Non-Consecutive Pattern Avoidance in Binary Trees

Michael Dairyko*
Department of Mathematics
Pomona College
Claremont, CA 91711, USA

Lara Pudwell*
Department of Mathematics
and Computer Science
Valparaiso University
Valparaiso, IN 46383, USA
Lara.Pudwell@valpo.edu

Samantha Tyner*
Department of Mathematics and Computer Science
Augustana College
Rock Island, IL 61201, USA

Casey Wynn*
Department of Mathematics
and Computer Science
Hendrix College
Conway, AR 72032, USA
July 28, 2011

Abstract

In this paper we consider the enumeration of full binary trees avoiding non-consecutive binary tree patterns. We begin by modifying a known algorithm that counts binary trees avoiding a single consecutive tree pattern. Next, we use our algorithm to prove several theorems about the generating function whose $n^{\text {th }}$ coefficient gives the number of n-leaf trees avoiding a pattern. In addition, we investigate and structurally explain the recurrences that arise from these generating functions. Finally, we examine the enumeration of binary trees avoiding multiple tree patterns.

[^0]
1 Introduction

1.1 Definitions and Notation

In order to discuss the concept of non-consecutive pattern avoidance in trees, we must first define a new language.

Figure 1: 2-Leaf Tree
The figure above is a tree because it is a connected graph with no cycles. It can also be considered a rooted tree, or a tree with a special vertex called the root, from which all other vertices branch down. An ordered tree is a rooted tree where the left to right order of vertices are important. In particular, for ordered trees $\widehat{\wedge} \wedge$.

Figure 2: Parent and Children
This figure depicts a parent (a vertex that has two edges branching from it) and a child (the vertex that is attached to the parent). These definitions lead to a full binary tree, or a rooted, ordered tree where every vertex has exactly zero or two children, e.g. $\widehat{\wedge}$. Additionally, a generation refers to all of the leaves or internal vertices that exist on the same level of a given tree. For example, . has only one generation consisting of 2 leaves, and λ has two generations: the first generation consists of the leftmost leaf and the right internal vertex, and the second consists of the two remaining leaves that are the grandchildren of the root. (Note that we have ignored the root in defining the generations of trees, so for completeness, let the root be called the $0^{t h}$ generation.)

As defined by Rowland, non-consecutive pattern avoidance in trees is when a binary tree T avoids a tree pattern t if there is no instance of t anywhere inside T.

$$
\text { e.g. Let } t_{1}=\widehat{\bigwedge} \text { and } t_{2}=\widehat{\AA}
$$

Notice that t_{2} is a 4-leaf left leaning comb, where a comb is a tree in which all children lean consecutively to the right or consecutively to the left. Looking at t_{1}, if the right edge branching from the left child of the root contracts, then the tree becomes a 4 -leaf left leaning comb, which contains t_{2} consecutively. Therefore we can see that t_{1} contains t_{2} non-consecutively, as depicted in the following figure,

Figure 3: Non-Consecutive Avoidance

Notation:

Let $A v_{n}(t)$ be the number of n-leaf trees which avoid the tree pattern t. A generating function is a power series whose coefficients make up a sequence of natural numbers, a_{n}. We will be particularly interested in the generating function

$$
g f_{t}(\cdot)=\sum_{n \geq 0} A v_{n}(t) \cdot x^{n}
$$

which we use as a tool to better understand $A v_{n}(t)$ for various trees t.

2 A Generating Function Algorithm

When observing non-consecutive tree patterns, the generating functions are not the same as when avoiding consecutive tree patterns. Therefore, with the help of Rowland's algorithm for consecutive avoidance, we developed a new algorithm that computes generating functions for full binary trees that avoid tree patterns non-consecutively. In order to prove the effectiveness of our algorithm, we first need to introduce new notation. Let $g f_{t}(p)$ be the generating function for the number of n-leaf full binary trees that avoid the tree pattern t non-consecutively and contain the tree pattern p at their root. Because all binary trees begin with a single vertex, it follows that the generating function for all trees avoiding t is given by $g f_{t}(\cdot)$. Similarly, let t_{ℓ} and t_{r} denote the subtrees descending from the the left and right children of the root of t respectively.

Since we are working with full binary trees, the root has either zero or two children. When there are zero children, we have a 1 -leaf tree, which can be represented with the generating function x (i.e. $x+0 \cdot x^{2}+0 \cdot x^{3}+\cdots$). When there are two children, we have a tree with two or more leaves which can be denoted by the generating function $g f_{t}($) which counts the number of trees that avoid t where the root has two children. Thus, our equations are as follows:

$$
\begin{gather*}
g f_{t}(\cdot)=x+g f_{t}(,) \tag{1}\\
g f_{t}(.)=g f_{t_{\ell}}(\cdot) \cdot g f_{t}(\cdot)+g f_{t}(\cdot) \cdot g f_{t_{r}}(\cdot)-g f_{t_{\ell}}(\cdot) \cdot g f_{t_{r}}(\cdot) \tag{2}
\end{gather*}
$$

To explain the second equation, we split the counting into two cases:
Case 1: Assume that the subtree extending from the left child of the root avoids t_{ℓ}. This means there cannot be a copy of t that includes the root or that is to the left of the root so the right subtree need only avoid t. In terms of generating functions, this case can be represented as $g f_{t_{\ell}}(\cdot) \cdot g f_{t}(\cdot)$.

Case 2: Similar to Case 1, assume that the subtree extending from the right child of the root avoids t_{r}. This means there cannot be a copy of t that includes the root or that is to the right of the root so the left subtree need only avoid t. In terms of generating functions, this case can be represented as $g f_{t}(\cdot) \cdot g f_{t_{r}}(\cdot)$.

Notice that in the first term of equation (2), $t_{r} \subset t$ and in the second term $t_{\ell} \subset t$. Therefore we can see that within the first two terms, we have $2 \cdot g f_{t_{\ell}}(\cdot) \cdot g f_{t_{r}}(\cdot)$. In order to resolve this issue of over-counting, we must subtract off $g f_{t_{\ell}}(\cdot) \cdot g f_{t_{r}}(\cdot)$.

Our algorithm is as follows,

1. Begin with equation (1) and equation (2) using the base cases $g f .(\cdot)=0$ and $g f \quad(\cdot)=x$
2. Let S be the set of all tree patterns that appear as a subscript on the right hand side of an equation but not the left hand side.
If $S=\emptyset$ then solve the system of equations for $g f_{t}(\cdot)$ and end.
3. For each tree pattern $t^{*} \in S$, compute equations (1) and (2) for t^{*} and go back to step 2.

Looking at equation (2), notice that any new generating functions that appear on the right hand side are indexed by the subtrees t_{ℓ} and t_{r}. By definition, a subtree will contain fewer leaves than the original tree t. There are finitely many trees with fewer leaves than t, thus we will only apply equation (2) finitely many times before the algorithm terminates.

Now we will generalize the equations in our algorithm. Let us combine equations (1) and (2),

$$
g f_{t}(\cdot)=x+g f_{t_{\ell}}(\cdot) \cdot g f_{t}(\cdot)+g f_{t}(\cdot) \cdot g f_{t_{r}}(\cdot)-g f_{t_{\ell}}(\cdot) \cdot g f_{t_{r}}(\cdot)
$$

Now we can solve for $g f_{t}(\cdot)$.

$$
\begin{aligned}
g f_{t}(\cdot)-g f_{t_{\ell}}(\cdot) \cdot g f_{t}(\cdot)-g f_{t}(\cdot) \cdot g f_{t_{r}}(\cdot) & =x-g f_{t_{\ell}}(\cdot) \cdot g f_{t_{r}}(\cdot) \\
g f_{t}(\cdot)\left(1-g f_{t_{\ell}}(\cdot)-g f_{t_{r}}(\cdot)\right) & =x-g f_{t_{\ell}}(\cdot) \cdot g f_{t_{r}}(\cdot)
\end{aligned}
$$

Thus we see that

$$
\begin{equation*}
g f_{t}(\cdot)=\frac{x-g f_{t_{\ell}}(\cdot) \cdot g f_{t_{r}}(\cdot)}{1-g f_{t_{\ell}}(\cdot)-g f_{t_{r}}(\cdot)} . \tag{3}
\end{equation*}
$$

Theorem 1. For any tree pattern $t, g f_{t}(\cdot)$ is a rational expression.
Proof.
Base Case: We know that $g f_{t}(\cdot)$ is rational for all tree patterns t with $n \leq 2$. Inductive Step: We assume the theorem is true for all tree patterns with k leaves where $k \leq n$.
Then for any $(n+1)$-leaf tree pattern t, we have a rational combination of rational functions.
$\therefore g f_{t}(\cdot)$ is rational and by the mathematical principal of induction, the given theorem is true.

In the next few sections we will use our algorithm to compute generating functions for all $3-, 4$-, and 5 - leaf tree patterns before generalizing our results.

2.1 Avoiding 3-Leaf Trees

Note: The left-right reflections of all n-leaf trees will have the same generating function as the original tree. Therefore to avoid repetition, we will not describe the right leaning reflections.

1. Let $t=$

(a) We see that only one n-leaf tree avoids the tree pattern t, which is the right-leaning n-leaf tree. Thus, $A v_{n}(t)=1$ for all $n \leq 1$. Thus,

$$
g f_{t}(\cdot)=\frac{x}{1-x} .
$$

Note: From this point on we will simplify $A v_{n}(\Omega)$ and $A v_{n}(\Omega)$ to 1, as well as $g f .(\cdot)=0$ and $g f,(\cdot)=x$ after the case-by-case breakdown of avoidance.

