On the Properties $\mathbb{A}_{m,n}$ for Subspaces of \mathbb{C}^{kk}

Mark Krines * St. Norbert College mark.krines@snc.edu Matthew Sedlak University of New Haven msedl1@newhaven.edu

Kari Skaggs Valparaiso University kari.skaggs@valpo.edu

July 31, 2006

1 Introduction

Consider the vector space \mathbb{C}^{kk} of all $k \times k$ matrices with entries from the complex numbers. For the standard basis of we will use matrices E_{ij} with the value 1 in the ij entry and zeros in all other entries. We are trying to determine which subspaces of \mathbb{C}^{kk} have certain properties that make them equivalent to rank one matrices.

Definition 1. Let S be a subspace of \mathbb{C}^{kk} . Then $S^{\perp} = \{T \in \mathbb{C}^{kk} \text{ such that } \forall M \in S, tr(MT) = 0\}$ where tr() is the trace function.

Since the trace function is linear, it is easy to show that S^{\perp} is a subspace of \mathbb{C}^{kk} . It is important to note that $\dim(S) + \dim(S^{\perp}) = \dim(\mathbb{C}^{kk}) = k^2$.

Definition 2. Let S be a subspace of \mathbb{C}^{kk} . Then the quotient space $Q_S = \mathbb{C}^{kk}/S^{\perp}$.

We will denote elements of Q_S as [A] where A is in \mathbb{C}^{kk} . Then [A] = [B] iff $A - B \in S^{\perp}$. Note that the $\dim(Q_S) = \dim(S)$ so to determine a basis for Q_S we merely find $\dim(\mathbb{C}^{kk}) - \dim(S^{\perp})$ linearly independent vectors such that they are also linearly independent of the basis vectors for S^{\perp} and let their equivalence classes form the basis.

Definition 3. Given two vectors $\vec{x} = \{x_i\}$ and $\vec{y} = \{y_j\}$ in \mathbb{C}^k , we define their

^{*}Research supported by the NSF under grant number DMS0353870. Special thanks to Professor Patrick Sullivan of Valparaiso University for his help during this research project.

tensor product

$$\vec{x} \otimes \vec{y} = \begin{pmatrix} x_1 \overline{y_1} & x_1 \overline{y_2} & \cdots & x_1 \overline{y_k} \\ x_2 \overline{y_1} & x_2 \overline{y_2} & \cdots & x_2 \overline{y_k} \\ \vdots & \vdots & \ddots & \vdots \\ x_k \overline{y_1} & x_k \overline{y_2} & \cdots & x_k \overline{y_k} \end{pmatrix}$$

Notice that $\vec{x} \otimes \vec{y}$ is a rank one matrix, and for all $u \in \mathbb{C}^k$, $(\vec{x} \otimes \vec{y})$ $\vec{u} = (\vec{u}, \vec{y})$ \vec{x} where (\vec{u}, \vec{y}) is the standard inner product on C^k .

Definition 4. We say that a subspace S has property $\mathbb{A}_{m,n}$ if for every array of equivalence classes $[L_{ij}] \in Q_S$ with $1 \leq i \leq m$ and $1 \leq j \leq n$, we can find vectors $\vec{x_i}$ and $\vec{y_j} \in \mathbb{C}^k$ such that $[x_i \otimes y_j] = [L_{ij}]$.

Originally property $\mathbb{A}_{m,n}$ was defined for infinite dimensional vector spaces. See [2] for details. For finite dimensional vector spaces, property $\mathbb{A}_{1,1}$ was explored in [1], however different methods were used.

Note that by definition, if S has property $\mathbb{A}_{m,n}$, it must also have property $\mathbb{A}_{p,q}$, where $p \leq m$ and $q \leq n$.

2 Property $\mathbb{A}_{1,1}$

Example 1.

Let
$$S = span\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right\}$$
.

