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Abstract

The mosaic of the integer n is the array of prime numbers resulting
from iterating the Fundamental Theorem of Arithmetic on n and on any
resulting composite exponents. In this paper, we generalize several num-
ber theoretic functions to the mosaic of n, first based on the primes of
the mosaic, second by examining several possible definitions of a divi-
sor in terms of mosaics. Having done so, we examine properties of these
functions.

1 Introduction

1.1 Mosaics

In a series of papers [3], [4], [5], and [6] Mullin introduced the number the-
oretic concept of the mosaic of n and explored several ideas related to it. He
defined the mosaic of an integer n as follows:

Definition 1. The mosaic of the integer n is the array of prime numbers re-
sulting from iterating the Fundamental Theorem of Arithmetic (FTA) on n and
on any resulting composite exponents.

∗This material is based upon work supported by the National Science Foundation under
Grant No. 033870. Any opinions, findings, and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily reflect the views of the National
Science Foundation.
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Example.

n = 1, 024, 000, 000 L99 Use the FTA to find the prime factorization of n.

= 216 · 56 L99 Apply FTA to composite exponents 16 and 6.

= 224
· 52·3 L99 Apply FTA again to composite number 4.

= 2222

· 52·3 L99 The mosaic of the integer; only primes remain.

The first function he introduced was ψ(n), the product of all of the primes
in the mosaic of n. As an example, we have:

Example.
ψ(2173

· 355
) = 2 · 17 · 3 · 3 · 5 · 5 = 7650

In classical number theory, a function is multiplicative if and only if f(mn) =
f(m)f(n) whenever m and n are relatively prime. Mullin defined f to be gener-
alized multiplicative if and only if f(mn) = f(m)f(n) whenever the mosaics of
m and n have no primes in common. He showed that ψ(n) is generalized multi-
plicative and that any multiplicative function is also generalized multiplicative.
He also generalized the classical Möbius function, µ(n), defining the generalized
Möbius function as:

µ∗(n) =


1 if n = 1
0 if the mosaic of n > 1 has any prime number repeated
(−1)k if the mosaic of n > 1 has no prime repeated, where k is

the number of distinct primes in the mosaic of n.

Examples.
µ∗(532

) = (−1)3 = −1

µ∗(223
) = 0

Similarly, Mullin defined a function to be generalized additive if and only
if f(mn) = f(m) + f(n) whenever the mosaics of m and n have no primes in
common. He defined ψ∗(n) as the sum of the primes in the mosaic of n and
showed that this function was generalized additive.

Example.

ψ∗(523·7 · 111319
) = 5 + 2 + 3 + 7 + 11 + 13 + 19 = ψ∗(523·7) + ψ∗(111319

)

1.2 Levels of the mosaic of n

Following Mullin’s work, Gillman, in his papers [1] and [2], defined new
functions on the mosaic of n. He used the concept of levels of the mosaic to
describe the different tiers of exponentation, an example of which follows:
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Example. 23·57
L99 The two is in the first level, the three and five are in the

second level, and the seven is in the third level of the mosaic.

Using this idea, Gillman generalized the classical Möbius function as follows:

µi(n) =



1 if n = 1
0 if the mosaic of n has duplicate primes in the first i levels

(including multiplicities at the ith level)
(−1)k if the mosaic of n consists of k distinct primes in the first

i levels.

Along with the Möbius function, Gillman generalized the multiplicative
property of functions to the levels of mosaics.

Definition 2. A function is i-multiplicative if and only if f(mn) = f(m)f(n)
when m and n have no primes in common in the first i levels of their mosaic.

Combining these concepts, Gillman went on to prove µi is i-multiplicative
for all i.

Example. µ3(35·1119 · 7132
) = (−1)7 = (−1)4 · (−1)3 = µ3(35·1119

) · µ3(7132
)

He then furthered Mullin’s work on ψ(n) by generalizing it to depend on the
levels of the mosaic. The function ψj,i(n) for j > i is computed as follows:

Definition 3. Expand n through the first j levels of its mosaic; for each prime
p on the ith level of this expansion, multiply p by the product of the primes in
the (i+1)st through jth levels above p, including multiplicities of the primes at
the jth level.

Examples.

ψ6,3(2357
11·132

· 32·53·7
) = 235·7·11·13·2

· 32·53·7

ψ∞,1(n) = product of all primes in the mosaic

Gillman also introduced the idea of i-relatively prime mosaics. That is, two
integers, m and n, are i-relatively prime when they have no primes in common
in the first i levels of their mosaics.

Example. The integers with mosaics 235
and 7113

are 2-relatively prime, but
not 3-relatively prime.

1.3 Our Motivation

In this paper, we will introduce new families of functions defined on the
mosaic of n and determine which of these are i-multiplicative or i-additive. In
section two, the functions will depend only on the primes present in the first i
levels and their multiplicities. In sections three, four, five, and six, we define
alternative generalizations of the concept of a divisor and explore functions that
result from these definitions. Finally, in the last section, we present ideas for
future consideration for study of the mosaic of n.
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2 Mosaic Functions

The functions Ω, ω, λ, and ψ∗ are among the functions that can be gener-
alized to the mosaic of n. We discuss their generalizations specifically because
we found them to either be i-multiplicative or i-additive.