2.2 Avoiding 4-Leaf Trees

1.

(a) Case 1: Here we assume that the left subtree from the root must have two children, and the leftmost child must be a leaf. Then we know the highlighted vertex in the second generation is a k-leaf tree that must avoid , since it already is connected to the left child of the root, and the right child of the root is a $(n-k-1)$-leaf tree that must simply avoid t.

$$
\int_{\mathrm{k} \cdot \mathrm{k} \cdot 1}^{n-2} \rightarrow \sum_{k=1}^{n} A v_{n-k-1}(t) \cdot A v_{k}(\Omega)
$$

(b) Case 2: We will count all of the ways to have the left child of the root be a leaf, while an $(n-1)$-leaf tree avoiding t extends from the right child of the root.

$$
\int^{n-1} \rightarrow A v_{n-1}(t)
$$

(c) Since there is only one way for a k-leaf tree to avoid \AA in case 1 , we can add these cases and simplify it to

$$
A v_{n}(t)=\sum_{k=0}^{n-2} A v_{n-k-1}(t)
$$

Using our Generating Function Algorithm, we have:

- $g f_{t}(\cdot)=x+g f_{t}($. $)$
- $g f_{t}(\Omega)=g f$ ($\left.\cdot\right) \cdot g f_{t}(\cdot)$

$$
\therefore
$$

- $g f_{t}(\cdot)=x+g f$

We know $g f \quad(\cdot)=\frac{x}{1-x}$ and $g f_{t}(\cdot)=x$, so by substitution:

$$
\begin{aligned}
g f_{t}(\cdot)-\frac{x}{1-x} \cdot g f_{t}(\cdot) & =x \\
g f_{t}(\cdot) \cdot\left(1-\frac{x}{1-x}\right) & =x \\
g f_{t}(\cdot) & =\frac{x(1-x)}{1-2 x} \\
g f_{t}(\cdot) & =\frac{x-x^{2}}{1-2 x}
\end{aligned}
$$

2. Let $t=$

(a) Case 1: Here the k-leaf subtree extending from the leftmost vertex must avoid , while the rightmost vertex is a $(n-k-1)$-leaf subtree that only has to avoid t, and we assume that the right vertex in the second generation must be a leaf.

(b) Case 2: Again, we will assume the left child of the root must be a leaf. Then the possible trees extending from the right child must
have $n-1$ leaves and avoid t.

$$
\int^{n-1} \rightarrow A v_{n-1}(t)
$$

(c) There is only one way for a k-leaf tree to avoid \triangle, so the total number of n-leaf trees avoiding t simplifies to

$$
A v_{n}(t)=\sum_{k=0}^{n-2} A v_{n-k-1}(t) .
$$

Using our Generating Function Algorithm, we have:

- $g f_{t}(\cdot)=x+g f_{t}($ 。 $)$
- $g f_{t}(\Omega)=g f$, $(\cdot) \cdot g f_{t}(\cdot)$
- $g f_{t}(\cdot)=x+g f$ _ $(\cdot) \cdot g f_{t}(\cdot)$

We know $g f \quad(\cdot)=\frac{x}{1-x}$ and $g f_{t}(\cdot)=x$, so by substitution:

$$
\begin{aligned}
g f_{t}(\cdot)-\frac{x}{1-x} \cdot g f_{t}(\cdot) & =x \\
g f_{t}(\cdot) \cdot\left(1-\frac{x}{1-x}\right) & =x \\
g f_{t}(\cdot) & =\frac{x(1-x)}{1-2 x} \\
g f_{t}(\cdot) & =\frac{x-x^{2}}{1-2 x}
\end{aligned}
$$

3. Let $t=$

To avoid this tree, either the left child or the right child of the root may have children, but not both.
(a) Case 1: The left child is a leaf.

Then the right child may have any tree pattern extending from it with $n-1$ leaves which avoid t itself.

$$
\iint^{n-1} \rightarrow A v_{n-1}(t)
$$

(b) Case 2: The right child is a leaf.

Then the left child may have any tree pattern extending from it with $n-1$ leaves which avoid t itself.

(c) We can add both of these cases to see that

$$
A v_{n}(t)=2 A v_{n-1}(t) .
$$

Using our Generating Function Algorithm, we have:

- $g f_{t}(\cdot)=x+g f_{t}($ 。 $)$
- $g f_{t}(\Omega)=2 g f$
- $g f_{t}(\cdot)=x+2 g f$. $(\cdot) \cdot g f_{t}(\cdot)-g f$

We know $g f,(\cdot)=x$ and can therefore simplify the equation to:

$$
\begin{aligned}
g f_{t}(\cdot) & =x+2 x \cdot g f_{t}(\cdot)-x^{2} \\
g f_{t}(\cdot)-2 x \cdot g f_{t}(\cdot) & =x-x^{2} \\
g f_{t}(\cdot)(1-2 x) & =x-x^{2} \\
g f_{t}(\cdot) & =\frac{x-x^{2}}{1-2 x}
\end{aligned}
$$

2.35 Leaf Trees

1. Let $t=$

(a) Case 1: Here we assume that the left subtree extending from the root is a leaf and the right subtree is an $(n-1)$-leaf tree that avoids t.

$$
\iint^{n-1} \rightarrow A v_{n-1}(t)
$$

(b) Case 2: Next we assume that the left subtree extending from the root is a 2 -leaf tree whose left child is a leaf and whose right child
is a k-leaf tree that avoids , because this vertex is already connected to the left child of the root, and thus already a part of t. From the right child of the root, we assume there is an ($n-k-1$)-leaf tree which avoids t.

$$
\int_{\mathrm{k} \cdot \mathrm{k} 1} \rightarrow \sum_{k=1}^{n-2} A v_{n-k-1}(t) \cdot A v_{k}(\widehat{\wedge})
$$

(c) Case 3: Then we assume that the left child of the root starts as a left leaning 3 -leaf tree whose leftmost vertex is a leaf, whose middle vertex is a j-leaf tree that avoids Ω, and whose rightmost vertex is a k-leaf tree that avoids $\widehat{\wedge}$. The right child of the root is then an ($n-j-k-1$)-leaf tree that avoids t.

$$
A_{\mathrm{k}}^{\mathrm{n} k \mathrm{k} 1} \rightarrow \sum_{k=1}^{n-3}\left(\sum_{j=1}^{n-k-2} A v_{j}(\AA) \cdot A v_{n-j-k-1}(t)\right) A v_{k}(\widehat{\AA})
$$

(d) We then add the above 3 cases to get the total number of tree which avoid t.

$$
\begin{aligned}
A v_{n}(t)= & \sum_{k=1}^{n-3}\left(\sum_{j=1}^{n-k-2} A v_{n-j-k-1}(t)\right) A v_{k}(\widehat{\Lambda})+ \\
& \sum_{k=1}^{n-2} A v_{n-k-1}(t) \cdot A v_{k}(\widehat{\Lambda})+A v_{n-1}(t)
\end{aligned}
$$

Using our Generating Function Algorithm:

- $g f_{t}(\cdot)=x+g f_{t}($. $)$
- $g f_{t}(\Omega)=g f_{\Lambda}(\cdot) \cdot g f_{t}(\cdot)$

We know that $g f=\frac{x-x^{2}}{1-2 x}$, so by substituting:

$$
\begin{aligned}
g f_{t}(. & =\frac{x-x^{2}}{1-2 x} \cdot g f_{t}(\cdot) \\
g f_{t}(\cdot) & =x+\frac{x-x^{2}}{1-2 x} \cdot g f_{t}(\cdot) \\
g f_{t}(\cdot) \cdot\left(1-\frac{x-x^{2}}{1-2 x}\right) & =x \\
g f_{t}(\cdot) & =\frac{x-2 x^{2}}{1-3 x+x^{2}}
\end{aligned}
$$

2. Let $t=$

(a) Case 1: Here we assume that the left child of the root is a leaf and the right child is an $(n-1)$-leaf subtree that avoids t.

$$
\int_{{ }^{n 1}} \rightarrow A v_{n-1}(t)
$$

(b) Case 2: Next we assume that the left subtree extending from the root is a 2 -leaf tree whose left child is a leaf and whose right child is a k-leaf tree that avoids $\widehat{\wedge}$, because this vertex is already connected to the left child of the root, and thus already a part of a copy of t. From the right child of the root, we assume there is an $(n-k-1)$-leaf subtree which avoids t.

$$
\bigwedge_{\mathrm{k}}{ }_{n \cdot \mathrm{k} \cdot 1}^{n-2} \rightarrow \sum_{k=1}^{n} A v_{n-k-1}(t) \cdot A v_{k}(\widehat{\wedge})
$$

(c) Case 3: Then we assume that the left subtree extending from the root starts as a 3 -leaf left comb whose leftmost vertex is a j-leaf tree that avoids . . whose middle vertex is a leaf, and whose rightmost vertex is a k-leaf tree that avoids $\widehat{\bigwedge}$. The right child
of the root is then an $(n-j-k-1)$-leaf tree that avoids t.