We will show that S has property $\mathbb{A}_{1,1}$. A basis for S^{\perp} is

$$\left\{ \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \right\}.$$

Therefore a basis for Q_S is

$$\left\{ \begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \end{bmatrix} \right\}.$$

An arbitrary element of Q_S is:

$$[L_{11}] = \left[\begin{pmatrix} c_{11} & 0\\ 0 & 0 \end{pmatrix} \right].$$

If we let $\vec{x_1} = \begin{pmatrix} c_{11} \\ 0 \end{pmatrix}$ and $\vec{y_1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, then $[L_{11}] = [x_1 \otimes y_1]$ so S has property $\mathbb{A}_{1,1}$.

This subspace also has property $A_{m,1}$ for all $m \ge 1$. There are m elements from Q_S , call them $[L_{11}], [L_{21}], \ldots, [L_{m1}]$ where each $[L_{i1}] = \begin{vmatrix} c_{i1} & 0 \\ 0 & 0 \end{vmatrix} \end{vmatrix}$. Let each $\vec{x_i} = \begin{pmatrix} c_{i1} \\ 0 \end{pmatrix}$ and let $\vec{y_1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and we are done.

In addition, this subspace has property $\mathbb{A}_{1,n}$ for all $n \geq 1$. Now there are n elements from Q_S , call them $[L_{11}], [L_{12}], \ldots, [L_{1n}]$ where each $[L_{1j}] = \begin{bmatrix} \begin{pmatrix} c_{1j} & 0 \\ 0 & 0 \end{bmatrix} \end{bmatrix}$. Let $\vec{x_1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and each $\vec{y_j} = \begin{pmatrix} \overline{c_{1j}} \\ 0 \end{pmatrix}$ and this shows that S has property \mathbb{A}_1 . property $\mathbb{A}_{1,n}$

In the previous example we saw that the suspace had both property $\mathbb{A}_{m,1}$ and $\mathbb{A}_{1,n}$. However, having one property does not necessarily imply the subspace also has the other property as the following example shows.

Example 2. Let

$$S = span\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \right\}$$

We will show that it has property $\mathbb{A}_{m,1}$ for all $m \geq 1$, but property $\mathbb{A}_{1,n}$ fails to hold for all n > 1.

A basis for S^{\perp} is:

$$\left\{ \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}.$$

A basis for Q_S is:

 $\left\{ \begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \right], \begin{bmatrix} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \end{bmatrix} \right\}.$ Each $[L_{i1}] \in Q_S = \begin{bmatrix} \begin{pmatrix} c_{i1} & 0 \\ d_{i1} & 0 \end{bmatrix}$ so if we let each $\vec{x_i} = \begin{pmatrix} c_{i1} \\ d_{i1} \end{pmatrix}$ and $\vec{y_1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ it is clear that S has property $\mathbb{A}_{m,1}$.

To show property $\mathbb{A}_{1,n}$ fails we let $L_{1j} = \begin{pmatrix} j & 0 \\ j+1 & 0 \end{pmatrix}$ and we will show that we cannot find $\vec{x_1}$ and $\vec{y_j}$ such that $\left[\vec{x_1} \otimes \vec{y_j}\right] = [L_{1j}]$.

We must consider three cases. First suppose $\vec{x_1} = \begin{pmatrix} p \\ 0 \end{pmatrix}$ where $p \in \mathbb{C}$ and $\begin{bmatrix} \vec{x_1} \otimes \vec{y_1} \end{bmatrix} = \begin{bmatrix} L_{11} \end{bmatrix}$. Then we have $x_1 \otimes y_1 = \begin{pmatrix} p\overline{y_{11}} & p\overline{y_{12}} \\ 0 & 0 \end{pmatrix}$ so $x_1 \otimes y_1 - L_{11} = \begin{bmatrix} p\overline{y_1} & p\overline{y_1} & p\overline{y_1} \end{bmatrix}$ $\begin{pmatrix} p\overline{y_{11}} - 1 & p\overline{y_{12}} \\ -2 & 0 \end{pmatrix} \notin S^{\perp} \text{ since the } 2, 1 \text{ entry is non-zero. This is a contradiction.}$

The second case, where $\vec{x_1} = \begin{pmatrix} 0 \\ q \end{pmatrix}$, leads to a similar contradiction.