2.1 The Functions Ωi and ωi

In classical number theory, Ω(n) is the total number of primes in the factor-
ization of n, including repetitions. We generalize that in the following definition:

Definition 4. Ωi(n) is the total number of primes in the first i levels of the
mosaic of n, including multiplicities on the ith level.

Examples.

Ω2(237
· 5116

) = Ω2(23·3·3·3·3·3·3 · 511·11·11·11·11·11) = 15

Ω3(7575 ·19 · 19137·113

) = Ω3(757·7·7·7·7·19 · 19137·11·11·11
) = 14

Noting that 1-additive implies j-additive for all j, we have the following
theorem. However, i-additive implies j-additive for j > i, as we see in the
theorem for ωi.

Theorem 1. Ωi is j-additive for all i and j.

Proof. Let m and n be 1-relatively prime. Then Ωi(mn) is summing the number
of prime divisors of the product mn and the number of primes in levels two
though i of the mosaic of mn, including multiplicities at the ith level. Since m
and n are 1-relatively prime, the first term of this sum can be written as the
number of prime divisors of m plus the number of prime divisors of n. Similarly,
the second term can be written as the number of primes in levels two through
i of the mosaic of m plus the number of primes in levels two through i of the
mosaic of n (including multiplicities at the ith level in each of these sums).
Rearranging these sums results in Ωi(m) + Ωi(n). Thus Ωi is 1-additive and
therefore j-additive for all j.

Examples.

Ω2(237
· 5116

) = 15 = 8 + 7 = Ω2(237
) + Ω2(5116

)

Ω3(753·24

· 1311178

) = 17 = 7 + 10 = Ω3(753·24

) + Ω3(1311178

)

Note: The result that Ωi is i-additive depends only on the first level of the
mosaics having distinct primes. That is, it is necessary and sufficient that the
first level of the mosaics have distinct primes in order that Ωi be i-additive. We
illustrate this in the following examples.
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Example.
Ω2(235

· 33) = 8 = 6 + 2 = Ω2(235
) + Ω2(33)

Ω2(335
· 33) = Ω2(32·3·41) = 4 6= 8 = 6 + 2 = Ω2(335

) + Ω2(33)

In classical number theory, ω(n) is the number of distinct primes in the
prime factorization of n. We generalize ω(n) to the mosaic of n as follows:

Definition 5. ωi(n) is the number of distinct primes in the first i levels of the
mosaic of n.

Examples.

ω2(237
· 5116

) = ω2(23·3·3·3·3·3·3 · 511·11·11·11·11·11) = 4

ω3(19137·113

· 7575

· 19) = ω3(19137·11·11·11
· 757·7·7·7·7·19) = 5

Unlike Ωi, ωi is not j-additive for all j. Rather, as the following theorem
demonstrates, it is j-additive for j ≥ i.

Theorem 2. ωi is i-additive.

Proof. Let m and n be i-relatively prime. Then ωi(mn) is summing the number
of prime divisors of the product mn and the distinct primes in levels two though
i of the mosaic of mn (which must also be distinct from the prime divisors).
Since m and n are relatively prime, the first term of this sum can be written as
the prime divisors of m plus the prime divisors of n. Similarly, the second term
can be written as the number of distinct primes in levels two through i of the
mosaic of m plus the number of distinct primes in levels two through i of the
mosaic of n. Thus ωi(mn) = ωi(m) + ωi(n) and therefore ωi is i-additive.

Example.

ω4(711·1353
2

· 2917892

) = 9 = 5 + 4 = ω4(711·1353
2

) + ω4(2917892

)

ω4(115·11 · 7193·5357

) = 6 6= 2 + 5 = ω4(115·11) + ω4(7193·5357

)

2.2 The Function λi

Classical number theory defines the Liouville function as λ(n) = (−1)Ω(n).
We generalize this in the obvious way:

Definition 6. λi(n) = (−1)Ωi(n)

Example.

λ2(237
· 5116

) = (−1)Ω2(2
37 ·5116 ) = (−1)15 = −1

This leads to the following theorem, again recalling that 1-multiplicative
implies j-multiplicative for all j.
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Theorem 3. λi is j-multiplicative for all j.

Proof. Assume m and n are 1-relatively prime. Therefore,

Ωi(mn) = Ωi(m) + Ωi(n)

Thus, it follows that

λi(mn) = (−1)Ωi(mn)

= (−1)Ωi(m)+Ωi(n)

= (−1)Ωi(m)(−1)Ωi(n)

= λi(m)λi(n)

λi is 1-multiplicative and therefore j-multiplicative for all j.

Example.

λ2(237
· 5116

) = (−1)Ω2(2
37 ·5116 ) = (−1)15 = (−1)8(−1)7 = λ2(237

)λ2(5116
)

2.3 The Function ψ∗
j,i

Mullin defined the function ψ as the product of all primes in a mosaic. Gill-
man later extended this to the levels of the mosaic by introducing the function
ψj,i. Mullin also defined the function ψ∗ to be the sum of the primes in a mo-
saic. We wanted to generalize this idea to the levels of the mosaic as well, so
we define the function ψ∗j,i as follows:

Definition 7. For j > i, compute ψ∗j,i(n) as follows: Expand n through the
first j levels of its mosaic; for each prime p on the ith level of this expansion, add
p to the sum of the primes in the (i+ 1)st through jth levels above p, including
the multiplicities of the primes at the jth level.

