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Abstract

In this paper we consider the enumeration of full binary trees avoiding
non-consecutive binary tree patterns. We begin by modifying a known al-
gorithm that counts binary trees avoiding a single consecutive tree pattern.
Next, we use our algorithm to prove several theorems about the generating
function whose nth coefficient gives the number of n-leaf trees avoiding a pat-
tern. In addition, we investigate and structurally explain the recurrences that
arise from these generating functions. Finally, we examine the enumeration of
binary trees avoiding multiple tree patterns.

*Partially supported by NSF Grant DMS-0851721

1



1 Introduction

1.1 Definitions and Notation

In order to discuss the concept of non-consecutive pattern avoidance in trees,
we must first define a new language.

Figure 1: 2-Leaf Tree

The figure above is a tree because it is a connected graph with no cycles. It
can also be considered a rooted tree, or a tree with a special vertex called the
root, from which all other vertices branch down. An ordered tree is a rooted
tree where the left to right order of vertices are important. In particular, for
ordered trees 6= .

Figure 2: Parent and Children

This figure depicts a parent (a vertex that has two edges branching from
it) and a child (the vertex that is attached to the parent). These definitions
lead to a full binary tree, or a rooted, ordered tree where every vertex has

exactly zero or two children, e.g. . Additionally, a generation refers to

all of the leaves or internal vertices that exist on the same level of a given
tree. For example, has only one generation consisting of 2 leaves, and

has two generations: the first generation consists of the leftmost leaf and
the right internal vertex, and the second consists of the two remaining leaves
that are the grandchildren of the root. (Note that we have ignored the root
in defining the generations of trees, so for completeness, let the root be called
the 0th generation.)

As defined by Rowland, non-consecutive pattern avoidance in trees is
when a binary tree T avoids a tree pattern t if there is no instance of t any-
where inside T.
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e.g. Let t1 = and t2 = .

Notice that t2 is a 4-leaf left leaning comb, where a comb is a tree in which all
children lean consecutively to the right or consecutively to the left. Looking
at t1, if the right edge branching from the left child of the root contracts, then
the tree becomes a 4-leaf left leaning comb, which contains t2 consecutively.
Therefore we can see that t1 contains t2 non-consecutively, as depicted in the
following figure,

→ .

Figure 3: Non-Consecutive Avoidance

Notation:
Let Avn(t) be the number of n-leaf trees which avoid the tree pattern t. A
generating function is a power series whose coefficients make up a sequence
of natural numbers, an. We will be particularly interested in the generating
function

gft(·) =
∑
n≥0

Avn(t) · xn,

which we use as a tool to better understand Avn(t) for various trees t.

2 A Generating Function Algorithm

When observing non-consecutive tree patterns, the generating functions are
not the same as when avoiding consecutive tree patterns. Therefore, with the
help of Rowland’s algorithm for consecutive avoidance, we developed a new
algorithm that computes generating functions for full binary trees that avoid
tree patterns non-consecutively. In order to prove the effectiveness of our al-
gorithm, we first need to introduce new notation. Let gft(p) be the generating
function for the number of n-leaf full binary trees that avoid the tree pattern
t non-consecutively and contain the tree pattern p at their root. Because all
binary trees begin with a single vertex, it follows that the generating function
for all trees avoiding t is given by gft(·). Similarly, let t` and tr denote the sub-
trees descending from the the left and right children of the root of t respectively.
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Since we are working with full binary trees, the root has either zero or two
children. When there are zero children, we have a 1-leaf tree, which can be
represented with the generating function x (i.e. x+ 0 ·x2 + 0 ·x3 + · · · ). When
there are two children, we have a tree with two or more leaves which can be
denoted by the generating function gft( ) which counts the number of
trees that avoid t where the root has two children. Thus, our equations are as
follows:

gft(·) = x + gft( ) (1)

gft( ) = gft`(·) · gft(·) + gft(·) · gftr(·)− gft`(·) · gftr(·) (2)

To explain the second equation, we split the counting into two cases:

Case 1: Assume that the subtree extending from the left child of the root
avoids t`. This means there cannot be a copy of t that includes the root or
that is to the left of the root so the right subtree need only avoid t. In terms
of generating functions, this case can be represented as gft`(·) · gft(·).

Case 2: Similar to Case 1, assume that the subtree extending from the right
child of the root avoids tr. This means there cannot be a copy of t that includes
the root or that is to the right of the root so the left subtree need only avoid t.
In terms of generating functions, this case can be represented as gft(·) ·gftr(·).

Notice that in the first term of equation (2), tr ⊂ t and in the second
term t` ⊂ t. Therefore we can see that within the first two terms, we have
2 · gft`(·) · gftr(·). In order to resolve this issue of over-counting, we must
subtract off gft`(·) · gftr(·).

Our algorithm is as follows,

1. Begin with equation (1) and equation (2)
using the base cases gf·(·) = 0 and gf (·) = x

2. Let S be the set of all tree patterns that appear as a subscript on the
right hand side of an equation but not the left hand side.
If S = ∅ then solve the system of equations for gft(·) and end.
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3. For each tree pattern t∗ ∈ S, compute equations (1) and (2) for t∗ and
go back to step 2.

Looking at equation (2), notice that any new generating functions that
appear on the right hand side are indexed by the subtrees t` and tr. By def-
inition, a subtree will contain fewer leaves than the original tree t. There are
finitely many trees with fewer leaves than t, thus we will only apply equation
(2) finitely many times before the algorithm terminates.

Now we will generalize the equations in our algorithm. Let us combine
equations (1) and (2),

gft(·) = x + gft`(·) · gft(·) + gft(·) · gftr(·)− gft`(·) · gftr(·)

Now we can solve for gft(·).

gft(·)− gft`(·) · gft(·)− gft(·) · gftr(·) = x− gft`(·) · gftr(·)
gft(·)(1− gft`(·)− gftr(·)) = x− gft`(·) · gftr(·)

Thus we see that

gft(·) =
x− gft`(·) · gftr(·)
1− gft`(·)− gftr(·)

. (3)

Theorem 1. For any tree pattern t, gft(·) is a rational expression.

Proof. Base Case:
Base Case: We know that gft(·) is rational for all tree patterns t with n ≤ 2.
Inductive Step: We assume the theorem is true for all tree patterns with k
leaves where k ≤ n.
Then for any (n + 1)-leaf tree pattern t, we have a rational combination of
rational functions.
∴ gft(·) is rational and by the mathematical principal of induction, the given
theorem is true.

In the next few sections we will use our algorithm to compute generating
functions for all 3-,4-, and 5- leaf tree patterns before generalizing our results.
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2.1 Avoiding 3-Leaf Trees

Note: The left-right reflections of all n-leaf trees will have the same generating
function as the original tree. Therefore to avoid repetition, we will not describe
the right leaning reflections.

