivisors of n are 25”5 and 37", and the set Ms(n) is

235-7.5 ] 3711 2352-7_5 . 3711

3 7

5.7, 52.7. 53.7. 11 112
{1, 23 5’ 23 5, 23 57 37 , 37

)

2353-7_5 . 3711 235-15 .37112 2352»745 .37112 2353»7_5 .37112}
7 )

While this definition of a mivisor led to a generalization of ¢, the generalization did not
behave as the common ¢ function. As a result, it did not have the desired properties of the ¢
function since it was not sensitive to the levels of a mosaic nor was it i-multiplicative. Hence,
the goal of this paper is to continue this work by first defining multiplication on mosaics in
hopes that we can define divisor concepts that lead to a nicer generalization.

2 Arithmetic Properties

Our approach to this problem, is to first define a system of arithmetic for mosaics that will
hopefully lead to these nice generalizations. We begin by attempting to define a generalized
addition and then move on to multiplication. Obviously any addition or multiplication system
needs to be closed and associative. It would also be nice if they each had an identity and were
commutative. Furthermore, we would like an addition or multiplication system which behaves
like the respective integer operation when ¢ = 1 and is sensitive to the levels of the mosaic much
like the functions discussed by previous authors.

In order to investigate closure of operations, we require an alternative characterization of
mosaics.

Definition 2.1. Mosaics are arrays of primes with all primes connected by multiplication or
exponentiation, and within a given level, the primes may appear only once as an exponent on
any particular base one level lower.

Theorem 2.1. Definition 1.1 is equivalent to the characterization given in Definition 2.1.



Proof. To do this proof, we are showing that a structure formed from Definition 2.1 can be
constructed from the method described in Definition 1.1. Further the mosaic that results from
the construction of Definition 1.1, also satisfies Definition 2.1. Both Definition 1.1 and Definition
2.1 follow from the Fundamental Theorem of Arithmetic which provides a unique decomposition
for any composite number into primes, which leaves primes at all levels. It also results in a
product of powers, which is to say all primes are connected by multiplication or exponentiation.
Finally, the FTA results in distinct primes, in other words within a given level, each prime only
appears once on any particular base. O]

Since there is a bijection between the positive integers and their mosaics, the following two
definitions are very natural first steps. We begin with Boz-Plus addition where M(0)=0 and
M(1)=1.

Definition 2.2. The operation B on the set of mosaics is given by M(a) B M(b) = M(a +b)
where a and b are non-negative integers with mosaics M(a) and M (b) respectively.

Here is an example of Box-Plus addition.
Example 2.1.
23" @22 = M(512) B M(16)
= M (528)
=2 .11-3

Theorem 2.2. Boz-Plus is closed, associative, has an identity and is commutative.

Proof. Box-Plus is closed since we always re-expand into a mosaic.
Box-Plus is associative since

(M (a) B M (b)) B M(c)

M(a+b)H M(c)
((a+Dd)+c¢)
(a+(b+c))
(
(

Eiii

a)BM(b+c)
a) B (M(b) B M(c)).

Box-Plus is commutative since

M (a)B M(b) = M(a+b)
(b+a)

(b) B8 M(a).

I
S =

M (0) is the additive identity since

M(0)B M(a) = M(0+ a)

O

We define a multiplication which operates in a similar fashion to Box-Plus addition, called
Boz-Dot multiplication.

Definition 2.3. The operation [ on the set of mosaics is given by M(a) & M(b) = M(ab)
where a and b are integers with mosaics M (a) and M (b) respectively.

Here is an example of Box-Dot multiplication.



Example 2.2.
2
22" [02-3% = M(16) & M(18) = M(288) = 25 - 32.

Theorem 2.3. Boz-Dot is closed, associative, has an identity and is commutative.

Proof. Box-Dot is commutative since

M(a) B M(b)

M(a-b)
M(@®-a)
= M(b) [ M(a).

Box-Dot is closed since we always re-expand into a mosaic.
Box-Dot is associative since

(M(a) D M (b)) D M(c) =

M (1) is the identity since

Theorem 2.4. Box-Dot multiplication is distributive over Box-Plus addition.