Examples.

ψ∗4,2(171137 ·19 · 23235

) = 1711+3+7+19 · 232+3+5

ψ∗4,1(3
523 ·7) = 3 + 5 + 2 + 3 + 7 = 20

Similar to the previous functions, we found that for ψ∗j,1 1-additive, and
therefore k-additive for all k, as the following theorem shows.

Theorem 4. ψ∗j,1(n) is k-additive for all j and k.

Proof. Let m and n be integers which are 1-relatively prime. ψ∗j,1(mn) is the
sum of primes in the first j levels of the mosaic of mn, including multiplicities
on the jth level. This is equivalent to the sum of prime divisors of mn plus
the sum of the primes in levels two through j of the mosaic of mn including
multiplicities at the jth level. Since m and n are relatively prime, the sum of
prime divisors of mn can be written as the sum of prime divisors of m plus the
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sum of prime divisors of n. Similarly, the second term can be written as the
sum of primes in levels two through j of m plus the number of primes in levels
two through j of the mosaic of n including multiplicities at the jth level in each.
Rearranging these sums results in ψ∗j,1(m)+ψ∗j,1(n). Thus ψ∗j,1 is 1-additive and
therefore k-additive for all k.

Example.

ψ∗3,1(3
7·1119

· 13252 ·13) = (3 + 7 + 11 + 19) + (13 + 2 + 5 + 5 + 13)

= ψ∗3,1(3
7·1119

) + ψ∗3,1(13252 ·13)

Interestingly, while ψ∗j,i is k-additive for all j and k when i = 1, for any
i > 1, ψ∗j,i is 1-multiplicative and therefore k-multiplicative for all j and k.

Theorem 5. For all i > 1, ψ∗j,i(n) is k-multiplicative for all j and k.

Proof. Let m and n be 1-relatively prime integers with prime factorizations
pα1
1 pα2

2 · · · pαr
r and qβ1

1 qβ2
2 · · · qβs

s , respectively. Because m and n are 1-relatively
prime, mn = pα1

1 pα2
2 · · · pαr

r qβ1
1 qβ2

2 · · · qβs
s . Further, because i > 1, ψ∗j,i(mn) has

the same first (i − 1) levels as the mosaic of mn and the ith level is equal to
the ith level of ψj,i(mn) with multiplication converted to addition. Thus the
unchanged first level can be partitioned into the parts that have the same first
(i−1) levels as m and n and with the ith levels equal to the ith levels of ψj,i(m)
and ψj,i(n) respectively with multiplication converted to addition.

ψ∗j,i(mn) = pa1
1 p

a2
2 · · · par

r q
b1
1 q

b2
2 · · · qbs

s

= (pa1
1 p

a2
2 · · · par

r )(qb11 q
b2
2 · · · qbs

s )
= ψ∗j,i(m)ψ∗j,i(n)

where ai and bi are the 2nd through ith levels of the mosaic, with the (i+ 1)st

to jth levels brought down to the ith level with multiplication converted to
addition. Thus ψ∗j,i(mn) is 1-multiplicative and therefore k-multiplicative for
all k.

Example.

ψ∗4,2(171137 ·19 · 23235

) = 1711+3+7+19 · 232+3+5 = ψ∗4,2(171137 ·19) · ψ∗4,2(23235

)

3 Submosaics

Many number theoretic functions are defined in terms of the divisors of n, so
we must develop an analogous concept for the mosaic. In this and the following
sections, we examine some possible definitions, and the resulting functions.
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3.1 Definition of a Submosaic

A mosaic can be viewed as a connected graph where the primes in the mosaic
are the vertices and there is an edge between vertices if one prime is multiplied
by the other or one is an exponent of the other. In [4], Mullin introduced the
concept of submosaics; therefore, submosaics seemed like a natural first step in
our search for a divisor. Mullin defined a submosaic as the mosaic corresponding
to a connected subgraph of the graph of the full mosaic. We found that this
definition did not work like Mullin thought it would, and it did not help to
create the i-multiplicative functions we were looking for. We decided to alter
the definition to something more like divisors in the sense that removing a
submosaic from a mosaic leaves another submosaic of the mosaic. This is similar
to divisors because dividing a number by one of its divisors results in another
divisor.

Definition 8. A restricted submosaic is a mosaic that corresponds to one of the
connected subgraphs such that it leaves a connected subgraph when removed
from the graph of the full mosaic. A restricted submosaic in the first i levels of
n is found by expanding the mosaic of n through i levels and following the same
process with multiplicities on the ith level. We denote the set of all restricted
submosaics of n in the first i levels by Si(n).