1. Let t =

(a) We see that only one n-leaf tree avoids the tree pattern t, which is
the right-leaning n-leaf tree. Thus, Avn(t) = 1 for all n ≤ 1. Thus,

gft(·) =
x

1− x
.

Note: From this point on we will simplify Avn( ) and Avn( ) to 1,

as well as gf·(·) = 0 and gf (·) = x after the case-by-case breakdown of

avoidance.

2.2 Avoiding 4-Leaf Trees

1. Let t =

(a) Case 1: Here we assume that the left subtree from the root must
have two children, and the leftmost child must be a leaf. Then we
know the highlighted vertex in the second generation is a k-leaf tree

that must avoid , since it already is connected to the left child

of the root, and the right child of the root is a (n− k − 1)-leaf tree
that must simply avoid t.

→
n−2∑
k=1

Avn−k−1(t) ·Avk( )

(b) Case 2: We will count all of the ways to have the left child of the
root be a leaf, while an (n− 1)-leaf tree avoiding t extends from the
right child of the root.

→ Avn−1(t)
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(c) Since there is only one way for a k-leaf tree to avoid in case

1, we can add these cases and simplify it to

Avn(t) =

n−2∑
k=0

Avn−k−1(t).

Using our Generating Function Algorithm, we have:

• gft(·) = x + gft( )

• gft( ) = gf (·) · gft(·)

• gft(·) = x + gf (·) · gft(·)

We know gf (·) = x
1−x and gft(·) = x, so by substitution:

gft(·)−
x

1− x
· gft(·) = x

gft(·) · (1−
x

1− x
) = x

gft(·) =
x(1− x)

1− 2x

gft(·) =
x− x2

1− 2x

2. Let t =

(a) Case 1: Here the k-leaf subtree extending from the leftmost vertex

must avoid , while the rightmost vertex is a (n − k − 1)-leaf

subtree that only has to avoid t, and we assume that the right vertex
in the second generation must be a leaf.

→
n−2∑
k=1

Avn−k−1(t) ·Avk( )

(b) Case 2: Again, we will assume the left child of the root must be
a leaf. Then the possible trees extending from the right child must

7



have n− 1 leaves and avoid t.

→ Avn−1(t)

(c) There is only one way for a k-leaf tree to avoid , so the total

number of n-leaf trees avoiding t simplifies to

Avn(t) =
n−2∑
k=0

Avn−k−1(t).

Using our Generating Function Algorithm, we have:

• gft(·) = x + gft( )

• gft( ) = gf (·) · gft(·)

• gft(·) = x + gf (·) · gft(·)

We know gf (·) = x
1−x and gft(·) = x, so by substitution:

gft(·)−
x

1− x
· gft(·) = x

gft(·) · (1−
x

1− x
) = x

gft(·) =
x(1− x)

1− 2x

gft(·) =
x− x2

1− 2x

3. Let t =

To avoid this tree, either the left child or the right child of the root may
have children, but not both.

(a) Case 1: The left child is a leaf.
Then the right child may have any tree pattern extending from it
with n− 1 leaves which avoid t itself.

→ Avn−1(t)
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(b) Case 2: The right child is a leaf.
Then the left child may have any tree pattern extending from it with
n− 1 leaves which avoid t itself.

→ Avn−1(t)

(c) We can add both of these cases to see that

Avn(t) = 2Avn−1(t).

Using our Generating Function Algorithm, we have:

• gft(·) = x + gft( )

• gft( ) = 2gf (·) · gft(·)− gf (·)2

• gft(·) = x + 2gf (·) · gft(·)− gf (·)2

We know gf (·) = x and can therefore simplify the equation to:

gft(·) = x + 2x · gft(·)− x2

gft(·)− 2x · gft(·) = x− x2

gft(·)(1− 2x) = x− x2

gft(·) =
x− x2

1− 2x

2.3 5 Leaf Trees

1. Let t =

(a) Case 1: Here we assume that the left subtree extending from the
root is a leaf and the right subtree is an (n− 1)-leaf tree that avoids
t.

→ Avn−1(t)

(b) Case 2: Next we assume that the left subtree extending from the
root is a 2-leaf tree whose left child is a leaf and whose right child
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is a k-leaf tree that avoids , because this vertex is already

connected to the left child of the root, and thus already a part of t.
From the right child of the root, we assume there is an (n−k−1)-leaf
tree which avoids t.

→
n−2∑
k=1

Avn−k−1(t) ·Avk( )

(c) Case 3: Then we assume that the left child of the root starts as a
left leaning 3-leaf tree whose leftmost vertex is a leaf, whose middle

vertex is a j-leaf tree that avoids , and whose rightmost vertex

is a k-leaf tree that avoids . The right child of the root is then

an (n− j − k − 1)-leaf tree that avoids t.

→
n−3∑
k=1

n−k−2∑
j=1

Avj( ) ·Avn−j−k−1(t)

Avk( )

(d) We then add the above 3 cases to get the total number of tree which
avoid t.

Avn(t) =
n−3∑
k=1

n−k−2∑
j=1

Avn−j−k−1(t)

Avk( )+

n−2∑
k=1

Avn−k−1(t) ·Avk( ) + Avn−1(t)

Using our Generating Function Algorithm:

• gft(·) = x + gft( )

• gft( ) = gf (·) · gft(·)
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We know that gf = x−x2

1−2x , so by substituting:

gft( ) =
x− x2

1− 2x
· gft(·)

gft(·) = x +
x− x2

1− 2x
· gft(·)

gft(·) · (1−
x− x2

1− 2x
) = x

gft(·) =
x− 2x2

1− 3x + x2

2. Let t =

(a) Case 1: Here we assume that the left child of the root is a leaf and
the right child is an (n− 1)-leaf subtree that avoids t.

→ Avn−1(t)

(b) Case 2: Next we assume that the left subtree extending from the
root is a 2-leaf tree whose left child is a leaf and whose right child

is a k-leaf tree that avoids , because this vertex is already

connected to the left child of the root, and thus already a part of a
copy of t. From the right child of the root, we assume there is an
(n− k − 1)-leaf subtree which avoids t.

→
n−2∑
k=1

Avn−k−1(t) ·Avk( )

(c) Case 3: Then we assume that the left subtree extending from the
root starts as a 3-leaf left comb whose leftmost vertex is a j-leaf

tree that avoids , whose middle vertex is a leaf, and whose

rightmost vertex is a k-leaf tree that avoids . The right child
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of the root is then an (n− j − k − 1)-leaf tree that avoids t.

→
n−3∑
k=1

n−k−2∑
j=1

Avj( ) ·Avn−j−k−1(t)

Avk( )

(d) We then add the above 3 cases to get the total number of tree which
avoid t.