(d) We then add the above 3 cases to get the total number of tree which avoid t.

$$
\begin{aligned}
A v_{n}(t)= & \sum_{k=1}^{n-3}\left(\sum_{j=1}^{n-k-2} A v_{n-j-k-1}(t)\right) A v_{k}(\widehat{\Lambda})+ \\
& \sum_{k=1}^{n-2} A v_{n-k-1}(t) \cdot A v_{k}(\widehat{\bigwedge})+A v_{n-1}(t)
\end{aligned}
$$

Using our Generating Function Algorithm:

- $g f_{t}(\cdot)=x+g f_{t}($ 。 $)$
- $g f_{t}(\Omega)=g f_{\Lambda}(\cdot) \cdot g f_{t}(\cdot)$
- $g f_{t}(\cdot)=x+g f_{\bigwedge_{\Lambda}}(\cdot) \cdot g f_{t}(\cdot)$

We know that $g f=\frac{x-x^{2}}{1-2 x}$, so by substituting:

$$
\begin{aligned}
g f_{t}(\cdot) & =x+\frac{x-x^{2}}{1-2 x} \cdot g f_{t}(\cdot) \\
g f_{t}(\cdot) \cdot\left(1-\frac{x-x^{2}}{1-2 x}\right) & =x \\
g f_{t}(\cdot) & =\frac{x-2 x^{2}}{x^{2}-3 x+1}
\end{aligned}
$$

3. Let $t=$

(a) Case 1: Here we assume that the left child of the root is a leaf and the right child of the root is an $(n-1)$-leaf tree that avoids t.

$$
\int^{n-1} \rightarrow A v_{n-1}(t)
$$

(b) Case 2: Next we assume that the left subtree extending from the root is a 2-leaf tree whose right child is a leaf and whose left child is a k-leaf tree that avoids $\widehat{\Lambda}^{\wedge}$, because this vertex is already connected to the root, and thus already a part of t. From the right child of the root, we assume there is an $(n-k-1)$-leaf subtree which avoids t.

$$
\widehat{n}_{\mathrm{k} k+1} \rightarrow \sum_{k=1}^{n-2} A v_{n-k-1}(t) \cdot A v_{k}(\widehat{\wedge})
$$

(c) Case 3: Then we assume that the left subtree of the root starts as a right leaning 3 -leaf tree whose rightmost vertex is a j-leaf tree that avoids \triangle, whose middle vertex is a leaf, and whose leftmost vertex is a k-leaf tree that avoids \bigwedge. The right subtree of the root is then an $(n-j-k-1)$-leaf tree that avoids t.

(d) We then add the above 3 cases to get the total number of trees which avoid t.

$$
\begin{aligned}
A v_{n}(t)= & \sum_{k=1}^{n-3}\left(\sum_{j=1}^{n-k-2} A v_{n-j-k-1}(t)\right) A v_{k}(\widehat{\wedge})+ \\
& \sum_{k=1}^{n-2} A v_{n-k-1}(t) \cdot A v_{k}(\widehat{\wedge})+A v_{n-1}(t)
\end{aligned}
$$

Using our Generating Function Algorithm:

- $g f_{t}(\cdot)=x+g f_{t}($ 。 $)$
- $g f_{t}(\Omega)=g f \Omega(\cdot) \cdot g f_{t}(\cdot)$

We know that $g f=\frac{x-x^{2}}{1-2 x}$, so by substituting:

$$
\begin{aligned}
g f_{t}(. & =\frac{x-x^{2}}{1-2 x} \cdot g f_{t}(\cdot) \\
g f_{t}(\cdot) & =x+\frac{x-x^{2}}{1-2 x} \cdot g f_{t}(\cdot) \\
g f_{t}(\cdot) \cdot\left(1-\frac{x-x^{2}}{1-2 x}\right) & =x \\
g f_{t}(\cdot) & =\frac{x-2 x^{2}}{x^{2}-3 x+1}
\end{aligned}
$$

4. Let $t=$

(a) Case 1: First we assume the left child of the root is a leaf, thus the possible subtrees that branch from the right leaf of the root will have $n-1$ leaves and avoid t.

$$
\int^{n-1} \rightarrow A v_{n-1}(t)
$$

(b) Case 2: Then we assume that the right child of the second generation will be a leaf, while the k-leaf subtree extending from the leftmost vertex will avoid. and the rightmost vertex is an $n-k-1$-leaf subtree that avoids \hat{t}.

(c) Case 3: Next we assume that the right child in the third generation will be a leaf, the right child of the root is an $(n-k-j-1)$-leaf tree that avoids t, the left child in the second generation is a k-leaf subtree that avoids $\lambda_{\text {, and the left child in the third generation }}$ is a j-leaf subtree that avoids . .

(d) We add these three cases to get:

$$
\begin{aligned}
A v_{n}(t)= & \sum_{k=1}^{n-3}\left(\sum_{j=1}^{n-k-2} A v_{n-j-k-1}(t)\right) A v_{k}\left(\lambda_{\Lambda}\right)+ \\
& \sum_{k=1}^{n-2} A v_{n-k-1}(t) \cdot A v_{k}\left(\lambda_{\Lambda}\right)+A v_{n-1}(t)
\end{aligned}
$$

Using our Generating Function Algorithm, we have:

- $g f_{t}(\cdot)=x+g f_{t}($ 。 $)$- $g f_{t}\left(\bigwedge_{\text {。 }}\right)=g f_{\Lambda}(\cdot) \cdot g f_{t}(\cdot)$
- $g f_{t}(\cdot)=x+g f_{\lambda}(\cdot) \cdot g f_{t}(\cdot)$

We know that $g f(\cdot)=\frac{x-x^{2}}{1-2 x}$, so by substituting:

$$
\begin{aligned}
g f_{t}(\cdot) & =x+\frac{x-x^{2}}{1-2 x} \cdot g f_{t}(\cdot) \\
g f_{t}(\cdot)-\frac{x-x^{2}}{1-2 x} \cdot g f_{t}(\cdot) & =x \\
g f_{t}(\cdot)\left(1-\frac{x-x^{2}}{1-2 x}\right) & =x \\
g f_{t}(\cdot) & =\frac{x-2 x^{2}}{x^{2}-3 x+1}
\end{aligned}
$$

Note: The summations for the remaining 5 -leaf trees are complicated and from here on out we will only calculate the generating functions.
5. Let $t=$

Using our Generating Function Algorithm, we have:

- $g f_{t}(\cdot)=x+g f_{t}($ 。 $)$
- $g f_{t}(\Omega)=g f_{\Lambda} \bigwedge^{(\cdot) \cdot g f_{t}(\cdot)}$
- $g f_{t}(\cdot)=x+g f \quad(\cdot) \cdot g f_{t}(\cdot)$

We know that $g f \quad(\cdot)=\frac{x-x^{2}}{1-2 x}$, so by substituting:

$$
\begin{aligned}
g f_{t}(\cdot) & =x+\frac{x-x^{2}}{1-2 x} \cdot g f_{t}(\cdot) \\
g f_{t}(\cdot)-\frac{x-x^{2}}{1-2 x} \cdot g f_{t}(\cdot) & =x \\
g f_{t}(\cdot)\left(1-\frac{x-x^{2}}{1-2 x}\right) & =x \\
g f_{t}(\cdot) & =\frac{x-2 x^{2}}{x^{2}-3 x+1}
\end{aligned}
$$

6. Let $t=$

Using our Generating Function Algorithm, we have:

- $g f_{t}(\cdot)=x+g f_{t}(\Omega)$
- $g f_{t}(\Omega)=g f^{\text {- }}(\cdot) \cdot g f_{t}(\cdot)+g f_{t}(\cdot) \cdot g f(\cdot)-g f^{\wedge}(\cdot) \cdot g f^{(\cdot)}$
- $g f_{t}(\cdot)=x+g f_{\widehat{\wedge}}(\cdot) \cdot g f_{t}(\cdot)+g f_{t}(\cdot) \cdot g f^{(}(\cdot)-g f_{\widehat{\prime}}(\cdot) \cdot g f^{(\cdot)}$

We know that $g f$

$$
\begin{aligned}
g f_{t}(\cdot) & =x+\frac{x}{1-x} \cdot g f_{t}(\cdot)+g f_{t}(\cdot) \cdot x-\frac{x^{2}}{1-x} \\
g f_{t}(\cdot)-\frac{x}{1-x} \cdot g f_{t}(\cdot)-g f_{t}(\cdot) \cdot x & =x-\frac{x^{2}}{1-x} \\
g f_{t}(\cdot)\left(1-\frac{x}{1-x}-x\right) & =x-\frac{x^{2}}{1-x} \\
g f_{t}(\cdot) & =\frac{x-2 x^{2}}{1-3 x+x^{2}}
\end{aligned}
$$

7. Let $t=$

Using our Generating Function Algorithm, we have:

- $g f_{t}(\cdot)=x+g f_{t}(\aleph)$
- $g f_{t}(\Omega)=g f_{\Lambda}(\cdot) \cdot g f_{t}(\cdot)+g f_{t}(\cdot) \cdot g f_{\Lambda}(\cdot)-g f_{\Lambda}(\cdot) \cdot g f^{(\cdot)}$
- $\left.g f_{t}(\cdot)=x+g f_{\Lambda}(\cdot) \cdot g f_{t}(\cdot)+g f_{t}(\cdot) \cdot g f_{\Lambda}(\cdot)-g f_{\Lambda}(\cdot) \cdot g f^{(}\right)$

We know that $g f(\cdot)=\frac{x-x^{2}}{1-2 x}$ and $g f$

$$
\begin{aligned}
g f_{t}(\cdot) & =x+\frac{x}{1-x} \cdot g f_{t}(\cdot)+g f_{t}(\cdot) \cdot x-\frac{x^{2}}{1-x} \\
g f_{t}(\cdot)-\frac{x}{1-x} \cdot g f_{t}(\cdot)-g f_{t}(\cdot) \cdot x & =x-\frac{x^{2}}{1-x} \\
g f_{t}(\cdot)\left(1-\frac{x}{1-x}-x\right) & =x-\frac{x^{2}}{1-x} \\
g f_{t}(\cdot) & =\frac{x-2 x^{2}}{1-3 x+x^{2}}
\end{aligned}
$$

Notice how similar equation (3) is to the generating functions obtained from avoiding 3 -, 4 -, and 5 -leaf tree patterns. At this point, we might conjecture that $g f_{t}(\cdot)$ depends only on the number of leaves of t. We will confirm this observation in Theorem 2.