Example.
n = 713 · 1119

S2(713 · 1119) = {1, 13, 19, 713, 1119, 713 · 11, 7 · 1119, 713 · 1119}

3.2 The Function sφi

In classical number theory, φ(n) counts the number of integers less than or
equal to n that are relatively prime to n. It is computed using the formula
φ(n) =

∑
d|n µ(d)nd . Given this formula, we generalize φ using submosaics as

follows:

Definition 9.
sφi(n) =

∑
d∈Si(n)

µi(d)(n\d)

(n\d) is the integer resulting from the submosaic corresponding to the connected
subgraph formed by removing the subgraph corresponding to the mosaic of d
from the graph corresponding to the mosaic of n.

The pre-subscript s is used to denote the use of restricted submosaics. We
need to use the pre-subscript because we will define other versions of the φ
function later in the paper. The post-subscript, i, is used to determine which
level of the mosaic is being examined.
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Example.

sφ2(27 · 13) = (1)
(
(27 · 13)\1

)
+ (−1)1

(
(27 · 13)\7

)
+ (−1)1

(
(27 · 13)\13

)
+ (−1)2

(
(27 · 13)\27

)
+ (−1)2

(
(27 · 13)\(2 · 13)

)
+ (−1)3

(
(27 · 13)\(27 · 13)

)
= 1664− 26− 128 + 13 + 7− 1
= 1529

3.3 The Functions sτi and sσi

The function τ(n) typically counts the number of divisors of an integer n.
Our generalized τ function, sτi(n), counts the number of restricted submosaics
from the first i levels of n including multiplicities on the ith level.

Definition 10.
sτi(n) =

∑
d∈Si(n)

1

Example.
n = 5197

· 23

S3(5197
· 23) = {1, 7, 23, 5197

, 197, 519 · 23, 5 · 23, 5197
· 23}

sτ3(5197
· 23) = |S3(5197

· 23)| = 8

Similarly, σ(n) sums the divisors of an integer n, so sσi(n) is the sum of
restricted submosaics from the first i levels of n including multiplicities on the
ith level.

Definition 11.
sσi(n) =

∑
d∈Si(n)

d

Example.

sσ3(5197
· 23) = 1 + 7 + 23 + 5197

+ 197 + (519 · 23) + (5 · 23) + (5197
· 23)

3.4 Mullin’s problem

We discovered that none of these functions are i-multiplicative. The problem
is that if d ∈ Si(mn), then d1 ∈ Si(m) and d2 ∈ Si(n) for some d1 and d2 such
that d1d2 = d. However, d1 ∈ Si(m) and d2 ∈ Si(n) does not necessarily imply
that d1d2 ∈ Si(mn).

Example.
3 ∈ S2(25 · 73) 5 ∈ S2(25 · 73)

3 · 5 6∈ S2(25 · 73)
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After discovering this, we looked again at Mullin’s work with submosaics.
If we let C(n) be the set of all submosaics of n, he made the assumption that
C(mn) = C(m) × C(n), but we discovered that this is not true. As we found
with restricted submosaics, we also discovered that d1 ∈ C(m) and d2 ∈ C(n)
does not necessarily imply that d1d2 ∈ C(mn).

Example.
2 ∈ C(132 · 175) 17 ∈ C(132 · 175)

2 · 17 6∈ C(132 · 175)

4 Mivisors

Since the assumptions made by Mullin about functions with submosaics were
false, that is, they did not act as a divisor of the full mosaic, our quest for a
divisor continued.

4.1 Definition of a Mivisor

Mivisor, from mosaic divisor, was our first generalization of a divisor for
mosaics, which we examine in this section.

Definition 12. d is a mivisor of n if and only if its base primes are a subset
of the base primes of n and the exponents are the same as for each base prime.
We denote the set of all mivisors of n by M(n).

Example. Let n = 235 · 3517 · 5. The mivisors of n are:

M(235 · 3517 · 5) = {1, 235
, 3517

, 5, 235 · 3517
, 235 · 5, 3517 · 5, 235 · 3517 · 5}

We chose this structure because the mosaic above each prime in the first
level is fixed and we did not want to change the entire mosaic when dividing by
the mivisor.

Lemma. M(mn) = M(m)×M(n) when m and n are i-relatively prime.

Proof. Let the prime-power factorizations of m and n be pa1
1 p

a2
2 · · · pas

s and
qb11 q

b2
2 · · · qbt

t , respectively. Sincem and n are i-relatively prime, the set of primes
in the first level of m and the set of primes in the first level of n have no common
elements. Therefore, the prime-power factorization of mn is

mn = pa1
1 p

a2
2 · · · pas

s q
b1
1 q

b2
2 · · · qbt

t .

If d ∈M(mn), then
d = pe11 p

e2
2 · · · pes

s q
f1
1 q

f2
2 · · · qft

t

where ei is either 0 or ai for i = 1, 2, . . . , s and fj is either 0 or bi for j =
1, 2, . . . , t. Now let d1 = gcd(d,m) and d2 = gcd(d, n). Then

d1 = pe11 p
e2
2 · · · pes

s and d2 = qf11 q
f2
2 · · · qft

t .
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It follows that d1 ∈M(m) and d2 ∈M(n). Since d = d1d2, d ∈M(m)×M(n)
Similarily, if d1 ∈ M(m) and d2 ∈ M(n), then d1d2 ∈ M(m) ×M(n) and

d1d2 ∈M(mn). Thus the sets are the same.