Avn(t) =

n−3∑
k=1

n−k−2∑
j=1

Avn−j−k−1(t)

Avk( )+

n−2∑
k=1

Avn−k−1(t) ·Avk( ) + Avn−1(t)

Using our Generating Function Algorithm:

• gft(·) = x + gft( )

• gft( ) = gf (·) · gft(·)

• gft(·) = x + gf (·) · gft(·)

We know that gf = x−x2

1−2x , so by substituting:

gft(·) = x +
x− x2

1− 2x
· gft(·)

gft(·) · (1−
x− x2

1− 2x
) = x

gft(·) =
x− 2x2

x2 − 3x + 1

3. Let t =

(a) Case 1: Here we assume that the left child of the root is a leaf and
the right child of the root is an (n− 1)-leaf tree that avoids t.

→ Avn−1(t)
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(b) Case 2: Next we assume that the left subtree extending from the
root is a 2-leaf tree whose right child is a leaf and whose left child

is a k-leaf tree that avoids , because this vertex is already

connected to the root, and thus already a part of t. From the right
child of the root, we assume there is an (n−k−1)-leaf subtree which
avoids t.

→
n−2∑
k=1

Avn−k−1(t) ·Avk( )

(c) Case 3: Then we assume that the left subtree of the root starts
as a right leaning 3-leaf tree whose rightmost vertex is a j-leaf tree

that avoids , whose middle vertex is a leaf, and whose leftmost

vertex is a k-leaf tree that avoids . The right subtree of the

root is then an (n− j − k − 1)-leaf tree that avoids t.

→
n−3∑
k=1

n−k−2∑
j=1

Avj( ) ·Avn−j−k−1(t)

Avk( )

(d) We then add the above 3 cases to get the total number of trees which
avoid t.

Avn(t) =
n−3∑
k=1

n−k−2∑
j=1

Avn−j−k−1(t)

Avk( )+

n−2∑
k=1

Avn−k−1(t) ·Avk( ) + Avn−1(t)

Using our Generating Function Algorithm:

• gft(·) = x + gft( )

• gft( ) = gf (·) · gft(·)
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We know that gf = x−x2

1−2x , so by substituting:

gft( ) =
x− x2

1− 2x
· gft(·)

gft(·) = x +
x− x2

1− 2x
· gft(·)

gft(·) · (1−
x− x2

1− 2x
) = x

gft(·) =
x− 2x2

x2 − 3x + 1

4. Let t =

(a) Case 1: First we assume the left child of the root is a leaf, thus the
possible subtrees that branch from the right leaf of the root will have
n− 1 leaves and avoid t.

→ Avn−1(t)

(b) Case 2: Then we assume that the right child of the second generation
will be a leaf, while the k-leaf subtree extending from the leftmost

vertex will avoid , and the rightmost vertex is an n−k−1-leaf

subtree that avoids t.

→
n−2∑
k=1

Avn−k−1(t) ·Avk( )

(c) Case 3: Next we assume that the right child in the third generation
will be a leaf, the right child of the root is an (n − k − j − 1)-leaf
tree that avoids t, the left child in the second generation is a k-leaf

subtree that avoids , and the left child in the third generation

is a j-leaf subtree that avoids .
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→
n−3∑
k=1

n−k−2∑
j=1

Avj( ) ·Avn−j−k−1(t)

Avk( )

(d) We add these three cases to get:

Avn(t) =

n−3∑
k=1

n−k−2∑
j=1

Avn−j−k−1(t)

Avk( )+

n−2∑
k=1

Avn−k−1(t) ·Avk( ) + Avn−1(t)

Using our Generating Function Algorithm, we have:

• gft(·) = x + gft( )

• gft( ) = gf (·) · gft(·)

• gft(·) = x + gf (·) · gft(·)

We know that gf (·) = x−x2

1−2x , so by substituting:

gft(·) = x +
x− x2

1− 2x
· gft(·)

gft(·)−
x− x2

1− 2x
· gft(·) = x

gft(·)(1−
x− x2

1− 2x
) = x

gft(·) =
x− 2x2

x2 − 3x + 1

Note: The summations for the remaining 5-leaf trees are complicated
and from here on out we will only calculate the generating functions.

5. Let t =

Using our Generating Function Algorithm, we have:
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• gft(·) = x + gft( )

• gft( ) = gf (·) · gft(·)

• gft(·) = x + gf (·) · gft(·)

We know that gf (·) = x−x2

1−2x , so by substituting:

gft(·) = x +
x− x2

1− 2x
· gft(·)

gft(·)−
x− x2

1− 2x
· gft(·) = x

gft(·)(1−
x− x2

1− 2x
) = x

gft(·) =
x− 2x2

x2 − 3x + 1

6. Let t =

Using our Generating Function Algorithm, we have:

• gft(·) = x + gft( )

• gft( ) = gf (·) · gft(·) + gft(·) · gf (·)− gf (·) · gf (·)

• gft(·) = x+gf (·) ·gft(·)+gft(·) ·gf (·)−gf (·) ·gf (·)

We know that gf (·) = x
1−x and gf (·) = x, so by substituting:

gft(·) = x +
x

1− x
· gft(·) + gft(·) · x−

x2

1− x

gft(·)−
x

1− x
· gft(·)− gft(·) · x = x− x2

1− x

gft(·)(1−
x

1− x
− x) = x− x2

1− x

gft(·) =
x− 2x2

1− 3x + x2
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7. Let t =

Using our Generating Function Algorithm, we have:

• gft(·) = x + gft( )

• gft( ) = gf (·) · gft(·) + gft(·) · gf (·)− gf (·) · gf (·)

• gft(·) = x+gf (·) ·gft(·)+gft(·) ·gf (·)−gf (·) ·gf (·)

We know that gf (·) = x−x2

1−2x and gf (·) = x, so by substituting:

gft(·) = x +
x

1− x
· gft(·) + gft(·) · x−

x2

1− x

gft(·)−
x

1− x
· gft(·)− gft(·) · x = x− x2

1− x

gft(·)(1−
x

1− x
− x) = x− x2

1− x

gft(·) =
x− 2x2

1− 3x + x2

Notice how similar equation (3) is to the generating functions obtained from
avoiding 3-, 4-, and 5-leaf tree patterns. At this point, we might conjecture
that gft(·) depends only on the number of leaves of t. We will confirm this
observation in Theorem 2.

3 An Interesting Generalization

Lemma 1. Let gfn be the generating function that counts trees avoiding an
n-leaf left comb. Then gfk = x

1−gfk−1
for all k ≥ 2.

Proof. Let t1 equal the n-leaf left comb and t2 equal the (n−1)-leaf left comb.
Using equation (3) we have,

gft1(·) =
x− gft2(·) · gf·(·)
1− gft2(·)− gf·(·)

.

We know gf·(·) = 0.

∴ gft1(·) = x
1−gft2 (·)

.
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Theorem 2. For a given n ∈ Z+, all n-leaf trees have the same avoidance
generating function for non-consecutive pattern avoidance.