3 An Interesting Generalization

Lemma 1. Let $g f_{n}$ be the generating function that counts trees avoiding an n-leaf left comb. Then $g f_{k}=\frac{x}{1-g f_{k-1}}$ for all $k \geq 2$.

Proof. Let t_{1} equal the n-leaf left comb and t_{2} equal the $(n-1)$-leaf left comb. Using equation (3) we have,

$$
g f_{t_{1}}(\cdot)=\frac{x-g f_{t_{2}}(\cdot) \cdot g f .(\cdot)}{1-g f_{t_{2}}(\cdot)-g f .(\cdot)} .
$$

We know gf. $(\cdot)=0$.

$$
\therefore g f_{t_{1}}(\cdot)=\frac{x}{1-g f_{t_{2}}(\cdot)} .
$$

Theorem 2. For a given $n \in \mathbb{Z}^{+}$, all n-leaf trees have the same avoidance generating function for non-consecutive pattern avoidance.

Proof.
Base Case: We have shown that this theorem is true for all $n \leq 5$.
Inductive Step: We assume true for all $k \leq n$.
We will consider two different trees with $n+1$ leaves.
First consider a tree of the form:

where t_{ℓ} is the k-leaf subtree in the left box and t_{r} is the $(n+1-k)$-leaf subtree in the right box.
Also consider a second $(n+1)$-leaf tree of the form

where t_{ℓ} is the $(k+1)$-leaf subtree in the left box and t_{r} is the $(n-k)$-leaf subtree in the right box.
We must show that $g f$

Expressing $g f$ using our generating function algorithm, we get:

$$
\begin{aligned}
g f & =\frac{x-g f_{k} \cdot g f_{n+1-k}}{1-g f_{k}-g f_{n+1-k}} \\
& =\frac{x-g f_{k} \cdot\left(\frac{x}{1-g f_{n-k}}\right)}{1-g f_{k}-\left(\frac{x}{1-g f_{n-k}}\right)} \\
& =\frac{x \cdot\left(-1+g f_{k}+g f_{n-k}\right)}{1-g f_{k}-x-g f_{n-k}+g f_{k} \cdot g f_{n-k}}
\end{aligned}
$$

Expressing $g f$
using our generating function algorithm, we get:

$$
\begin{aligned}
g f & =\frac{x-g f_{k+1} \cdot g f_{n-k}}{1-g f_{k+1}-g f_{n-k}} \\
& =\frac{x-g f_{n-k} \cdot\left(\frac{x}{1-g f_{k}}\right)}{1-g f_{n-k}-\left(\frac{x}{1-g f_{k}}\right)} \\
& =\frac{x \cdot\left(-1+g f_{k}+g f_{n-k}\right)}{1-g f_{k}-x-g f_{n-k}+g f_{k} \cdot g f_{n-k}}
\end{aligned}
$$

This shows that $g f \underset{k}{ }=g f$
\therefore All n-leaf trees have the same non-consecutive avoidance generating function.

Note: From this point on, for each $n \in \mathbb{Z}^{+}$we need only compute the generating function for one n-leaf tree by Theorem 2 .

3.1 6 Leaf Trees

1. Let $t=$

Using our Generating Function Algorithm, we have:

- $g f_{t}(\cdot)=x+g f_{t}($ 。)
- $g f_{t}(\Omega)=g f_{t}(\cdot) \cdot g f_{\Lambda}(\cdot)+g f_{\Lambda}(\cdot) \cdot g f_{t}(\cdot)-g f_{\Lambda}(\cdot) \cdot g f_{\Lambda}(\cdot)$
- $g f_{t}(\cdot)=x+g f_{t}(\cdot) \cdot g f_{\Lambda}(\cdot)+g f_{\Lambda}(\cdot) \cdot g f_{t}(\cdot)-g f_{\Lambda}(\cdot) \cdot g f_{\Lambda}(\cdot)$

Let $a=g f_{t}(\cdot)$.
We know $g f$, $(\cdot)=g f_{\wedge}(\cdot)=\frac{x}{1-x}$, so by substituting:

$$
\begin{aligned}
a & =x+a\left(\frac{x}{1-x}\right)+\left(\frac{x}{1-x}\right) a-\left(\frac{x}{1-x}\right)\left(\frac{x}{1-x}\right) \\
a & =x+\left(\frac{2 a x}{1-x}\right)-\left(\frac{x^{2}}{(1-x)^{2}}\right) \\
g f_{t}(\cdot) & =\frac{x-3 x^{2}+x^{3}}{1-4 x+3 x^{2}}
\end{aligned}
$$

3.2 7 Leaf Trees

1. Let $t=$

Using our Generating Function Algorithm, we have:

- $g f_{t}(\cdot)=x+g f_{t}($ 。 $)$
- $g f_{t}(\triangle)=g f_{t}(\cdot) \cdot g f_{\Lambda}(\cdot)+g f \Lambda^{(\cdot) \cdot g f_{t}(\cdot)-g f} \Lambda^{(\cdot) \cdot g f} \Lambda^{(\cdot)}$
- $g f_{t}(\cdot)=x+g f_{t}(\triangle)=g f_{t}(\cdot) \cdot g f_{\Lambda}(\cdot)+g f \bigwedge_{\Lambda}(\cdot) \cdot g f_{t}(\cdot)-g f \bigwedge_{\Lambda}(\cdot)$. $g f_{\Lambda}{ }^{(\cdot)}$
Let $g f_{t}(\cdot)=a$.
We know that $g f_{\Lambda}(\cdot)=\frac{x}{1-x}$ and $g f_{\Lambda}(\cdot)=\frac{x-x^{2}}{1-2 x}$, so by substituting:

$$
\begin{aligned}
a & =x+\frac{a \cdot x}{1-x}+\frac{a \cdot\left(x-x^{2}\right)}{1-2 x}-\frac{x \cdot\left(x-x^{2}\right)}{(1-2 x) \cdot(1-x)} \\
a \cdot\left(1-\frac{x}{1-x}-\frac{x-x^{2}}{1-2 x}\right) & =x-\frac{x \cdot\left(x-x^{2}\right)}{(1-2 x) \cdot(1-x)} \\
a & =\frac{x-\frac{x \cdot\left(x-x^{2}\right)}{(1-2 x) \cdot(1-x)}}{1-\frac{x}{1-x}-\frac{x-x^{2}}{1-2 x}} \\
a & =\frac{-3 x^{3}+4 x^{2}-x}{x^{3}-6 x^{2}+5 x-1} \\
g f_{t}(\cdot) & =\frac{x-4 x^{2}+3 x^{3}}{1-5 x+6 x^{2}-x^{3}}
\end{aligned}
$$

4 Condensed Findings

Listed below are the generating functions, sequences, and recurrences for avoiding trees with up to 9 leaves.

5 Recurrences

Notice that when avoiding 5-, 6-, 7-, and 8-leaf tree patterns, the absolute value of the coefficients of the polynomial in the denominator of the generating function are the same as the absolute value of the coefficients of the corresponding recurrence. For every non-consecutive avoidance generating function $g f_{t}$ there exists a linear recurrence of degree d of the following form, where $c_{i} \in \mathbb{Z}$ and $a_{n}:=A v_{n}(t)$:

$$
a_{n}=c_{1} \cdot a_{n-1}+c_{2} \cdot a_{n-2}+c_{3} \cdot a_{n-3}+c_{4} \cdot a_{n-4} \cdots+c_{d} \cdot a_{n-d}
$$

These recurrences give the sequences of the number of n-leaf trees that avoid a given tree pattern t. Let M be the following matrix, whose row entries are the coefficients of the recurrences.

$$
M=\left[\begin{array}{ccccccc}
0 & 0 & 0 & 0 & 0 & \ldots & 0 \\
0 & 0 & 0 & 0 & 0 & \ldots & 0 \\
1 & 0 & 0 & 0 & 0 & \ldots & 0 \\
2 & 0 & 0 & 0 & 0 & \ldots & 0 \\
3 & -1 & 0 & 0 & 0 & \ldots & 0 \\
4 & -3 & 0 & 0 & 0 & \ldots & 0 \\
5 & -6 & 1 & 0 & 0 & \ldots & 0 \\
6 & -10 & 4 & 0 & 0 & \ldots & 0 \\
7 & -15 & 10 & -1 & 0 & \ldots & 0 \\
8 & -21 & 20 & -5 & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
\binom{n-2}{1} & -\binom{n-3}{2} & \binom{n-4}{3} & -\binom{n-5}{4} & \binom{n-6}{5} & \ldots & -1^{k} \cdot\binom{n-k}{k-1}
\end{array}\right]
$$

Note: Starting with the first non-zero entry in every column, the columns form the diagonals of Pascal's triangle. Following this pattern, we can deduce the recurrence, and thus the sequence, for trees that avoid any tree pattern non-consecutively.