We are able to prove the following theorem using this lemma.

Theorem 6. If f is an i-multiplicative function, then F (n) =
∑
d∈M(n) f(d),

is also i-multiplicative.

Proof. To show that F is an i-multiplicative function, we must show that when
m and n are i-relatively prime, F (mn) = F (m)F (n). So assume that m and n
are i-relatively prime. We know

F (mn) =
∑

d∈M(mn)

f(d).

By the lemma, because m and n are i-relatively prime, each mivisor of mn can
be written as the product d = d1d2 where d1 ∈ M(m) and d2 ∈ M(n), and d1

and d2 are i-relatively prime.

F (mn) =
∑

d1∈M(m),d2∈M(n)

f(d1d2)

Because f is i-multiplicative, and d1 and d2 are i-relatively prime, we see that

F (mn) =
∑

d1∈M(m)

∑
d2∈M(n)

f(d1)f(d2)

=
∑

d1∈M(m)

f(d1)
∑

d2∈M(n)

f(d2)

= F (m)F (n).

4.2 The Function m1φi

Using the classical formula for φ and the mivisors, we are able to redefine
φ for mosaics. Unfortunately, we lose the conceptual definition of φ counting
something.

Definition 13.
m1φi(n) =

∑
d∈M(n)

µi(d)
n

d

Example.

m1φ2(23) = (−1)2
23

23
+ (−1)0

23

1
= 9

Having redefined our functions in terms of mivisors, we wanted to know if
the typical number theoretic properties of these functions still held. We found
our function m1φi to, in fact, be i-multiplicative.
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Theorem 7. m1φi is i-multiplicative.

Proof.

m1φi(mn) =
∑

d∈M(mn)

µi(d)
mn

d

=
∑

d∈M(m)×M(n)

µi(d)
mn

d

=
∑

d1∈M(m)

∑
d2∈M(n)

µi(d1)µi(d2)
m

d1

n

d2

=
∑

d1∈M(m)

µi(d1)
m

d1

∑
d2∈M(n)

µi(d2)
n

d2

= m1φi(m)m1φi(n)

4.3 The Functions m1τ and m1σ

The function m1τ(n) counts the number of mivisors of n.

Definition 14.
m1τ(n) =

∑
d∈M(n)

1

Example.
n = 117 · 173

M(117 · 173) = {1, 117, 173, 117 · 173}

m1τ(117 · 173) = |M(117 · 173)| = 22

Note: The function m1τ will always result in a power of two with the expo-
nent equal to the number of primes in the first level.

Using Theorem 6 with f(d) = 1, which is obviously i-multiplicative, we
obtain

Corollary. m1τ is i-multiplicative for all i.

Example.

m1τ(117 · 173) = |M(117 · 173)| = 4 = 2 · 2 = m1τ(117) · m1τ(173)

Our generalized σ function, m1σi(n), sums the mivisors of n. That is

Definition 15.
m1σ(n) =

∑
d∈M(n)

d

Example.
m1σ(117 · 173) = 1 + 117 + 173 + 117 · 173
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Using Theorem 6 with f(d) = d, which is i-multiplicative, we have the
following

Corollary. m1σ is i-multiplicative for all i.

Example.

m1σ(117 ·173) = 1+117+173+117 ·173 = (1+117)(1+173) = m1σ(117)·m1σ(173)

We noticed that for all three of these functions we were using the same set
of mivisors for all i given any n. The values of m1τ and m1σ did not change
as i varied, and m1φi only changed with i because µi changed as i varied. It is
because of these problems that we changed our functions to use ψi,1.

4.4 The Functions m2φi, m2τi, and m2σi

We tried to see if our function would make more sense if the set we took
the sum over changed with i as well, so we included ψi,1 in our formulas for
m2φi, m2τi, and m2σi. To make our function different for different values of i,
we consider m2fi(n) = m1fi ◦ ψi,1(n). In particular,

Definition 16.

m2φi(n) = m1φi(ψi,1(n)) =
∑

d∈M(ψi,1(n))

µi(d)
ψi,1(n)
d

Example.

m2φ2(23) = (−1)2
2 · 3
2 · 3

+ (−1)1
2 · 3
2

+ (−1)1
2 · 3
3

+ (−1)0
2 · 3
1

= 2

Fortunately, m2φi behaves nicely, as we see in the following.

Theorem 8. m2φi is i-multiplicative.

Proof. Let m and n be i-relatively prime integers.

m2φi(mn) = m1φi(ψi,1(mn))
= m1φi(ψi,1(m) · ψi,1(n))
= m1φi(ψi,1(m)) · m1φi(ψi,1(n))
= m2φi(m) · m2φi(n)

Clearly, if the integer n is squarefree, then m1φi(n) = m2φi(n) = φ(n).
Again, we use ψi,1 to fix the problem with m1τi.