Proof. Base Case:
Base Case: We have shown that this theorem is true for all n ≤ 5.
Inductive Step: We assume true for all k ≤ n.
We will consider two different trees with n + 1 leaves.
First consider a tree of the form:

where t` is the k-leaf subtree in the left box and tr is the (n+1−k)-leaf subtree
in the right box.
Also consider a second (n + 1)-leaf tree of the form

where t` is the (k + 1)-leaf subtree in the left box and tr is the (n − k)-leaf
subtree in the right box.
We must show that gf = gf .

Expressing gf using our generating function algorithm, we get:

gf =
x− gfk · gfn+1−k
1− gfk − gfn+1−k

=
x− gfk ·

(
x

1−gfn−k

)
1− gfk −

(
x

1−gfn−k

)

=
x · (−1 + gfk + gfn−k)

1− gfk − x− gfn−k + gfk · gfn−k

Expressing gf using our generating function algorithm, we get:

18



gf =
x− gfk+1 · gfn−k
1− gfk+1 − gfn−k

=
x− gfn−k ·

(
x

1−gfk

)
1− gfn−k −

(
x

1−gfk

)

=
x · (−1 + gfk + gfn−k)

1− gfk − x− gfn−k + gfk · gfn−k

This shows that gf = gf .

∴ All n-leaf trees have the same non-consecutive avoidance generating function.

Note: From this point on, for each n ∈ Z+ we need only compute the gener-
ating function for one n-leaf tree by Theorem 2.

3.1 6 Leaf Trees

1. Let t =

Using our Generating Function Algorithm, we have:

• gft(·) = x + gft( )

• gft( ) = gft(·)·gf (·)+gf (·)·gft(·)−gf (·)·gf (·)

• gft(·) = x+gft(·) ·gf (·)+gf (·) ·gft(·)−gf (·) ·gf (·)

Let a = gft(·).
We know gf (·) = gf (·) = x

1−x , so by substituting:
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a = x + a

(
x

1− x

)
+

(
x

1− x

)
a−

(
x

1− x

)(
x

1− x

)
a = x +

(
2ax

1− x

)
−
(

x2

(1− x)2

)
gft(·) =

x− 3x2 + x3

1− 4x + 3x2

3.2 7 Leaf Trees

1. Let t=

Using our Generating Function Algorithm, we have:

• gft(·) = x + gft( )

• gft( ) = gft(·) · gf (·) + gf (·) · gft(·)− gf (·) · gf (·)

• gft(·) = x+gft( ) = gft(·)·gf (·)+gf (·)·gft(·)−gf (·)·

gf (·)

Let gft(·) = a.

We know that gf (·) = x
1−x and gf (·) = x−x2

1−2x , so by substituting:

a = x +
a · x
1− x

+
a · (x− x2)

1− 2x
− x · (x− x2)

(1− 2x) · (1− x)

a · (1− x

1− x
− x− x2

1− 2x
) = x− x · (x− x2)

(1− 2x) · (1− x)

a =
x− x·(x−x2)

(1−2x)·(1−x)

1− x
1−x −

x−x2

1−2x

a =
−3x3 + 4x2 − x

x3 − 6x2 + 5x− 1

gft(·) =
x− 4x2 + 3x3

1− 5x + 6x2 − x3

4 Condensed Findings

Listed below are the generating functions, sequences, and recurrences for avoid-
ing trees with up to 9 leaves.
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t gft Sequence Recurrence

0 0, 0, 0, . . . an = 0

x 1, 0, 0, 0, . . . an = 0

1
1−x

1, 1, 1, 1, . . . an = 1

x−x2

1−2x
1, 1, 2, 4, 8, 16, . . . an = 2 · an−1

x−2x2

1−3x+x2 1, 1, 2, 5, 13, 34, 89, . . . an = 3 · an−1 − an−2

x−3x2+x3

1−4x+3x2 1, 1, 2, 5, 14, 41, 122, . . . an = 4 · an−1 − 3 · an−2

x−4x2+3x3

1−5x+6x2−x3 1, 1, 2, 5, 14, 42, 131, . . . an = 5 · an−1 − 6 · an−2 + an−3

x−5x2+6x3−x4

1−6x+10x2−4x3 1, 1, 2, 5, 14, 42, 132, 428, . . . an = 6 · an−1 − 10 · an−2 + 4 · an−3

x−6x2+10x3−4x4

1−7x+15x2−10x3+x4 1, 1, 2, 5, 14, 42, 132, 429, 1429, . . . an = 7 · an−1 − 15 · an−2 + 10 · an−3 − an−4
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5 Recurrences

Notice that when avoiding 5-, 6-, 7-, and 8-leaf tree patterns, the absolute value
of the coefficients of the polynomial in the denominator of the generating func-
tion are the same as the absolute value of the coefficients of the corresponding
recurrence. For every non-consecutive avoidance generating function gft there
exists a linear recurrence of degree d of the following form, where ci ∈ Z and
an := Avn(t):

an = c1 · an−1 + c2 · an−2 + c3 · an−3 + c4 · an−4 · · ·+ cd · an−d

These recurrences give the sequences of the number of n-leaf trees that
avoid a given tree pattern t. Let M be the following matrix, whose row entries
are the coefficients of the recurrences.

M =



0 0 0 0 0 . . . 0
0 0 0 0 0 . . . 0
1 0 0 0 0 . . . 0
2 0 0 0 0 . . . 0
3 −1 0 0 0 . . . 0
4 −3 0 0 0 . . . 0
5 −6 1 0 0 . . . 0
6 −10 4 0 0 . . . 0
7 −15 10 −1 0 . . . 0
8 −21 20 −5 0 . . . 0
...

...
...

...
...

. . .
...(

n−2
1

)
−
(
n−3
2

) (
n−4
3

)
−
(
n−5
4

) (
n−6
5

)
. . . −1k ·

(
n−k
k−1
)



Note: Starting with the first non-zero entry in every column, the columns
form the diagonals of Pascal’s triangle. Following this pattern, we can deduce
the recurrence, and thus the sequence, for trees that avoid any tree pattern
non-consecutively.

5.1 Generalized Generating Function

We were able to extend the pattern in the recurrences to the corresponding
avoidance generating functions. We then discovered that all generating func-
tions for non-consecutive tree avoidance can be written as rational polynomials
whose coefficients are binomial coefficients.
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Theorem 3. For a given n ∈ Z+, the non-consecutive avoidance generating
function for any n-leaf tree is given by

gfn =

∞∑
k=0

(−1)k·(n−(k+2)
k )·xk+1

∞∑
k=0

(−1)k·(n−(k+1)
k )·xk

.

Proof. Base Case:
Base Case: We have shown that this theorem is true for all n ≤ 9.
Inductive Step: We assume it is true for all k ≤ n.
We want to show that this holds for gfn+1, i.e. that:

gfn+1 =

∞∑
k=0

(−1)k ·
((n+1)−(k+2)

k

)
· xk+1

∞∑
k=0

(−1)k ·
((n+1)−(k+1)

k

)
· xk

(4)

From Lemma 1
gfn+1 =

x

1− gfn
.