5.1 Generalized Generating Function

We were able to extend the pattern in the recurrences to the corresponding avoidance generating functions. We then discovered that all generating functions for non-consecutive tree avoidance can be written as rational polynomials whose coefficients are binomial coefficients.

Theorem 3. For a given $n \in \mathbb{Z}^{+}$, the non-consecutive avoidance generating function for any n-leaf tree is given by

$$
g f_{n}=\frac{\sum_{k=0}^{\infty}(-1)^{k} \cdot\binom{n-(k+2)}{k} \cdot x^{k+1}}{\sum_{k=0}^{\infty}(-1)^{k} \cdot\binom{n-(k+1)}{k} \cdot x^{k}} .
$$

Proof.
Base Case: We have shown that this theorem is true for all $n \leq 9$.
Inductive Step: We assume it is true for all $k \leq n$.
We want to show that this holds for $g f_{n+1}$, i.e. that:

$$
\begin{equation*}
g f_{n+1}=\frac{\sum_{k=0}^{\infty}(-1)^{k} \cdot\binom{(n+1)-(k+2)}{k} \cdot x^{k+1}}{\sum_{k=0}^{\infty}(-1)^{k} \cdot\binom{(n+1)-(k+1)}{k} \cdot x^{k}} \tag{4}
\end{equation*}
$$

From Lemma 1

$$
g f_{n+1}=\frac{x}{1-g f_{n}}
$$

Consider the right hand side of equation (4).
We wish to show that

$$
\frac{x}{1-g f_{n}}=\frac{\sum_{k=0}^{\infty}(-1)^{k} \cdot\binom{(n+1)-(k+2)}{k} \cdot x^{k+1}}{\sum_{k=0}^{\infty}(-1)^{k} \cdot\binom{(n+1)-(k+1)}{k} \cdot x^{k}}
$$

On the righthand side,

$$
\frac{\sum_{k=0}^{\infty}(-1)^{k} \cdot\binom{(n+1)-(k+2)}{k} \cdot x^{k+1}}{\sum_{k=0}^{\infty}(-1)^{k} \cdot\binom{(n+1)-(k+1)}{k} \cdot x^{k}}=\frac{\sum_{k=0}^{\infty}(-1)^{k} \cdot\binom{(n)-(k+1)}{k} \cdot x^{k+1}}{\sum_{k=0}^{\infty}(-1)^{k} \cdot\binom{(n+1)-(k+1)}{k} \cdot x^{k}}
$$

because $(n+1)-(k+2)=n-(k+1)$.
Then on the lefthand side,

$$
\begin{aligned}
\frac{x}{1-g f_{n}} & =\frac{x}{1-\left(\frac{\sum_{k=0}^{\infty}(-1)^{k} \cdot\binom{n-(k+2)}{k} \cdot x^{k+1}}{\sum_{k=0}^{\infty}(-1)^{k} \cdot\binom{n-(k+1)}{k} \cdot x^{k}}\right)} . \\
& =\frac{x}{\frac{\sum_{k=0}^{\infty}(-1)^{k} \cdot\binom{n-(k+1)}{k} \cdot x^{k}-\sum_{k=0}^{\infty}(-1)^{k} \cdot\binom{n-(k+2)}{k} \cdot x^{k+1}}{\sum_{k=0}^{\infty}(-1)^{k} \cdot\binom{n-(k+1)}{k} \cdot x^{k}} .} \\
& =\frac{\sum_{k=0}^{\infty}(-1)^{k} \cdot\binom{n-(k+1)}{k} \cdot x^{k+1}}{\sum_{k=0}^{\infty}(-1)^{k} \cdot\binom{n-(k+1)}{k} \cdot x^{k}-\sum_{k=0}^{\infty}(-1)^{k} \cdot\binom{n-(k+2)}{k} \cdot x^{k+1}} .
\end{aligned}
$$

We now wish to show that,

$$
\frac{\sum_{k=0}^{\infty}(-1)^{k} \cdot\binom{n-(k+1)}{k} \cdot x^{k+1}}{\sum_{k=0}^{\infty}(-1)^{k} \cdot\binom{n-(k+1)}{k} \cdot x^{k}-\sum_{k=0}^{\infty}(-1)^{k} \cdot\binom{n-(k+2)}{k} \cdot x^{k+1}}=\frac{\sum_{k=0}^{\infty}(-1)^{k} \cdot\binom{(n)-(k+1)}{k} \cdot x^{k+1}}{\sum_{k=0}^{\infty}(-1)^{k} \cdot\binom{(n+1)-(k+1)}{k} \cdot x^{k}}
$$

We can see here that the numerators of the two fractions are equal. From this point on we will only look at the denominators. Looking at the denominator on the left side of the equation, we can pull out the $k=0$ term in the first sum, and also let $k+1=j$ in the second sum.

$$
\begin{aligned}
& \sum_{k=0}^{\infty}(-1)^{k} \cdot\binom{n-(k+1)}{k} \cdot x^{k}-\sum_{k=0}^{\infty}(-1)^{k} \cdot\binom{n-(k+2)}{k} \cdot x^{k+1} \\
= & 1+\sum_{j=1}^{\infty}(-1)^{j} \cdot\binom{n-(j+1)}{j} \cdot x^{j}-\sum_{j=1}^{\infty}(-1)^{j-1} \cdot\binom{n-(j+1)}{j-1} \cdot x^{j} \\
= & 1+\sum_{j=1}^{\infty}(-1)^{j} \cdot\left(\binom{n-(j+1)}{j}+\binom{n-(j+1)}{j-1}\right) \cdot x^{j} \\
= & 1+\sum_{j=1}^{\infty}(-1)^{j} \cdot\binom{(n+1)-(j+1)}{j} \cdot x^{j} \\
= & \sum_{k=0}^{\infty}(-1)^{k} \cdot\binom{(n+1)-(k+1)}{k} \cdot x^{k}, \text { as desired. }
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \\
& \qquad \frac{x}{1-g f_{n}}=\frac{\sum_{k=0}^{\infty}(-1)^{k} \cdot\binom{(n+1)-(k+2)}{k} \cdot x^{k+1}}{\sum_{k=0}^{\infty}(-1)^{k} \cdot\binom{(n+1)-(k+1)}{k} \cdot x^{k}} .
\end{aligned}
$$

We have proven that this theorem holds for any $n+1$. Thus by induction, Theorem 3 is true.

Thus far we have proven that the generating functions for non-consecutive avoidance are rational and that the corresponding sequences satisfy linear recurrences. Next, we will further examine these recurrences by trying to find a structural explanation for them within the trees themselves.

5.2 Explaining the 5-leaf Recurrence

We have shown that the number of n-leaf trees that avoid any given 5 -leaf tree pattern non-consecutively can be represented by the recurrence $a_{n}=$ $3 \cdot a_{n-1}-a_{n-2}$, where $a_{1}=a_{2}=1$. Note that the given recurrence is equivalent to $a_{n}=3 \cdot\left(a_{n-1}-a_{n-2}\right)+2 \cdot a_{n-2}$, where $a_{1}=a_{2}=1$. Our goal is to show how this recurrence supports the construction of every n-leaf tree that avoids a given 5-leaf tree pattern. For simplicity, we have chosen to demonstrate this explanation with trees that avoid $t=\widehat{\Omega}$.

We want to be able to construct every n-leaf tree that avoids this leftleaning 5-leaf comb from all of the $(n-1)$-leaf trees. To do this, we must first define the new terms we will use in our explanation. A descendant refers to any m-leaf tree that is constructed by adding one pair of children to one leaf of a given $(m-1)$-leaf tree. For example, \triangle and \triangle are the descendants of because they are constructed by adding exactly two children to each leaf of the 2-leaf tree.

We have developed a set of rules that show how to construct all n-leaf trees that avoid t from the $(n-1)$-leaf trees. Remember that $a_{n}=3 \cdot\left(a_{n-1}-\right.$ $\left.a_{n-2}\right)+2 \cdot a_{n-2}$. Notice that the coefficients in this formula are 2 and 3 . We will create either 2 or 3 descendants for every $(n-1)$-leaf tree to structurally explain the recurrence. It is obvious that for any $(n-1)$-leaf tree, there are $n-1$ possible descendants, but if we constructed all of these descendants, there would be many trees that are constructed multiple times. Thus, we have to decide which leaves of each $(n-1)$-leaf tree will have children and which will remain leaves.

The first rule in our process of deciding which leaves have children is that
we must avoid t when creating descendants. For example, the leftmost leaf of cannot have children because it would create t.
The second rule is that a leaf will receive children unless it is possible to backtrack towards the root and come to a vertex whose right child is an internal vertex not on the initial path traveled. The examples below follow this rule:

- The leftmost child of does not have a descendant because the right child in its same generation has children already.
- The only descendants of are from the children of the third generation because the right children of the first and second generations have children already, and so the left children of the first and second generations cannot have descendants.
- The two left children of the second generation of \triangle cannot have descendants because the right child in the first generation has children already.
- Finally, in , the children of the third generation and the leftmost leaf of the second generation cannot have descendants because the first generation has children on the right.

Theorem 4. A given n-leaf tree that avoids the tree pattern $t=\AA$ nonconsecutively has either 2 or 3 descendants.

Proof.
Base Case: We have shown that this theorem is true for all $n \leq 3$.
Inductive Step: We assume the theorem is true for all $k \leq n$.
Assume we have a k-leaf tree that has three options in which to expand. A form of this tree will be

We will consider the three different cases with $k+1$ leaves:

- Case 1: Add children to the right vertex

According to the rules defined earlier, we can now only add children from the two rightmost vertices. Thus this $(k+1)$-leaf tree has two descendants.