Definition 17.

m2τi(n) = m1τ(ψi,1(n)) =
∑

d∈M(ψi,1(n))

1

13



Example.
m2τ2(2

35
) = number of mivisors of ψ2,1(235

)

= number of mivisors of 2 · 35

= 22

The function m2τi will also always result in a power of two. In this case
the exponent is equal to the number of distinct primes in the first i levels of n.
Another way to describe the results of m2τi is in terms of ωi, which was defined
earlier. Hence, another formula is m2τi(n) = 2ωi(n).

Example.

m2τ3(3
72

) = 2ω3(3
72 )

= 23

where 23 is the total number of mivisors of ψ3,1(372
) and the exponent, 3, is the

number of distinct primes of 372
.

Using the corollary that states that m1τ is i-multiplicative for all i, we can
prove the following

Corollary. m2τi is i-multiplicative.

Proof. Let m and n be i-relatively prime integers.

m2τi(mn) = m1τi(ψi,1(mn))
= m1τ(ψi,1(m) · ψi,1(n))
= m1τ(ψi,1(m)) · m1τ(ψi,1(n))
= m2τi(m) · m2τi(n)

Example.

m2τ2(2
32·5 · 7117

· 131713
· 31) = 28

= 25 · 23

= m2τ2(2
32·5 · 7117

) · m2τ2(131713
· 31)

We re-defined mσi using ψj,i as follows:

Definition 18.

m2σi(n) = m1σi(ψi,1(n)) =
∑

d∈M(ψi,1(n))

d

Example.

m2σ3(372
) = 1 + 3 + 7 + 2 + (3 · 7) + (3 · 2) + (7 · 2) + (3 · 7 · 2) = 96

14



Using the corollary that states that m1σ is i-multiplicative for all i, we can
prove the following

Corollary. m2σi is i-multiplicative.

Proof. Let m and n be relatively prime integers.

m2σi(mn) = m1σi(ψi,1(mn))
= m1σ(ψi,1(m)ψi,1(n))
= m1σ(ψi,1(m)) · m1σ(ψi,1(n))
= m2σi(m) · m2σi(n)

Example.

m2σ2(7113
· 5192

)

= 1 + 7 + 113 + 5 + 192 + (7 · 113) + (7 · 5) + (7 · 192) + (113 · 5) + (113 · 192)

+ (5 · 192) + (7 · 113 · 5) + (7 · 5 · 192) + (7 · 113 · 192) + (113 · 5 · 192)

+ (7 · 113 · 5 · 192)

= (1 + 5 + 192 + 5 · 192) + 7(1 + 5 + 192 + 5 · 192) + 113(1 + 5 + 192 + 5 · 192)

+ 7 · 113(1 + 5 + 192 + 5 · 192)

= (1 + 7 + 113 + 7 · 113)(1 + 5 + 192 + 5 · 192)

= m2σ2(7113
) · m2σ2(5192

)

5 New-visors

While mivisors worked as a divisor of mosaics, we were displeased. We
wanted to find a divisor that did not rely on ψi,1 in order for functions to
change as i varied. Consequently, we re-examined the functions φ, τ , and σ
with a differently structured divisor.

5.1 Definition of a New-Visor

New-visors, from new types of divisors, are the next concept analogous to
divisors which we examine.

Definition 19. A number d is a new-visor of n if d and n have the same mosaic
through the first i levels and when aj is an element of the unfactored (i + 1)
row of n and bj is the corresponding element of the unfactored (i+ 1) row of d,
0 ≤ bj ≤ aj for each aj and bj . We denote the set of i-level new-visors of n by
Ni(n).

Note: When i = 1, new-visors are equivalent to normal divisors, unlike
mivisors which do not correspond.
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Examples.
n = 22·33

· 5

N2(22·33
· 5) = {220·30

· 5, 220·31
· 5, ..., 221·32

· 5, 221·33
· 5}

N3(22·33
· 5) = {22·330

· 5, 22·331

· 5}

N4(22·33
· 5) = {22·33

· 5}

Lemma. Ni(mn) = Ni(m)×Ni(n) when m and n are i-relatively prime.

Proof. After applying the FTA to generate i levels of the mosaics of m and n, let
the unfactored powers in the (i+1) level of m be a1, a2, ..., as and let the unfac-
tored powers in the (i+1) level of n be b1, b2, ..., bt. Sincem and n are i-relatively
prime, applying the FTA to mn would also give a1, a2, ..., as, b1, b2, ..., bt as the
unfactored powers in the (i + 1) level. If d is a new-visor of mn, then d has
e1, e2, ..., es, f1, f2, ..., ft as the unfactored powers in the (i + 1) level with the
same first i levels as mn where 0 ≤ ej ≤ aj for j = 1, 2, ..., s and 0 ≤ fk ≤ bk for
k = 1, 2, ..., t. Now let d1 be a new-visor of m such that d1 has the same first i
levels as m and the unfactored powers in the (i + 1) level are e1, e2, ..., es. Let
d2 be a new-visor of n such that d2 has the same first i levels as n and the un-
factored powers in the (i+ 1) level are f1, f2, ..., fs. It follows that d1 ∈ Ni(m)
and d2 ∈ Ni(n). Thus d1 and d2 are i-relatively prime and d = d1d2, so
d ∈ Ni(m)×Ni(n).