Proof.

M(a)D(M@O)BM(c)) = M(a) D (M(b+c))
M(a-b+a-c)

M(a-b)B M(a-c)

(M(a) B M (b)) B (M(a) L M(c))

O

We can think of Box arithmetic as being sensitive to levels as we specified in our desired
properties in Section 2. We can expand through any arbitrary i*" level and find the correspond-
ing integer for that partially expanded mosaic. Iterate the Box operand on the two integers and
then re-expand to the it" level.

Theorem 2.5. M (a)|M(b) if and only if alb.

Proof. M(a)|M(b)

< There exists M (c) such that M(a) & M(c) = M(b)

& M(a-c) = M(b)

< There exists ¢ such that a-c=1b

< alb O

Corollary 2.1. [ is equivalent to reqular integer multiplication.

Corollary 2.2. Any operation x on mosaics that has the property M(a) « M(b) = M(a - b) is
equivalent to L.



Therefore, anything with this property is going to be equivalent to Boz-Dot multiplication
and will therefore not be interesting in terms of having different properties.

Corollary 2.2 shows us that Boz-Dot multiplication is the only arithmetic operation on
mosaics that behaves like integer arithmetic. Since we know we cannot achieve these properties,
we can now move on to other multiplication systems that have different properties.

3 Mosaic Arithmetic

As we have seen in Corollary 2.2, we should abandon any attempts at defining an arithmetic
that works similarly to integer arithmetic since it will always be equivalent to box-arithmetic.
Therefore, we consider a multiplication system that is consistent with regular arithmetic when
1 =1, but works differently otherwise.

3.1 Circle-Star Multiplication

Circle-Star multiplication mirrors integer multiplication in the sense that you add powers on a
common base; however, in circle-star multiplication, the base can be more than just one level.
The divisors that subsequently fall out of Circle-Star multiplication appear to be similar to the
prime i-mivisors defined by Bildhauser, Erickson, Gillman, and Tacoma [2009], which motivated
us to consider this multiplication system.

a= ][],
M(a) =[] w",

Definition 3.1. Letting

we have

and we can define
My, (a) = pZM(ai).
Thus,
M(a) = HM .(a).

With this representation of a mosaic, we define the following multiplication.

Definition 3.2. Circle-Star is denoted
M(a) ® M(b) = [ [ My, (a) @ [ | My, (b)

and is found by iterating the following processes.

1. Take all pieces of the mosaic such that p,, = g, and expand through j-levels where j is
the highest level for which My, (a) and Mg, (b) are identical. Add vector exponents at the
(7 +1)%t level, put each element of the vector into mosaic form and append at the (j+ 1)
level of My, (a).

2. Append any mosaic left over to the end of the product by multiplication.

As shown below, up through a common base between the factors nothing will change.

Example 3.1.

233 ® 235 . 23M(3+5) . 2323

In the case that there is a difference in the number of levels between the factors, the mosaics
will need to be collapsed down so the they both have any remaining composits at the (j + 1)
level.
Example 3.2.

23

23 ® 233 _ 23M(8) @ 233 _ 2311



At the ;" level, should there be multiple bases, treat the exponents at the (5 + 1) level as
vectors and add accordingly.

Example 3.3.

.5M(10) 525

232_53 @ 235_57 _ 237 _ 237

In the event that there are multiple primes appearing at the first level, locate any common
bases between M (a) and M (b) and combine accordingly.

Example 3.4.
93%7 . 3775 5T g 5% 7 3725 _ gM(3:37)  37°5 5T @ 9M(5:57)  g7°:5
— 9M(63+175)  g7MOFD.5MUTD 7

_ 92717 g7 5% g7

Theorem 3.1. Circle-Star is closed, has an identity and is commutative.

Proof. Circle-Star is closed since we always re-expand into a mosaic.

M (1) is the multiplicative identity, since

Circle-Star is commutative, since we maintain a common base and then add on the
(7 +1)%! level, integer addition is associative. For cases in which there is no common base prime
combination we offer the following proof of commutativity.