Consider the right hand side of equation (4).
We wish to show that

x

1− gfn
=

∞∑
k=0

(−1)k ·
((n+1)−(k+2)

k

)
· xk+1

∞∑
k=0

(−1)k ·
((n+1)−(k+1)

k

)
· xk

.

On the righthand side,

∞∑
k=0

(−1)k ·
((n+1)−(k+2)

k

)
· xk+1

∞∑
k=0

(−1)k ·
((n+1)−(k+1)

k

)
· xk

=

∞∑
k=0

(−1)k ·
((n)−(k+1)

k

)
· xk+1

∞∑
k=0

(−1)k ·
((n+1)−(k+1)

k

)
· xk

because (n + 1)− (k + 2) = n− (k + 1).
Then on the lefthand side,
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x

1− gfn
=

x

1−

 ∞∑
k=0

(−1)k·(n−(k+2)
k )·xk+1

∞∑
k=0

(−1)k·(n−(k+1)
k )·xk

 .

=
x

∞∑
k=0

(−1)k·(n−(k+1)
k )·xk−

∞∑
k=0

(−1)k·(n−(k+2)
k )·xk+1

∞∑
k=0

(−1)k·(n−(k+1)
k )·xk

.

=

∞∑
k=0

(−1)k ·
(n−(k+1)

k

)
· xk+1

∞∑
k=0

(−1)k ·
(n−(k+1)

k

)
· xk −

∞∑
k=0

(−1)k ·
(n−(k+2)

k

)
· xk+1

.

We now wish to show that,

∞∑
k=0

(−1)k ·
(n−(k+1)

k

)
· xk+1

∞∑
k=0

(−1)k ·
(n−(k+1)

k

)
· xk −

∞∑
k=0

(−1)k ·
(n−(k+2)

k

)
· xk+1

=

∞∑
k=0

(−1)k ·
((n)−(k+1)

k

)
· xk+1

∞∑
k=0

(−1)k ·
((n+1)−(k+1)

k

)
· xk

We can see here that the numerators of the two fractions are equal. From
this point on we will only look at the denominators. Looking at the denomi-
nator on the left side of the equation, we can pull out the k = 0 term in the
first sum, and also let k + 1 = j in the second sum.

∞∑
k=0

(−1)k ·
(
n− (k + 1)

k

)
· xk −

∞∑
k=0

(−1)k ·
(
n− (k + 2)

k

)
· xk+1

= 1 +
∞∑
j=1

(−1)j ·
(
n− (j + 1)

j

)
· xj −

∞∑
j=1

(−1)j−1 ·
(
n− (j + 1)

j − 1

)
· xj

= 1 +
∞∑
j=1

(−1)j ·
((

n− (j + 1)

j

)
+

(
n− (j + 1)

j − 1

))
· xj

= 1 +

∞∑
j=1

(−1)j ·
(

(n + 1)− (j + 1)

j

)
· xj

=

∞∑
k=0

(−1)k ·
(

(n + 1)− (k + 1)

k

)
· xk, as desired.
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∴

x

1− gfn
=

∞∑
k=0

(−1)k ·
((n+1)−(k+2)

k

)
· xk+1

∞∑
k=0

(−1)k ·
((n+1)−(k+1)

k

)
· xk

.

We have proven that this theorem holds for any n+ 1. Thus by induction,
Theorem 3 is true.

Thus far we have proven that the generating functions for non-consecutive
avoidance are rational and that the corresponding sequences satisfy linear re-
currences. Next, we will further examine these recurrences by trying to find a
structural explanation for them within the trees themselves.

5.2 Explaining the 5-leaf Recurrence

We have shown that the number of n-leaf trees that avoid any given 5-leaf
tree pattern non-consecutively can be represented by the recurrence an =
3 · an−1 − an−2, where a1 = a2 = 1. Note that the given recurrence is equiva-
lent to an = 3 · (an−1−an−2)+2 ·an−2, where a1 = a2 = 1. Our goal is to show
how this recurrence supports the construction of every n-leaf tree that avoids
a given 5-leaf tree pattern. For simplicity, we have chosen to demonstrate this

explanation with trees that avoid t = .

We want to be able to construct every n-leaf tree that avoids this left-
leaning 5-leaf comb from all of the (n− 1)-leaf trees. To do this, we must first
define the new terms we will use in our explanation. A descendant refers to
any m-leaf tree that is constructed by adding one pair of children to one leaf
of a given (m − 1)-leaf tree. For example, and are the descendants

of because they are constructed by adding exactly two children to each
leaf of the 2-leaf tree.

We have developed a set of rules that show how to construct all n-leaf
trees that avoid t from the (n− 1)-leaf trees. Remember that an = 3 · (an−1−
an−2) + 2 · an−2. Notice that the coefficients in this formula are 2 and 3. We
will create either 2 or 3 descendants for every (n− 1)-leaf tree to structurally
explain the recurrence. It is obvious that for any (n − 1)-leaf tree, there are
n−1 possible descendants, but if we constructed all of these descendants, there
would be many trees that are constructed multiple times. Thus, we have to
decide which leaves of each (n− 1)-leaf tree will have children and which will
remain leaves.

The first rule in our process of deciding which leaves have children is that
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we must avoid t when creating descendants. For example, the leftmost leaf of
cannot have children because it would create t.

The second rule is that a leaf will receive children unless it is possible to
backtrack towards the root and come to a vertex whose right child is an inter-
nal vertex not on the initial path traveled. The examples below follow this rule:

• The leftmost child of does not have a descendant because the

right child in its same generation has children already.

• The only descendants of are from the children of the third gener-

ation because the right children of the first and second generations have
children already, and so the left children of the first and second genera-
tions cannot have descendants.

• The two left children of the second generation of cannot have

descendants because the right child in the first generation has children
already.

• Finally, in , the children of the third generation and the leftmost

leaf of the second generation cannot have descendants because the first
generation has children on the right.

Theorem 4. A given n-leaf tree that avoids the tree pattern t= non-

consecutively has either 2 or 3 descendants.

Proof. Base Case:
Base Case: We have shown that this theorem is true for all n ≤ 3.
Inductive Step: We assume the theorem is true for all k ≤ n.
Assume we have a k-leaf tree that has three options in which to expand. A
form of this tree will be

We will consider the three different cases with k + 1 leaves:

• Case 1: Add children to the right vertex
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According to the rules defined earlier, we can now only add children from
the two rightmost vertices. Thus this (k + 1)-leaf tree has two descen-
dants.

• Case 2: Add children to the middle vertex

Again, the rules allow us to add children to all the vertices except for the
leftmost one. Thus this (k + 1)-leaf tree has three descendants.

• Case 3: Add children to the left vertex

Using our rules, we can deduce that this (k + 1)-leaf tree has three de-
scendants. We cannot add children to the leftmost leaf due to the fact
that it will not avoid t.