Similarily, if d1 ∈ M(m) and d2 ∈ M(n), then d1d2 ∈ M(m) ×M(n) and
d1d2 ∈M(mn). Then the sets are the same.

Theorem 9. If f is an i-multiplicative function, then F (n) =
∑
d∈Ni(n) f(d),

is also i-multiplicative.

Proof. The proof follows from Theorem 6 using the set of new-visors in place of
the set of mivisors.

5.2 The Function nφi

We now revisit the functions explored in the previous section. We begin
with the function nφi.

Definition 20.
nφi(n) =

∑
d∈Ni(n)

µi(d)
n

d

Example.

nφ2(1352
) = (−1)3

1352

1352 + (−1)2
1352

1351 + (−1)1
1352

1350

We found our function nφi to be i-multiplicative.

Theorem 10. nφi is i-multiplicative.
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Proof. Similar to proof that m1φi is i-multiplicative.

If the mosaic of n has i levels of primes, then µj(n) = nφj(n) for j > i
because the only new-visor of n will be n itself. If the mosaic of n has a prime
repeated in the first i levels, then nφj(n) = 0 for j > i because µj(d) = 0 for all
new-visors of n.

5.3 The Functions nτi and nσi

The generalized τ function, nτi(n), counts the number of new-visors of n.
Thus, we have:

Definition 21.
nτi(n) =

∑
d∈Ni(n)

1

It can be easily shown that

nτi(n) =
∏

(aj + 1)

where aj is an element of the unfactored (i+ 1) row of n.

Examples.
nτ2(235

) = 5 + 1 = 6

nτ2(71123
) = 23 + 1 = 24

nτ2(235
· 711) = (5 + 1)(1 + 1) = 12

By Theorem 9, we find

Corollary. nτi is i-multiplicative for all i.

Example.
nτ2(352

· 711·1319
) = (2 + 1)(1 + 1)(19 + 1)

= 120
= 3 · 40

= nτ2(352
) · nτ2(711·1319

)

The generalized σ function, nσi, sums the new-visors of n, therefore,

Definition 22.
nσi(n) =

∑
d∈Ni(n)

d

Examples.
nσ2(235

) = 230
+ 231

+ 232
+ ...+ 235

nσ2(711) = 7110
+ 7111
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Again, by Theorem 9 we see

Corollary. nσi is i-multiplicative for all i.

Example.

nσ2(1953
· 72·13) = 1950

· 720·130
+ 1951

· 720·130
+ ...+ 1953

· 721·131

= nσ2(1953
) · nσ2(72·13)

6 Trivisors

Neither the mivisors nor the new-visors had all of the properties of divisors
that we wanted. In particular, we want a type of divisor that will allow us to
use the notion of a greatest common divisor of two mosaics, always have 1 as a
divisor of the integer, and change as i varies.

6.1 Definition of a Trivisor

We define trivisors, from third divisor, as follows.

Definition 23. Let n = pα1
1 pα2

2 · · · pαk

k .
For each pj , a prime i-trivisor of n is pαj

j expanded through i levels with
multiplicities above the ith level truncated, denoted Pj .

P
(aj,1,aj,2,··· ,aj,sj

)

j denotes pαj

j expanded through i levels including the mul-
tiplicities aj,1, aj,2, · · · , aj,sj

on the ith level.

If n =
∏k
j=1 P

(aj,1,aj,2,··· ,aj,sj
)

j , then an i-trivisor of n is
(a) 1,

(b) P
(bj,1,bj,2,··· ,bj,sj

)

j where 1 ≤ bj ≤ aj , or
(c) a product of 1-relatively prime i-trivisors from part (b).

Example.

n = 235·7·5 · 37112

T3(235·7·5 · 37112

) = {1, 235·7·5, 3711
, 37112

, 235·7·5 · 3711
, 235·7·5 · 37112

}

Note: Of these 3-trivisors, 235·7·5 and 3711
are prime 3-trivisors.

Lemma. Ti(mn) = Ti(m)× Ti(n)

Proof. Let m and n be i-relatively prime integers such that m = pα1
1 pα2

2 · · · pαt
t

and n = qβ1
1 qβ2

2 · · · qβu
u . After applying the FTA to generate i levels of the

mosaics of m and n, let

m =
t∏

j=1

P
(aj,1,aj,2,··· ,aj,rj

)

j and n =
u∏
j=1

Q
(bj,1,bj,2,··· ,bj,sj

)

j .

18



Since m and n are i-relatively prime, mn = pα1
1 pα2

2 · · · pαt
t q

β1
1 qβ2

2 · · · qβu
u and

mn =
t∏

j=1

P
(aj,1,aj,2,··· ,aj,rj

)

j

u∏
j=1

Q
(bj,1,bj,2,··· ,bj,sj

)

j .