M(a) ® M(b) = [ [ My, (a) ® M,, ()
= 1] Mp.(0) [ Mp(@)® ] My, J] My, (0)

Pi=4q; PiF#qi q; #Ppi

Letting M), (-) be the product of M, (a) ® M,;(b). When p; = q; we show commutativity as
follows.

IT 5.0) TT Mpi(@) T My 0)

Pi=q; PiF4; q; #Ppi
a4 #pi Pi=q; PiFqj

= I M, ] My, @ [] Mp(a) [T M@
q;=Ppi q; #Pi Pi=gq; PiFq;

O

Unfortunately, Circle-Star is not associative, as demonstrated by the following counterex-
ample.



Example 3.5.
(232 @ 233) ® 252 — 235 @ 252
— 9M(243) @ oM (25)

— 9M(268)

232 ® (233 ® 252) _ 232 ® (2M(27) ® 2M(25))
_ QM(Q) ® 2M(52)

— 9M(61)
Clearly, 2M(26%) #* oM(61),

Because Circle-Star is not associative, it fails to be a useful or interesting operation, even
though when the first level is common between two primes it does act like regular arithmetic.
Unfortunately, we cannot control on what level we multiply with Circle-Star multiplication, so
it also fails to meet our goals for mosaic arithmetic as layed out in our opening paragraph of
Section 2. Therefore, we continue to explore alternative systems of arithmetic.

3.2 P-Arithmetic

We would like to generalize addition and multiplication operations on mosaics that do not refer
to the integer associated with the mosaic, as Box-Arithmetic does. Ideally, we would like these
operations to have an identity, as well as be associative and commutative. Therefore we turn our
attention to an ordered system of primes in order to deal with mosaics. Since mosaics consist
only of arrays of primes, it is logical to define a context in which the only numbers that exist
are 0, 1, and all the primes. So let P = {py = 0,p1 = 1,ps = 2,p3 = 3,ps = 5,p5 = 7, etc.}.

We can add and multiply in P by operating on the indices and then finding the prime at
that particular index. We have defined these operations below.

Definition 3.3. Circle-Plus on the set P is given by

Di D Pj = Ditj
Example 3.6.
2@ 11 =ps ® pe = pat6 =ps = 17
Definition 3.4. Circle-Times on the set P is given by
Pi @ Pj = Pixj
Example 3.7.
3® 17 =p3 X pg = paa =83
Theorem 3.2. Circle-Plus is closed, associative, has an identity and is commutative.
Proof. Circle-Plus is trivially closed on P.
po is the additive identity on P since
Do D Pi = Poti
= Pi-
Circle-Plus is associative on P since
(pi ®pj) ® Pk = Pitj © P
= P(i+j)+k
= Di+(j+k)
=pi BPj+k
=pi @ (p; © pr)-



Circle-Plus is commutative on P since

DPi D Dj = Ditj
= Pj+i
=Dp; D pi-
O
Theorem 3.3. Circle-Times is closed, associative, has an identity and is commutative.
Proof. Circle-Times is trivially closed in P.
p1 is the multiplicative identity on P since
D1 @ pi = P1xi
= Di
Circle-Times is commutative on P since
Pi ®Pj = Pixj
= Pjxi
=Dpj Q.
Circle-Times is associative on P since
(pi ®pj) @ P = Pixj @ Pk
= P(ixj)xk
= Pix(jxk)
=Di @ Pjixk
=i ® (pj @ Pi)-
O
Theorem 3.4. Circle-Times distributes over Circle-Plus.
Proof.
Pa @ (pb EBpc) = Pa @ Pbtc
= Pax(b+c)
= P(axb)+(axc)
= Paxb D Paxe
= (pa ®pb) 2] (pa ®Pc)
O

If we let —p; = p_; € —P and consider the set —P U P, we can expand this arithmetic to
form a unit ring.

Theorem 3.5. There exists an additive inverse for each p in —P U P.
Proof. For any prime p;, there exists a prime denoted by p_; such that

Pi D P—i = Pig(—i)
= Po
=0



Theorem 3.6. (—P U P,®,®) forms a unit ring.
Proof. Theorems 3.2, 3.3, 8.4 and 3.5 together show that (—P U P, ®,®) is a unit ring. O

In P, the primes would be any p,, such that a is prime in on the set of integers. These
numbers are prime since we can only obtain these numbers via multipying p, ® p1.