The third case supposes $\vec{x_1} = \begin{pmatrix} p \\ q \end{pmatrix}$ with $p, q \neq 0$. Since $x_1 \otimes y_j = \begin{pmatrix} p\overline{y_{j1}} & p\overline{y_{j2}} \\ q\overline{y_{j1}} & q\overline{y_{j2}} \end{pmatrix}$ we have x_1

$$\otimes y_1 - L_{11} = \begin{pmatrix} p\overline{y_{11}} - 1 & p\overline{y_1} \\ q\overline{y_{11}} - 2 & q\overline{y_1} \end{pmatrix}$$

$$x_1 \otimes y_2 - L_{11} = \begin{pmatrix} p\overline{y_{21}} - 2 & p\overline{y_{22}} \\ q\overline{y_{21}} - 3 & q\overline{y_{22}} \end{pmatrix}.$$

In order for each difference to be in S^{\perp} the 1,1 and 1,2 entries must equal zero. This leads to the following four equations:

$$p\overline{y_{11}} = 1, \quad q\overline{y_{11}} = 2, \quad p\overline{y_{21}} = 2, \quad q\overline{y_{21}} = 3$$

Therefore, $\overline{y_{11}} = \frac{1}{p} = \frac{2}{q}$ and $\overline{y_{21}} = \frac{2}{p} = \frac{3}{q}$. Simplifying we find that 2p = qand 3p = 2q or in other words, 3p = 4p which is true only when p = 0 so we have a contradiction. This shows that S does not necessarily have property $\mathbb{A}_{1,n}$ even though it has $\mathbb{A}_{m,1}$.

Claim. Every one-dimensional subspace of \mathbb{C}^{kk} has properties $\mathbb{A}_{1,1}$, $\mathbb{A}_{m,1}$, and $\mathbb{A}_{1,n}$.

Proof. Since S is one-dimensional, so is Q_S . Furthermore, S^{\perp} can not be all of \mathbb{C}^{kk} so there must exist a standard basis vector of \mathbb{C}^{kk} that is not in S^{\perp} . The equivalence class of this basis vector forms a basis for Q_S . We can then pick our vectors such that their tensor product and an arbitrary element of Q_S are equal.

3 Results

Theorem 1. Let S_1 be a subspace of \mathbb{C}^{kk} and $P \in \mathbb{C}^{kk}$ be an invertible matrix. If $S_2 = \{P^{-1}AP \text{ such that } A \in S_1\}$ then S_1 has property $\mathbb{A}_{m,n}$ iff S_2 has property $\mathbb{A}_{m,n}$.

Proof. Let T be in S_1^{\perp} . Then for all $L \in S_1$, tr(LT) = 0. Since L is in S_1 , $P^{-1}LP$ is in S_2 . Then $tr(P^{-1}TP \cdot P^{-1}LP) = tr(LT) = 0$ so $P^{-1}TP$ is in S_2^{\perp} . Therefore $S_2^{\perp} = \{P^{-1}TP \text{ such that } T \in S_1^{\perp}\}$. Suppose S_1 has property $\mathbb{A}_{m,n}$. If $L_{ij} \in \mathbb{C}^{kk}$ for $1 \leq i \leq m$ and $1 \leq j \leq n$

Suppose S_1 has property $\mathbb{A}_{m,n}$. If $L_{ij} \in \mathbb{C}^{kk}$ for $1 \leq i \leq m$ and $1 \leq j \leq n$ let $M_{ij} = PL_{ij}P^{-1}$. Since S_1 has property $\mathbb{A}_{m,n}$ we can find $\vec{x_i}$ and $\vec{y_j}$ such that $M_{ij} - \vec{x_i} \otimes \vec{y_j} \in S_1^{\perp}$. So $P^{-1}\left(M_{ij} - \vec{x_i} \otimes \vec{y_j}\right)P = L_{ij} - P^{-1}\left(\vec{x_i} \otimes \vec{y_j}\right)P = L_{ij} - P^{-1}\left(\vec{x_i} \otimes \vec{y_j}\right)P = L_{ij} - P^{-1}\vec{x_i} \otimes P^* \vec{y_j}$ where P^* is the conjugate transpose of P. Therefore S_2 has property $\mathbb{A}_{m,n}$. By symmetry the converse is also true.