If d is an i-trivisor of mn, then

d =
v∏
k=1

P
′(ck,1,ck,2,··· ,ck,rk

)

k

w∏
k=1

Q
′(ek,1,ek,2,··· ,ek,sk

)

k

where for each k, P
′

k = Pj for some j and 1 ≤ ck,` ≤ aj,`. Let d1 be an i-trivisor

of m such that d1 =
∏v
k=1 P

′(ck,1,ck,2,··· ,ck,rk
)

k . Let d2 be and i-trivisor of n such

that d2 =
∏w
k=1Q

′(ek,1,ek,2,··· ,ek,sk
)

k . It follows that d1 ∈ Ti(m) and d2 ∈ Ti(n).
Then d1 and d2 are i-relatively prime and d = d1d2, so d ∈ Ti(m)× Ti(n).

Similarly, if d1 ∈ T (m) and d2 ∈ T (n), then d1d2 ∈ Ti(m) × Ti(n) and
d1d2 ∈ Ti(mn). Therefore the sets are the same.

We need this lemma for the proof of the following theorem.

Theorem 11. If f is an i-multiplicative function, then F (n) =
∑
d∈Ti(n) f(d)

is also i-multiplicative.

Proof. Follows from Theorem 6.

Definition 24. The greatest common i-trivisor of m and n, GCTi(m,n), is the
greatest common product of prime i-trivisors and exponents.

Examples.
GCT3(235

, 2 · 532
) = 1

GCT3(23520

· 3711
, 23510

· 7) = 23510

Definition 25. Two integers m and n are GCTi relatively prime if and only if
GCTi(m,n) = 1.

6.2 The Function tφi

Using the idea of GCTi relatively prime allows us to define a new generalized
φ function that is based on the original definition of the φ function rather than
just the formula. That is, tφi(n) is the number of integers GCTi relatively
prime to n that are less than or equal to n. Unfortunately, tφi(n) is NOT an
i-multiplicative function.

Example.
tφ2(2) = 1

tφ2(3) = 2

tφ2(2 · 3) = 3 6=t φ2(2) ·t φ2(3)

However, it is still of interest to us because by counting something it serves
a purpose that the other φ functions do not.
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6.3 The Functions tτi and tσi

Similar to previous sections, we let tτi count the number of i-trivisors of n.
Thus,

Definition 26.
tτi(n) =

∑
d∈Ti(n)

1

where Ti(n) is the set of i-trivisors of n.

Example.

n = 711·1352

T3(711·1352

) = {1, 711·1351

, 711·1352

}

tτ3(711·1352

) = |T3(711·1352

)| = 3

By Theorem 11, we find

Corollary. tτi is i-multiplicative.

Example.
tτ2(53·57

· 37177
) = 64

= 8 · 8

= tτ2(53·57
) · tτ2(37177

)

We were able to find and prove another formula to compute tτi using the
preceeding corollary and the following lemma.

Lemma. Let p be a prime and α be a positive integer, then tτi(pα) = (
∏
aj)+1

where aj is an element of the unfactored (i+ 1) level of pα = P (a1,a2,...,ak).

Proof. 1 is an i-trivisor of pα and so is P (b1,b2,...,bk) where 1 ≤ bj ≤ aj for all j.
Since there are

∏
aj ways to select the set (b1, b2, . . . , bj), there are (

∏
aj) + 1

i-trivisors of pα.

Theorem 12. Let n have the prime factorization n = pα1
1 pα2

2 · · · pαs
s . Then

tτi(n) =
s∏

k=1

((∏
aj

)
+ 1

)
where aj is an element of the unfactored (i+ 1) level of pαk

k .

Proof. Because tτi is i-multiplicative for all i, we see that

tτi(n) = tτi(pα1
1 pα2

2 · · · pαs
s ) = tτi(pα1

1 )tτi(pα2
2 ) · · · tτi(pαs

s ).

Inserting the values from the lemma, we see that

tτi(n) =
s∏

k=1

((∏
aj

)
+ 1

)
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Examples.

tτ3(5 · 71173·13
) = (1 + 1)((3 · 1) + 1) = 8

tτ2(175·73·19) = (1 · 3 · 1) + 1 = 4

The function tσi(n) sums the i-trivisors of n.

Definition 27.
tσi(n) =

∑
d∈Ti(n)

d

Examples.

tσ3(75112

) = 1 + 7511
+ 75112

tσ4(2323
2

· 3) = 1 + 2323

+ 2323
2

+ 3 + (2323

· 3) + (2323
2

· 3)

Again, using Theorem 11 we obtain

Corollary. tσi is i-multiplicative.

Example.

tσ2(232
· 1372

) = 1 + 23 + 232
+ 137 + 1372

+ (23 · 137)

+ (232
· 137) + (23 · 1372

) + (232
· 1372

)

= (1 + 23 + 232
)(1 + 137 + 1372

)

= tσ2(232
) · tσ2(1372

)

7 Future Work

In conclusion, we generalized several number theoretic functions in terms of
the levels of the mosaic and explored their properties, building on the work of
Mullin and Gillman. Further, we re-defined the notion of a divisor for mosaics
in three ways so we could generalize the functions φ, τ , and σ, all of which have
divisors in their classical definitions. Although our concepts of a divisor were
helpful, none were perfectly analogous to the normal divisor of an integer. In
the future, we could generalize more number theoretic functions and properties
to the mosaic of n, as well as perfecting our notion of a divisor in terms of
mosaics.
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