- Case 2: Add children to the middle vertex

Again, the rules allow us to add children to all the vertices except for the leftmost one. Thus this $(k+1)$-leaf tree has three descendants.

- Case 3: Add children to the left vertex

Using our rules, we can deduce that this $(k+1)$-leaf tree has three descendants. We cannot add children to the leftmost leaf due to the fact that it will not avoid t.

By adding to the rightmost possible leaf, we eliminate the other two possible leaves as choices to add. This was shown in Case 1. When considering all possible k-leaf trees, we know that each $(k-1)$-leaf tree will have two or three choices. However, if a specific ($k-1$)-leaf tree was created recursively by adding to the rightmost choice of a $(k-2)$-leaf tree, then we see that it will have only 2 possible leaves that can have children. If the $(k-1)$-leaf tree was created by adding to the right of a $(k-2)$-leaf tree, it will account for two k-leaf trees. Thus, each of the $(k-2)$-leaf trees will account for a $(k-1)$-leaf tree with only two possible choices, and the rest of the ($k-1$)-leaf trees will have three choices.
\therefore We have proven that any $(k+1)$-leaf tree will have either two or three descendants. Thus by induction, the given theorem is true.

Note: Through similar reasoning, this theorem is true for:
$t=\widehat{\Lambda}, t=\widehat{\Omega}$, and $t=\widehat{\bigwedge}$.

5.3 Conjecture for Explaining the 6-Leaf Recurrence and Beyond

Having examined the structure behind the 5-leaf recurrence in depth, we decided to further investigate the structure behind the recurrence for avoiding 6 -leaf trees. In order to avoid the 6 -leaf left comb, we started with all the 5 -leaf trees and created 6 -leaf trees by following the same rules we created for avoiding a 5 -leaf tree. In this manner, we arrived at 416 -leaf trees that avoid the 6 -leaf left comb, which is the correct number. Each 5 -leaf tree that we started with had either 4,3 , or 2 descendants, with four trees having 4 , five trees having 3, and five trees having 2 . We repeated this process for avoid-

working for the 5 -leaf and 6 -leaf trees, we think it could work for the other recurrences, but we were unable to fit the pattern of descendants from the 5 leaf trees to the recurrence for avoiding 6 -leaf trees. However, another pattern seems to be emerging in the number of possible descendants when following our rules. When trying to avoid a 5 -leaf tree, the trees we start with have either 3 or 2 descendants, and when trying to avoid a 6 -leaf tree, the trees we start with have 4,3 , or 2 descendants. Thus, we conjecture that this pattern will continue for any n. So, when avoiding an n-leaf tree, the trees we start with will have $(n-2),(n-3), \ldots$, or 2 descendants. Examining this conjecture is a topic for further study. Now that we have examined how the n-leaf recurrences arise from the structure of trees, we will now further study the recurrences by examining their characteristic polynomials.

5.4 Characteristic Polynomials of Recurrences

Because we have rational generating functions, we know that the sequences they encode satisfy linear recurrences with constant coefficients. We know

Table 1: Summary of the Characteristic Polynomials

Number of Leaves	Recurrence	Characteristic Polynomial	Largest Root
1	$a_{n}=0$	--	--
2	$a_{n}=0$	--	--
3	$a_{n}=1$	$r-1=0$	1
4	$a_{n}=2 a_{n-1}$	$r-2=0$	2
5	$a_{n}=3 a_{n-1}-a_{n-2}$	$r^{2}-3 r+1=0$	$\frac{3+\sqrt{5}}{2} \approx 2.618$
6	$a_{n}=4 a_{n-2}-3 a_{n-1}$	$r^{2}-4 r+3=0$	3
7	$a_{n}=5 a_{n-1}-6 a_{n-2}+a_{n-3}$	$r^{3}-5 r^{2}+6 r-1=0$	≈ 3.247
8	$a_{n}=6 a_{n-1}-10 a_{n-2}+4 a_{n-3}$	$r^{3}-6 r^{2}+10 r-4=0$	$2+\sqrt{2} \approx 3.414$
9	$a_{n}=7 a_{n-1}-15 a_{n-2}+10 a_{n-3}-a_{n-4}$	$r^{4}-7 r^{3}+15 r^{2}-10 r+1=0$	≈ 3.532
10	$a_{n}=8 a_{n-1}-21 a_{n-2}+20 a_{n-3}-5 a_{n-4}$	$r^{4}-8 r^{3}+21 r^{2}-20 r+5=0$	$\frac{5+\sqrt{5}}{2} \approx 3.618$

that each of these recurrences of degree d has the form $a_{n}=c_{1} \cdot a_{n-1}+$ $c_{2} \cdot a_{n-2}+c_{3} \cdot a_{n-3}+c_{4} \cdot a_{n-4}+\cdots+c_{d} \cdot a_{n-d}$. We can rewrite this as $a_{n}-c_{1} \cdot a_{n-1}-c_{2} \cdot a_{n-2}-\cdots-c_{d} \cdot a_{n-d}=0$. . It is from the second equation that we arrive at the characteristic polynomial for any recurrence:

$$
\begin{equation*}
r^{d}-c_{1} \cdot r^{d-1}-c_{2} \cdot r^{d-2}-\cdots-c_{d} \cdot r^{0}=0 \tag{5}
\end{equation*}
$$

The roots of this polynomial help explain how the sequence behaves asymptotically. The roots of the polynomials alternate between real and complex, but the imaginary part of the complex roots is small enough $\left(<10^{-10}\right)$ to be ignored. Additionally, all of the roots for each characteristic polynomial are positive and distinct. This means that for c, the largest root of the polynomial, $A v_{n}(t) \sim c^{n}$.

It appears that the largest root for the characteristic polynomial of the recurrences is approaching 4 . Thus, $A v_{n}(t)$ will never grow faster than 4^{n}. Furthermore, another pattern emerges in factoring the characteristic polynomials.

If the number of leaves is prime, the characteristic polynomial for the recurrence satisfied by $A v_{n}(t)$ is not factorable. If the number of leaves is composite, however, the characteristic polynomial is factorable. If the prime factorization of n has m factors, then the characteristic polynomial for the recurrence of that n is factorable, and its factors will be at least the characteristic polynomials for all ways to multiply $m-1$ of n 's prime factors. For example, the prime factorization of 12 is $2^{2} \cdot 3$, so the characteristic polynomial for avoiding 12-leaf trees will factor into at least

Table 2: Factoring the Characteristic Polynomials

Number of Leaves	Characteristic Polynomial	
3	$r-1$	Factored Characteristic Polynomial
4	$r-2$	--
5	$r^{2}-3 r+1$	--
6	$r^{2}-4 r+3$	$(r-1)(r-3)$
7	$r^{3}-5 r^{2}+6 r-1$	--
8	$r^{3}-6 r^{2}+10 r-4$	$(r-2)\left(r^{2}-4 r+2\right)$
9	$r^{4}-7 r^{3}+15 r^{2}-10 r+1$	$(r-1)\left(r^{3}-6 r^{2}+9 r-1\right)$
10	$r^{4}-8 r^{3}+21 r^{2}-20 r+5$	$\left(r^{2}-3 r+1\right)\left(r^{2}-5 r+5\right)$
11	$r^{5}-9 r^{4}+28 r^{3}-35 r^{2}+15 r-1$	--
12	$r^{5}-10 r^{4}+36 r^{3}-56 r^{2}+35 r-6$	$\left(r^{2}-4 r+3\right)(r-2)\left(r^{2}-4 r+1\right)$
13	$r^{6}-11 r^{5}+45 r^{4}-84 r^{3}+70 r^{2}-21 r+1$	--
14	$r^{6}-12 r^{5}+55 r^{4}-120 r^{3}+126 r^{2}-56 r+7$	$\left(r^{3}-5 r^{2}+6 r-1\right)\left(r^{3}-7 r^{2}+14 r-7\right)$
15	$r^{7}-13 r^{6}+66 r^{5}-165 r^{4}+210 r^{3}-126 r^{2}+28 r-1$	$(r-1)\left(r^{2}-3 r+1\right)\left(r^{4}-9 r^{3}+26 r^{2}-24 r+1\right)$
16	$r^{7}-14 r^{6}+78 r^{5}-220 r^{4}+330 r^{3}-252 r^{2}+84 r-8$	$\left(r^{3}-6 r^{2}+10 r-4\right)\left(r^{4}-8 r^{3}+20 r^{2}-16 r+2\right)$

the characteristic polynomials for 4 leaves $(2 \cdot 2)$ and for 6 leaves $(2 \cdot 3)$. Additionally, the characteristic polynomial for the recurrence for avoiding 15-leaf trees will factor into at least the characteristic polynomials for 3 and 5 leaves because 3 and 5 are the only prime factors of 15 . Finally, the characteristic polynomial for 16 leaves factors into the characteristic polynomial for 8 leaves multiplied by one other polynomial.

Thus far, we have only considered the enumeration of trees avoiding a single tree pattern. From this point on, we will investigate the avoidance of two tree patterns.