By adding to the rightmost possible leaf, we eliminate the other two possible
leaves as choices to add. This was shown in Case 1. When considering all
possible k-leaf trees, we know that each (k− 1)-leaf tree will have two or three
choices. However, if a specific (k−1)-leaf tree was created recursively by adding
to the rightmost choice of a (k− 2)-leaf tree, then we see that it will have only
2 possible leaves that can have children. If the (k− 1)-leaf tree was created by
adding to the right of a (k − 2)-leaf tree, it will account for two k-leaf trees.
Thus, each of the (k−2)-leaf trees will account for a (k−1)-leaf tree with only
two possible choices, and the rest of the (k−1)-leaf trees will have three choices.
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∴ We have proven that any (k + 1)-leaf tree will have either two or three
descendants. Thus by induction, the given theorem is true.

Note: Through similar reasoning, this theorem is true for:

t = , t = , and t = .

5.3 Conjecture for Explaining the 6-Leaf Recur-
rence and Beyond

Having examined the structure behind the 5-leaf recurrence in depth, we de-
cided to further investigate the structure behind the recurrence for avoiding
6-leaf trees. In order to avoid the 6-leaf left comb, we started with all the
5-leaf trees and created 6-leaf trees by following the same rules we created for
avoiding a 5-leaf tree. In this manner, we arrived at 41 6-leaf trees that avoid
the 6-leaf left comb, which is the correct number. Each 5-leaf tree that we
started with had either 4, 3, or 2 descendants, with four trees having 4, five
trees having 3, and five trees having 2. We repeated this process for avoid-

ing t= and arrived at the same result. Because our rules seem to be

working for the 5-leaf and 6-leaf trees, we think it could work for the other
recurrences, but we were unable to fit the pattern of descendants from the 5-
leaf trees to the recurrence for avoiding 6-leaf trees. However, another pattern
seems to be emerging in the number of possible descendants when following
our rules. When trying to avoid a 5-leaf tree, the trees we start with have
either 3 or 2 descendants, and when trying to avoid a 6-leaf tree, the trees we
start with have 4, 3, or 2 descendants. Thus, we conjecture that this pattern
will continue for any n. So, when avoiding an n-leaf tree, the trees we start
with will have (n− 2), (n− 3), . . . , or 2 descendants. Examining this conjec-
ture is a topic for further study. Now that we have examined how the n-leaf
recurrences arise from the structure of trees, we will now further study the
recurrences by examining their characteristic polynomials.

5.4 Characteristic Polynomials of Recurrences

Because we have rational generating functions, we know that the sequences
they encode satisfy linear recurrences with constant coefficients. We know
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Table 1: Summary of the Characteristic Polynomials

Number of
Leaves Recurrence Characteristic Polynomial Largest Root

1 an = 0 - - - -
2 an = 0 - - - -
3 an = 1 r − 1 = 0 1
4 an = 2an−1 r − 2 = 0 2

5 an = 3an−1 − an−2 r2 − 3r + 1 = 0 3+
√
5

2
≈ 2.618

6 an = 4an−2 − 3an−1 r2 − 4r + 3 = 0 3
7 an = 5an−1 − 6an−2 + an−3 r3 − 5r2 + 6r − 1 = 0 ≈ 3.247

8 an = 6an−1 − 10an−2 + 4an−3 r3 − 6r2 + 10r − 4 = 0 2 +
√
2 ≈ 3.414

9 an = 7an−1 − 15an−2 + 10an−3 − an−4 r4 − 7r3 + 15r2 − 10r + 1 = 0 ≈ 3.532

10 an = 8an−1 − 21an−2 + 20an−3 − 5an−4 r4 − 8r3 + 21r2 − 20r + 5 = 0 5+
√
5

2
≈ 3.618

that each of these recurrences of degree d has the form an = c1 · an−1 +
c2 · an−2 + c3 · an−3 + c4 · an−4 + · · · + cd · an−d. We can rewrite this as
an − c1 · an−1 − c2 · an−2 − · · · − cd · an−d = 0.. It is from the second equation
that we arrive at the characteristic polynomial for any recurrence:

rd − c1 · rd−1 − c2 · rd−2 − · · · − cd · r0 = 0. (5)

The roots of this polynomial help explain how the sequence behaves asymp-
totically. The roots of the polynomials alternate between real and complex,
but the imaginary part of the complex roots is small enough (< 10−10) to be
ignored. Additionally, all of the roots for each characteristic polynomial are
positive and distinct. This means that for c, the largest root of the polynomial,
Avn(t) ∼ cn.

It appears that the largest root for the characteristic polynomial of the
recurrences is approaching 4. Thus, Avn(t) will never grow faster than
4n. Furthermore, another pattern emerges in factoring the characteristic
polynomials.

If the number of leaves is prime, the characteristic polynomial for
the recurrence satisfied by Avn(t) is not factorable. If the number of
leaves is composite, however, the characteristic polynomial is factorable.
If the prime factorization of n has m factors, then the characteristic
polynomial for the recurrence of that n is factorable, and its factors will
be at least the characteristic polynomials for all ways to multiply m−1 of
n’s prime factors. For example, the prime factorization of 12 is 22·3, so the
characteristic polynomial for avoiding 12-leaf trees will factor into at least
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Table 2: Factoring the Characteristic Polynomials

Number of
Leaves Characteristic Polynomial Factored Characteristic Polynomial

3 r − 1 - -
4 r − 2 - -
5 r2 − 3r + 1 - -
6 r2 − 4r + 3 (r − 1)(r − 3)
7 r3 − 5r2 + 6r − 1 - -
8 r3 − 6r2 + 10r − 4 (r − 2)(r2 − 4r + 2)
9 r4 − 7r3 + 15r2 − 10r + 1 (r − 1)(r3 − 6r2 + 9r − 1)
10 r4 − 8r3 + 21r2 − 20r + 5 (r2 − 3r + 1)(r2 − 5r + 5)
11 r5 − 9r4 + 28r3 − 35r2 + 15r − 1 - -
12 r5 − 10r4 + 36r3 − 56r2 + 35r − 6 (r2 − 4r + 3)(r − 2)(r2 − 4r + 1)
13 r6 − 11r5 + 45r4 − 84r3 + 70r2 − 21r + 1 - -
14 r6 − 12r5 + 55r4 − 120r3 + 126r2 − 56r + 7 (r3 − 5r2 + 6r − 1)(r3 − 7r2 + 14r − 7)
15 r7 − 13r6 + 66r5 − 165r4 + 210r3 − 126r2 + 28r − 1 (r − 1)(r2 − 3r + 1)(r4 − 9r3 + 26r2 − 24r + 1)
16 r7 − 14r6 + 78r5 − 220r4 + 330r3 − 252r2 + 84r − 8 (r3 − 6r2 + 10r − 4)(r4 − 8r3 + 20r2 − 16r + 2)

the characteristic polynomials for 4 leaves (2 · 2) and for 6 leaves (2 · 3).
Additionally, the characteristic polynomial for the recurrence for avoiding
15-leaf trees will factor into at least the characteristic polynomials for 3
and 5 leaves because 3 and 5 are the only prime factors of 15. Finally,
the characteristic polynomial for 16 leaves factors into the characteristic
polynomial for 8 leaves multiplied by one other polynomial.