Corollary. If A and B are similar $k \times k$ matrices and $S_1 = span \{I, A, A^2, \ldots, A^{n-1}\}$ and $S_2 = span \{I, B, B^2, \ldots, B^{n-1}\}$ then S_1 has property $\mathbb{A}_{m,n}$ iff S_2 has property $\mathbb{A}_{m,n}$.

Theorem 2. Suppose S is a subspace of \mathbb{C}^{kk} and $\exists i, j \text{ such that } \forall T \in S^{\perp}, T_{ij} = 0$. Then S fails to have property $\mathbb{A}_{2,2}$.

Proof. For S to have property $\mathbb{A}_{2,2}$ we must have $\forall k, l, 1 \leq k, l \leq 2, [x_k \otimes y_l] = [L_{kl}]$. Since $\forall T \in S^{\perp}, T_{ij} = 0$ the i, j^{th} entry of $x_k \otimes y_l - L_{kl} = 0$. This leads to the following system of equations (where each c_{kl} is the i, j entry of L_{kl}):

and

 $\begin{aligned} x_{1,i} \cdot y_{1,j} - c_{11} &= 0\\ x_{1,i} \cdot y_{2,j} - c_{12} &= 0\\ x_{2,i} \cdot y_{1,j} - c_{21} &= 0\\ x_{2,i} \cdot y_{2,j} - c_{22} &= 0. \end{aligned}$

Let $c_{11} = 0$ and the remaining $c_{k,l} \neq 0$. Then we have $x_{1,i} \cdot y_{1,j} = 0$ which implies that either $x_{1,i} = 0$ or $y_{1,j} = 0$. Suppose first that $x_{1,i} = 0$. The second equation implies that $x_{1,i} \cdot y_{2,j} = c_{12} \neq 0$ which is a contradiction. If we let $y_{1,j} = 0$ then we get a similar contradiction with the third equation. Therefore S cannot have property $\mathbb{A}_{2,2}$.

Corollary. Suppose $A \in \mathbb{C}^{kk}$ is a diagonal matrix having at least one eigenvalue of multiplicity 1 and let $S = span \{I, A, A^2, \dots, A^{c-1}\}$ where c is the degree of the minimal polynomial of A. Then S fails to have property $\mathbb{A}_{2,2}$.

Proof. Clearly $\dim(S) = c$ so $\dim(S^{\perp}) = k^2 - c$. There are $k^2 - k$ basis vectors for S^{\perp} that are standard basis vectors in \mathbb{C}^{kk} . These correspond to the entries in A that are zero. Any remaining basis vectors for S^{\perp} can be constructed as follows. If the same eigenvalue appears in the i, i and j, j positions of A, where i < j, then we place a 1 in the i, i position and a -1 in the j, j position. These remaining vectors fill out the basis for S^{\perp} .

Now let the eigenvalue of multiplicity 1 be in the n, n position in A. Clearly every basis vector in S^{\perp} will have a zero in the n, n position so by theorem 2, S fails to have property $\mathbb{A}_{2,2}$.

4 Future Work

We are close to proving the following conjecture.

Conjecture 1. Let A be a $k \times k$ Jordan block having one eigenvalue. Define S as the span of $\{I, A, A^2, \ldots, A^{e-1}\}$, where e is the degree of the minimum polynomial in A. Then S does not have property $A_{m,n}$ for m, n > k.

A proof of this conjecture may help lead to a proof of the following, more general statement.

Conjecture 2. If S is a subspace of \mathbb{C}^{kk} then S does not have property $\mathbb{A}_{m,n}$ for m, n > k.

References

- E.A. Azoff, On Finite Rank Operators and Preannihilators, Memoirs of the American Mathematical Society, vol. 64, no. 357, American Mathematical Society, Providence, RI, 1986.
- [2] H. Bercovici, C. Foias, and C. Pearcy, Dual Algebras with Applications to Invariant Subspaces and Dilation Theory CBMS Regional Conference Series in Mathematics, no. 56, American Mathematical Society, Providence, RI, 1985.