6 Avoiding Two n-Leaf Trees Non-Consecutively

We have discovered how to find the generating functions for non-consecutive tree avoidance and how to structurally explain the recurrences that arise from these generating functions. We will now consider avoiding two n-leaf tree patterns non-consecutively. Using our generating function algorithm for avoiding a single tree pattern as a model, we created a new algorithm for avoiding two n-leaf tree patterns simultaneously. With this new algorithm comes new notation; let $g f_{t_{1}, t_{2}}(p)$ be the generating function for the number of n-leaf binary trees that avoid the tree patterns t_{1} and t_{2} nonconsecutively and contain the consecutive tree pattern p at their root. Because all binary trees begin with a single vertex, it follows that the generating function for all trees avoiding t_{1} and t_{2} is given by $g f_{t_{1}, t_{2}}(\cdot)$. Similarly, let $t_{1_{\ell}}, t_{2_{\ell}}, t_{1_{r}}, t_{2_{r}}$ denote the trees descending from the the left
and right children of the root of t_{1} and t_{2} respectively.
Since we are working with full binary trees, the root has either zero or two children. When there are zero children, we have a 1-leaf tree, which can be represented with the generating function x. When there are two children, we have a tree with two or more leaves which can be denoted by the generating function $g f_{t_{1}, t_{2}}(\Omega)$ which counts the number of trees that avoid t_{1} and t_{2}, where the root has two children. Thus, our equations are as follows:

$$
\begin{align*}
& g f_{t_{1}, t_{2}}(\cdot)=x+g f_{t_{1}, t_{2}}(\Omega) \tag{6}\\
& g f_{t_{1}, t_{2}}(\Omega .)=g f_{t_{t_{\ell}}, t_{2_{\ell}}}(\cdot) \cdot g f_{t_{1}, t_{2}}(\cdot)+g f_{t_{1}, t_{2}}(\cdot) \cdot g f_{t_{1_{r}}, t_{2_{r}}}(\cdot) \\
& +g f_{t_{1_{\ell}}, t_{2}}(\cdot) \cdot g f_{t_{1}, t_{2 r}}(\cdot)+g f_{t_{1}, t_{2}}(\cdot) \cdot g f_{t_{1_{r}}, t_{2}}(\cdot) \\
& -g f_{t_{1}, t_{2_{r}}}(\cdot) \cdot g f_{t_{1_{r}}, t_{2_{r}}}(\cdot)-g f_{t_{1_{e}}, t_{2}}(\cdot) \cdot g f_{t_{1_{r}}, t_{2_{r}}}(\cdot) \tag{7}\\
& -g f_{t_{1_{\ell}}, t_{2_{\ell}}}(\cdot) \cdot g f_{t_{1}, t_{2_{r}}}(\cdot)-g f_{t_{t_{\ell}}, t_{2_{\ell}}}(\cdot) \cdot g f_{t_{1_{r}, t_{2}}}(\cdot) \\
& +g f_{t_{1_{\ell}}, t_{2_{\ell}}}(\cdot) \cdot g f_{t_{1_{r}}, t_{2_{r}}}(\cdot)
\end{align*}
$$

To clarify equation (7), we will give a term-by-term explanation.

- Assume the tree extending from the left child of the root avoids $t_{1_{\ell}}$ and $t_{2_{\ell}}$. This means that there cannot be a copy of t_{1} or t_{2} that includes the root or that is to the left of the root so the right subtree need only avoid t_{1} and t_{2}. This accounts for the term $g f_{t_{1_{\ell}}, t_{2_{\ell}}}(\cdot)$. $g f_{t_{1}, t_{2}}(\cdot)$.
- Assume the tree extending from the right child of the root avoids $t_{1_{r}}$ and $t_{2_{r}}$. This means that there cannot be a copy of t_{1} or t_{2} that includes the root or that is to the right of the root so the left subtree need only avoid t_{1} and t_{2}. This accounts for the term $g f_{t_{1}, t_{2}}(\cdot) \cdot g f_{t_{1_{r}}, t_{2_{r}}}(\cdot)$.
- Assume that the left subtree extending from the root avoids $t_{1_{\ell}}$. This means that the right subtree must only avoid t_{1}. Also, assume that the right subtree extending from the root avoids $t_{2_{r}}$. Thus, the left subtree must avoid t_{2}. The generating function representation of this is $g f_{t_{1}, t_{2}}(\cdot) \cdot g f_{t_{1}, t_{2 r}}(\cdot)$.
- Assume that the right subtree extending from the root avoids $t_{1_{r}}$. As a result, the left subtree must only avoid t_{1}. Also, assume that the left subtree extending from the root avoids $t_{2_{\ell}}$. It follows that the left subtree needs to only avoid t_{2}. Thus, the generating function representation of this is $g f_{t_{1}, t_{2_{\ell}}}(\cdot) \cdot g f_{t_{1 r}, t_{2}}(\cdot)$.
Thus, we add these four terms in order to count the number of n-leaf trees that avoid two trees. However, this summation overcounts several cases. Therefore we need to subtract out the trees that were counted more than once.
- We subtract $g f_{t_{1}, t_{2_{\ell}}}(\cdot) \cdot g f_{t_{1_{r}}, t_{2_{r}}}(\cdot)$ because the trees that avoid t_{1} and $t_{2_{l}}$ on the left and $t_{1_{r}}$ and $t_{2_{r}}$ on the right are counted in both the second and fourth terms of the equation.
- We subtract $g f_{t_{1_{e}}, t_{2}}(\cdot) \cdot g f_{t_{1_{r},}, t_{2 r}}(\cdot)$ because the trees that avoid $t_{1_{\ell}}$ and t_{2} on the left and $t_{1_{r}}$ and $t_{2_{r}}$ on the right are counted in both the second and third terms of the equation.
- We subtract $g f_{t_{1_{\ell}}, t_{2_{\ell}}}(\cdot) \cdot g f_{t_{1}, t_{2 r}}(\cdot)$ because the trees that avoid $t_{1_{\ell}}$ and $t_{2_{\ell}}$ on the left and t_{1} and $t_{2_{r}}$ on the right are counted in both the first and third terms of the equation.
- We subtract $g f_{t_{1_{\ell}}, t_{2}}(\cdot) \cdot g f_{t_{1_{r}}, t_{2}}(\cdot)$ because the trees that avoid $t_{1_{\ell}}$ and $t_{2_{\ell}}$ on the left and $t_{1_{r}}$ and t_{2} on the right are counted in both the first and fourth terms of the equation.

Finally, we must add in $g f_{t_{1_{\ell}}, t_{2}}(\cdot) \cdot g f_{t_{1_{r}}, t_{2_{r}}}(\cdot)$ because all of the trees that avoid $t_{1_{\ell}}$ and $t_{2_{\ell}}$ on the left and $t_{1_{r}}$ and $t_{2_{r}}$ on the right are counted four times in the first four terms and then subtracted four times in the second four terms, and thus they must be added back in at the end.

6.1 Classes of Trees

Now that we have a way to compute avoidance generating functions for two trees, we can group equivalent classes of trees together based on these generating functions.

6.1.1 Avoiding a 3-Leaf \& a 4-Leaf Tree

Class A

- $g f_{t_{1}, t_{2}}(\cdot)=x+x^{2}+x^{3}$
- Seq: $1,1,1,0,0, \ldots$
- Terminates

6.1.2 Avoiding a 3-Leaf \& a 5-Leaf Tree

Class A

- $g f_{t_{1}, t_{2}}(\cdot)=x+x^{2}+x^{3}+x^{4}$
- Seq: $1,1,1,1,0,0,0,0,0,0, \ldots$
- Terminates

6.1.3 Avoiding a 4-Leaf \& a 5-Leaf Tree

Class A

- $g f_{t_{1}, t_{2}}(\cdot)=x+x^{2}+2 x^{3}+4 x^{4}+7 x^{5}+8 x^{6}+8 x^{7}+6 x^{8}+3 x^{9}+x^{10}$
- Seq: $1,1,2,4,7,8,6,3,1,0,0,0, \ldots$
- Terminates

Class B

- $g f_{t_{1}, t_{2}}(\cdot)=\frac{x-x^{2}+x^{3}+x^{4}+x^{5}}{1-2 x+x^{2}}$
- Seq: $1,1,2,4,7,10,13,16,19,22,25,28,31,34,37, \ldots$
- OEIS A016777: $3 k+1$ for $k \geq 4$.

Class C

- $g f_{t_{1}, t_{2}}(\cdot)=\frac{-x+2 x^{2}-2 x^{3}}{-1+3 x-3 x^{2}+x^{3}}$
- Seq: $1,1,2,4,7,11,16,22,29,37,46,56,67,79,92, \ldots$
- OEIS A152947: $\frac{(k-2) \cdot(k-1)+1}{2}$

Class D

- $g f_{t_{1}, t_{2}}(\cdot)=\frac{x-x^{2}+x^{4}}{1-2 x+x^{3}}$
- Seq: $1,1,2,4,7,12,20,33,54,88,143,232,376,609,986, \ldots$
- OEIS A000071: Fibonacci numbers -1 for $n \geq 2$.

Class E

- $g f_{t_{1}, t_{2}}(\cdot)=\frac{-x}{-1+x+x^{2}+x^{3}}$
- Seq: 1, 1, 2, 4, 7, 13, 24, 44, 81, 149, 274, 504, 927, 1705, 3136, ...
- OEIS A000073: Tribonacci Numbers

6.1.4 Avoiding a Pair of 4 Leaf Trees

Class A

- $g f_{t_{1}, t_{2}}(\cdot)=x+x^{2}+2 x^{3}+3 x^{4}+2 x^{5}+x^{6}$
- Seq: 1, 1, 2, 3, 2, 1, 0, 0, 0, ...
- Terminates

Class B

- $g f_{t_{1}, t_{2}}(\cdot)=\frac{x-x^{2}+x^{3}}{1-2 x+x^{2}}$
- Seq: $1,1,2,3,4,5,6,7,8,9,10,11,12,13,14, \ldots$
- OEIS A028310: Expansion of $\frac{1-x+x^{2}}{(1-x)^{2}}$ in powers of x .