Thus far, we have only considered the enumeration of trees avoiding a
single tree pattern. From this point on, we will investigate the avoidance
of two tree patterns.

6 Avoiding Two n-Leaf Trees Non-Consecutively

We have discovered how to find the generating functions for non-consecutive
tree avoidance and how to structurally explain the recurrences that arise
from these generating functions. We will now consider avoiding two n-leaf
tree patterns non-consecutively. Using our generating function algorithm
for avoiding a single tree pattern as a model, we created a new algorithm
for avoiding two n-leaf tree patterns simultaneously. With this new algo-
rithm comes new notation; let gft1,t2(p) be the generating function for the
number of n-leaf binary trees that avoid the tree patterns t1 and t2 non-
consecutively and contain the consecutive tree pattern p at their root.
Because all binary trees begin with a single vertex, it follows that the
generating function for all trees avoiding t1 and t2 is given by gft1,t2(·).
Similarly, let t1` , t2` , t1r , t2r denote the trees descending from the the left
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and right children of the root of t1 and t2 respectively.

Since we are working with full binary trees, the root has either zero or
two children. When there are zero children, we have a 1-leaf tree, which
can be represented with the generating function x. When there are two
children, we have a tree with two or more leaves which can be denoted by
the generating function gft1,t2( ) which counts the number of trees
that avoid t1 and t2, where the root has two children. Thus, our equations
are as follows:

gft1,t2(·) = x + gft1,t2( ) (6)

gft1,t2( ) = gft1` ,t2` (·) · gft1,t2(·) + gft1,t2(·) · gft1r ,t2r (·)
+ gft1` ,t2(·) · gft1,t2r (·) + gft1,t2` (·) · gft1r ,t2(·)
− gft1,t2r (·) · gft1r ,t2r (·)− gft1` ,t2(·) · gft1r ,t2r (·)
− gft1` ,t2` (·) · gft1,t2r (·)− gft1` ,t2` (·) · gft1r ,t2(·)
+ gft1` ,t2` (·) · gft1r ,t2r (·)

(7)

To clarify equation (7), we will give a term-by-term explanation.

• Assume the tree extending from the left child of the root avoids
t1` and t2` . This means that there cannot be a copy of t1 or t2 that
includes the root or that is to the left of the root so the right subtree
need only avoid t1 and t2. This accounts for the term gft1` ,t2` (·) ·
gft1,t2(·).
• Assume the tree extending from the right child of the root avoids
t1r and t2r . This means that there cannot be a copy of t1 or t2
that includes the root or that is to the right of the root so the
left subtree need only avoid t1 and t2. This accounts for the term
gft1,t2(·) · gft1r ,t2r (·).
• Assume that the left subtree extending from the root avoids t1` .

This means that the right subtree must only avoid t1. Also, assume
that the right subtree extending from the root avoids t2r . Thus, the
left subtree must avoid t2. The generating function representation
of this is gft1` ,t2(·) · gft1,t2r (·).
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• Assume that the right subtree extending from the root avoids t1r .
As a result, the left subtree must only avoid t1. Also, assume that
the left subtree extending from the root avoids t2` . It follows that
the left subtree needs to only avoid t2. Thus, the generating function
representation of this is gft1,t2` (·) · gft1r ,t2(·).

Thus, we add these four terms in order to count the number of n-leaf
trees that avoid two trees. However, this summation overcounts several
cases. Therefore we need to subtract out the trees that were counted
more than once.

• We subtract gft1,t2` (·) ·gft1r ,t2r (·) because the trees that avoid t1 and
t2l on the left and t1r and t2r on the right are counted in both the
second and fourth terms of the equation.

• We subtract gft1` ,t2(·) · gft1r ,t2r (·) because the trees that avoid t1`
and t2 on the left and t1r and t2r on the right are counted in both
the second and third terms of the equation.

• We subtract gft1` ,t2` (·) · gft1,t2r (·) because the trees that avoid t1`
and t2` on the left and t1 and t2r on the right are counted in both
the first and third terms of the equation.

• We subtract gft1` ,t2` (·) · gft1r ,t2(·) because the trees that avoid t1`
and t2` on the left and t1r and t2 on the right are counted in both
the first and fourth terms of the equation.

Finally, we must add in gft1` ,t2` (·) · gft1r ,t2r (·) because all of the trees
that avoid t1` and t2` on the left and t1r and t2r on the right are counted
four times in the first four terms and then subtracted four times in the
second four terms, and thus they must be added back in at the end.

6.1 Classes of Trees

Now that we have a way to compute avoidance generating functions for
two trees, we can group equivalent classes of trees together based on these
generating functions.

6.1.1 Avoiding a 3-Leaf & a 4-Leaf Tree

Class A

• gft1,t2(·) = x + x2 + x3
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• Seq: 1, 1, 1, 0, 0, . . .

• Terminates

6.1.2 Avoiding a 3-Leaf & a 5-Leaf Tree

Class A

• gft1,t2(·) = x + x2 + x3 + x4

• Seq: 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, . . .

• Terminates

6.1.3 Avoiding a 4-Leaf & a 5-Leaf Tree

Class A

• gft1,t2(·) = x + x2 + 2x3 + 4x4 + 7x5 + 8x6 + 8x7 + 6x8 + 3x9 + x10

• Seq: 1, 1, 2, 4, 7, 8, 6, 3, 1, 0, 0, 0, . . .

• Terminates

Class B

• gft1,t2(·) = x−x2+x3+x4+x5

1−2x+x2
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• Seq: 1, 1, 2, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, . . .

• OEIS A016777: 3k + 1 for k ≥ 4.

Class C

• gft1,t2(·) = −x+2x2−2x3

−1+3x−3x2+x3

• Seq: 1, 1, 2, 4, 7, 11, 16, 22, 29, 37, 46, 56, 67, 79, 92, . . .

• OEIS A152947: (k−2)·(k−1)+1
2

Class D

• gft1,t2(·) = x−x2+x4

1−2x+x3

• Seq: 1, 1, 2, 4, 7, 12, 20, 33, 54, 88, 143, 232, 376, 609, 986, . . .

• OEIS A000071: Fibonacci numbers -1 for n ≥ 2.

34



Class E

• gft1,t2(·) = −x
−1+x+x2+x3

• Seq: 1, 1, 2, 4, 7, 13, 24, 44, 81, 149, 274, 504, 927, 1705, 3136, . . .

• OEIS A000073: Tribonacci Numbers

6.1.4 Avoiding a Pair of 4 Leaf Trees

Class A

• gft1,t2(·) = x + x2 + 2x3 + 3x4 + 2x5 + x6

• Seq: 1, 1, 2, 3, 2, 1, 0, 0, 0, . . .