3.3 P-Arithmetic Applied to Mosaics

Now that we have established a unit ring on the set —P U P we are able to generalize the
Circle-Plus and Circle-Times operations to mosaics. This is desirable because these operations
always result in primes and have interesting properties in terms of composites. These operations
require us to use the alternative characterization of mosaics.

We can add on mosaics by iterating the Circle-Plus operation on each level as defined below.

Definition 3.5. Circle-Plus is found by applying Circle-Times to each level of each addend
separately. Then Circle-Plus across levels.

Example 3.8.

23‘7 a 35 7= p2pa®P5 D p3p4 ® ps
— p2p3><5 @p3x5p4
= P(2415)" 15D
= p17"*°

= 5307
Theorem 3.7. Circle-Plus is closed, associative, and commutative on the set of mosaics.

Proof. Circle-Plus is trivially closed on the set of mosaics.

Circle-Plus is associative on the set of mosaics since Circle-Plus on P is associative and we
can think of operating on mosaics as associating across each level independently.

Circle-Plus is commutative on the set of mosaics since Circle-Plus on P is commutative and
we can think of operating on mosaics as commuting across each level independently. O

We can multiply in P on mosaics iterating the Circle-Times operation on each level as defined
below.

Definition 3.6. M; ® M equals the mosaic resulting by applying ® to all of the primes at each
level.

Example 3.9.

23-5 ® 2. 35 — p2P3®P4 ®p2 ®p3p4
= paP** @ pa.3™

— p2_6p4v12

= p12™*®

_ 3211
Theorem 3.8. Circle-Times is closed, associative and commutative on the set of mosaics.

Proof. Circle-Times is trivially closed on the set of mosaics.
Circle-Times is associative on the set of mosaics since Circle-Times on P is associative and
we can think of operating on mosaics as associating across each level independently.
Circle-Times is commutative on the set of mosaics since Circle-Times on P is commutative
and we can think of operating on mosaics as commuting across each level independently. O



Because of the nuances of our definitions for Circle-Plus and Circle-Times operations on
mosaics, identities for these operations must be separately defined. To find the additive and
multiplicative identities, you do not simplify across levels, you rather only Circle-Plus or Circle-
Times on the first level (without simplifying across the first level).

Theorem 3.9. Circle-Plus has an additive identity on the set of mosaics.

Proof. po is an additive identity on the set of mosaics since

M (o ;
po D p; (o) — p0+iM(a”)
= pM(@),
O
Theorem 3.10. Circle-Times has a multiplicative identity on the set of mosaics.
Proof. p; is a multiplicative identity on the set of mosaics since
p @ piM@) = py M)
— piM(Oﬁi)
O

The product of mosaic multiplication will always consist of a single number at each level,
due to the process of simplifying across levels prior to multiplying the factors. Therefore, any
mosaic that has more than one number appearing at any level is a prime mosaic.

4 Further Work

Many open questions remain on the topic of mosaics and mosaic arithmetic. More exploration
on P aritmetic on mosaics needs to be completed. We have offered a definition of additive and
multiplicative identities, but we are not quite satisfied with the way it weakens our operation
(since it deviates from our definition. We are unsure if there is another definition to better
define an identity, or if the problem lies within the definition of our P-Arithmetic. However, we
have the following conjecture.

Conjecture 4.1. P-Arithmetic on mosaics has an additive and multiplicative identity.

Eventually, if P arithmetic on mosaics has nice properties, we would like to generalize more
number theoretic functions to mosaics.

We would also like to develop an aritmetic that encompasses more of our three desired
properties. We offer the following conjecture about a multiplication which has this property.

Conjecture 4.2. Let M; ; be a mosaic expanded through i levels then truncated at the k" level.
Let *; be a multiplication on the i'" level such that (M;(a) *; M;(b));; = M; j(a) *; M; ;(b).
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