- $g f_{t_{1}, t_{2}}(\cdot)=\frac{-x}{-1+x+x^{2}}$
- Seq: $1,1,2,3,5,8,13,21,34,55,89,144,233,377,610, \ldots$
- OEIS A000045: Fibonacci Numbers

6.1.5 Avoiding a Pair of 5 Leaf Trees

Note: The first five terms of the sequences in this section will be $1,1,2$, 5,12 . Therefore, the sequences will begin with the sixth term.

Class A

- $\mathrm{gf}_{t_{1}, t_{2}}(\cdot)=x+x^{2}+2 x^{3}+5 x^{4}+12 x^{5}+26 x^{6}+46 x^{7}+76 x^{8}+$
$116 x^{9}+163 x^{10}+208 x^{11}+238 x^{12}+240 x^{13}+210 x^{14}+$ $158 x^{15}+100 x^{15}+52 x^{17}+21 x^{18}+6 x^{19}+x^{20}$
- Seq: $26,46,76,116,163,208,238,240,210,158,100,52,21,6,1$
- Terminates

Class B

- $g f_{t_{1}, t_{2}}(\cdot)=\frac{x-2 x^{2}+2 x^{3}+x^{4}+2 x^{5}+3 x^{6}+2 x^{7}+2 x^{8}+x^{9}}{1-3 x+3 x^{2}-x^{3}}$
- Seq: $26,49,83,129,187,257,339,433,539,657, \ldots$
- New to OEIS

Class C

- $g f_{t_{1}, t_{2}}(\cdot)=\frac{x-4 x^{2}+7 x^{3}-5 x^{4}+2 x^{5}}{1-5 x+10 x^{2}-10 x^{3}+5 x^{4}-x^{5}}$
- Seq: $26,51,92,155,247,376,551,782,1080,1457, \ldots$
- OEIS A027927: $T(k, 2 k-4), T$ given by A027926 for $n \geq 2$.

Class D

- $g f_{t_{1}, t_{2}}(\cdot)=\frac{x-5 x^{2}+11 x^{3}-12 x^{4}+7 x^{5}-2 x^{6}+x^{7}}{1-6 x+15 x^{2}-20 x^{3}+15 x^{4}-6 x^{5}+x^{6}}$
- Seq: $26,52,98,176,303,502,803,1244,1872,2744, \ldots$
- New to OEIS

Class E

- $g f_{t_{1}, t_{2}}(\cdot)=\frac{x-3 x^{2}+3 x^{3}+x^{4}-x^{5}}{1-4 x+5 x^{2}-x^{3}-2 x^{4}+x^{5}}$
- Seq: $26,52,98,177,310,531,895,1491,2463,4044, \ldots$
- OEIS A116717: Number of permutations of length k which avoid the patterns 231, 1423, 3214 for $n \geq 2$.

- $g f_{t_{1}, t_{2}}(\cdot)=\frac{-x+2 x^{2}-x^{3}-x^{4}-2 x^{5}}{-1+3 x-2 x^{2}-x^{4}+x^{5}}$
- Seq: 26, 53, 104, 199, 375, 700, 1299, 2402, 4432, 8167, ...
- New to OEIS

Class G

- $g f_{t_{1}, t_{2}}(\cdot)=\frac{x-2 x^{2}+2 x^{4}+2 x^{5}-x^{6}-x^{7}}{1-3 x+x^{2}+2 x^{3}+x^{4}-x^{5}-x^{6}}$
- Seq: $26,55,113,227,449,877,1696,3254,6203,11762, \ldots$
- OEIS A116726: Number of permutations of length k which avoid the patterns 213, 1234, 2431 for $n \geq 2$.

- $g f_{t_{1}, t_{2}}(\cdot)=\frac{x-x^{2}-x^{3}+3 x^{5}+2 x^{6}+x^{7}}{1-2 x-x^{2}+3 x^{4}+2 x^{5}+x^{6}}$
- Seq: $26,56,118,244,499,1010,2027,4040,8004,15776, \ldots$
- OEIS A073778: $a(m)=\sum_{k=0}^{m} T(k) \cdot T(m-k)$. Convolution of tribonacci sequence A000073 with itself for $m \geq 3$, for $n \geq 2$.

Class I

- $g f_{t_{1}, t_{2}}(\cdot)=\frac{-x}{-1+x+x^{2}+2 x^{3}+3 x^{4}+2 x^{5}+x^{6}}$
- Seq: $26,57,127,284,632,1405,3126,6958,15485,34458, \ldots$
- New to OEIS

Class J

- $g f_{t_{1}, t_{2}}(\cdot)=\frac{-x+3 x^{2}-3 x^{3}}{-1+4 x-5 x^{2}+2 x^{3}}$
- Seq: $27,58,121,248,503,1014,2037,4084,8179,16370, \ldots$
- OEIS A000325: $2^{k}-k$

Class K

- $g f_{t_{1}, t_{2}}(\cdot)=\frac{x-2 x^{2}+2 x^{4}+x^{5}}{1-3 x+x^{2}+2 x^{3}}$
- Seq: 27, 59, 126, 263, 551, 1136, 2327, 4743, 9630, 19493, ...
- OEIS A116712: Number of permutations of length k which avoid the patterns 231, 3214, 4312 for $n \geq 2$.

Class L

- $g f_{t_{1}, t_{2}}(\cdot)=\frac{x-3 x^{2}+2 x^{3}+x^{4}}{1-4 x+4 x^{2}}$
- Seq: 28, 64, 144, 320, 704, 1536, 3328, 7168, 15360, 32768, ...
- OEIS A045623: Number of 1's in all compositions of $k+1$ for $n \geq 2$.

Class M

- $g f_{t_{1}, t_{2}}(\cdot)=\frac{x-2 x^{2}+x^{3}}{1-3 x+2 x^{2}-x^{3}}$
- Seq: 28, 65, 151, 351, 816, 1897, 4410, 10252, 23833, 55405, ...
- OEIS A034943: Binomial transform of Padovan sequence A000931for $n \geq 1$.

Class N

- $g f_{t_{1}, t_{2}}(\cdot)=\frac{x-x^{2}-x^{3}}{1-2 x-x^{2}}$
- Seq: 29, 70, 169, 408, 985, 2378, 5741, 13860, 33461, 80782, ...
- OEIS A000129: Pell numbers: $a(0)=0, a(1)=1$; for $k \geq 1, a(k)=$ $2 \cdot a(k-1)+a(k-2)$ for $n \geq 2$.

6.2 Conjecture for n Tree Avoidance

Let $g f_{t_{1}, t_{2}, t_{3}, \ldots . t_{k-1}, t_{k}}$ be the generating function whose coeffieient of the x^{n} term is the number of n-leaf trees avoiding the full binary trees $t_{1}, t_{2}, t_{3}, \ldots t_{k-1}, t_{k}$. Then

$$
g f_{t_{1}, t_{2}, t_{3}, \ldots, t_{k-1}, t_{k}}(\cdot)=x+g f_{t_{1}, t_{2}, t_{3}, \ldots t_{k-1}, t_{k}}(.) .
$$

Now consider

$$
\left.g f_{t_{1}, t_{2}, t_{3}, \ldots t_{k-1}, t_{k}}\right) .
$$

Let S be the set of properties of avoiding each of the entire tree patterns $t_{1}, t_{2}, t_{3}, \ldots t_{k-1}, t_{k}$ while P is the set properties of avoiding not only the k entire tree patterns, but also to avoid all of the tree patterns on either the left or right of the tree. For each possible $J \subseteq P$ where $S \subseteq J$ and $g f_{A} \cdot g f_{B}$ is the way to satisfy the properties of J and avoid the chosen left subtrees on the left of the tree (in $g f_{A}$) or the chosen right subtrees on the right of the tree $\left(g f_{B}\right)$. We conjecture that

$$
g f_{t_{1}, t_{2}, t_{3}, \ldots t_{k-1}, t_{k}}(\bigcirc)=\sum_{S \subseteq J \subseteq P}(-1)^{|J|-|S|} \cdot g f_{A} \cdot g f_{B} .
$$

7 Conclusion

Throughout this paper, we have investigated non-consecutive pattern avoidance in binary trees. First we computed the avoidance generating functions for tree patterns with ≤ 5 leaves through exhaustion. Then we generalized this process by developing a recursive algorithm. Through analysis of this algorithm we proved that our avoidance generating functions are always rational. These avoidance generating functions were then related to recurrences and numerous patterns emerged. We then focused our research on avoiding two trees simultaneously.

Areas for further research include:

1. Finding more relationships between pattern-avoiding binary trees and other combinatorial objects.
2. Proving our conjecture for the avoidance generating function algorithm for n trees.
3. Investigating the structure behind the recurrences for $n \geq 6$,
4. Finding the tree classes for avoiding two trees where one tree has more than 5 leaves.

References

[1] Eric S. Rowland, Pattern Avoidance in Binary Trees, Journal of Combinatorial Theory, Series A 117 (2010) 741-758.
[2] The On-Line Encyclopedia of Integer Sequences, published electronically at http://oeis.org, 2011.

[^0]: *Partially supported by NSF Grant DMS-0851721