• Terminates

Class B

• gft1,t2(·) = x−x2+x3

1−2x+x2
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• Seq: 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, . . .

• OEIS A028310: Expansion of 1−x+x2

(1−x)2 in powers of x.

Class C

• gft1,t2(·) = −x
−1+x+x2

• Seq: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, . . .

• OEIS A000045: Fibonacci Numbers

6.1.5 Avoiding a Pair of 5 Leaf Trees

Note: The first five terms of the sequences in this section will be 1, 1, 2,
5, 12. Therefore, the sequences will begin with the sixth term.

Class A

• gft1,t2(·) = x + x2 + 2x3 + 5x4 + 12x5 + 26x6 + 46x7 + 76x8 +
116x9 + 163x10 + 208x11 + 238x12 + 240x13 + 210x14 +
158x15 + 100x15 + 52x17 + 21x18 + 6x19 + x20

• Seq: 26, 46, 76, 116, 163, 208, 238, 240, 210, 158, 100, 52, 21, 6 , 1
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• Terminates

Class B

• gft1,t2(·) = x−2x2+2x3+x4+2x5+3x6+2x7+2x8+x9

1−3x+3x2−x3

• Seq: 26, 49, 83, 129, 187, 257, 339, 433, 539, 657, . . .

• New to OEIS

Class C

• gft1,t2(·) = x−4x2+7x3−5x4+2x5

1−5x+10x2−10x3+5x4−x5

• Seq: 26, 51, 92, 155, 247, 376, 551, 782, 1080, 1457, . . .

• OEIS A027927: T (k, 2k − 4), T given by A027926 for n ≥ 2.

Class D

• gft1,t2(·) = x−5x2+11x3−12x4+7x5−2x6+x7

1−6x+15x2−20x3+15x4−6x5+x6

• Seq: 26, 52, 98, 176, 303, 502, 803, 1244, 1872, 2744, . . .

• New to OEIS
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Class E

• gft1,t2(·) = x−3x2+3x3+x4−x5

1−4x+5x2−x3−2x4+x5

• Seq: 26, 52, 98, 177, 310, 531, 895, 1491, 2463, 4044, . . .

• OEIS A116717: Number of permutations of length k which avoid
the patterns 231, 1423, 3214 for n ≥ 2.

Class F

• gft1,t2(·) = −x+2x2−x3−x4−2x5

−1+3x−2x2−x4+x5

• Seq: 26, 53, 104, 199, 375, 700, 1299, 2402, 4432, 8167, . . .

• New to OEIS

Class G

• gft1,t2(·) = x−2x2+2x4+2x5−x6−x7

1−3x+x2+2x3+x4−x5−x6

• Seq: 26, 55, 113, 227, 449, 877, 1696, 3254, 6203, 11762, . . .
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• OEIS A116726: Number of permutations of length k which avoid
the patterns 213, 1234, 2431 for n ≥ 2.

Class H

• gft1,t2(·) = x−x2−x3+3x5+2x6+x7

1−2x−x2+3x4+2x5+x6

• Seq: 26, 56, 118, 244, 499, 1010, 2027, 4040, 8004, 15776, . . .

• OEIS A073778: a(m) =
m∑
k=0

T (k) · T (m− k). Convolution of tri-

bonacci sequence A000073 with itself for m ≥ 3, for n ≥ 2.

Class I

• gft1,t2(·) = −x
−1+x+x2+2x3+3x4+2x5+x6

• Seq: 26, 57, 127, 284, 632, 1405, 3126, 6958, 15485, 34458, . . .

• New to OEIS

Class J

• gft1,t2(·) = −x+3x2−3x3

−1+4x−5x2+2x3

• Seq: 27, 58, 121, 248, 503, 1014, 2037, 4084, 8179, 16370, . . .
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• OEIS A000325: 2k − k

Class K

• gft1,t2(·) = x−2x2+2x4+x5

1−3x+x2+2x3

• Seq: 27, 59, 126, 263, 551, 1136, 2327, 4743, 9630, 19493, . . .

• OEIS A116712: Number of permutations of length k which avoid
the patterns 231, 3214, 4312 for n ≥ 2.

Class L
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• gft1,t2(·) = x−3x2+2x3+x4

1−4x+4x2

• Seq: 28, 64, 144, 320, 704, 1536, 3328, 7168, 15360, 32768, . . .

• OEIS A045623: Number of 1’s in all compositions of k+1 for n ≥ 2.

Class M

• gft1,t2(·) = x−2x2+x3

1−3x+2x2−x3

• Seq: 28, 65, 151, 351, 816, 1897, 4410, 10252, 23833, 55405, . . .

• OEIS A034943: Binomial transform of Padovan sequence A000931for
n ≥ 1.

41



Class N

• gft1,t2(·) = x−x2−x3

1−2x−x2

• Seq: 29, 70, 169, 408, 985, 2378, 5741, 13860, 33461, 80782, . . .

• OEIS A000129: Pell numbers: a(0) = 0, a(1) = 1; for k ≥ 1, a(k) =
2 · a(k − 1) + a(k − 2) for n ≥ 2.

6.2 Conjecture for n Tree Avoidance

Let gft1,t2,t3,...tk−1,tk be the generating function whose coeffieient of the
xn term is the number of n-leaf trees avoiding the full binary trees
t1, t2, t3, . . . tk−1, tk. Then

gft1,t2,t3,...tk−1,tk(·) = x + gft1,t2,t3,...tk−1,tk( ).

Now consider

gft1,t2,t3,...tk−1,tk( ).
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Let S be the set of properties of avoiding each of the entire tree pat-
terns t1, t2, t3, . . . tk−1, tk while P is the set properties of avoiding not only
the k entire tree patterns, but also to avoid all of the tree patterns on
either the left or right of the tree. For each possible J ⊆ P where S ⊆ J
and gfA ·gfB is the way to satisfy the properties of J and avoid the chosen
left subtrees on the left of the tree (in gfA) or the chosen right subtrees
on the right of the tree (gfB). We conjecture that

gft1,t2,t3,...tk−1,tk( ) =
∑

S⊆J⊆P

(−1)|J |−|S| · gfA · gfB.

7 Conclusion

Throughout this paper, we have investigated non-consecutive pattern
avoidance in binary trees. First we computed the avoidance generat-
ing functions for tree patterns with ≤ 5 leaves through exhaustion. Then
we generalized this process by developing a recursive algorithm. Through
analysis of this algorithm we proved that our avoidance generating func-
tions are always rational. These avoidance generating functions were then
related to recurrences and numerous patterns emerged. We then focused
our research on avoiding two trees simultaneously.

Areas for further research include:

1. Finding more relationships between pattern-avoiding binary trees
and other combinatorial objects.

2. Proving our conjecture for the avoidance generating function algo-
rithm for n trees.

3. Investigating the structure behind the recurrences for n ≥ 6,.

4. Finding the tree classes for avoiding two trees where one tree has
more than 5 leaves.
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