On the Properties $\mathbb{A}_{m, n}$ for Subspaces of $\mathbb{C}^{k k}$

Mark Krines *
St. Norbert College
mark.krines@snc.edu

Matthew Sedlak
University of New Haven
msed11@newhaven.edu

Kari Skaggs
Valparaiso University
kari.skaggs@valpo.edu

July 31, 2006

1 Introduction

Consider the vector space $\mathbb{C}^{k k}$ of all $k \times k$ matrices with entries from the complex numbers. For the standard basis of we will use matrices $E_{i j}$ with the value 1 in the $i j$ entry and zeros in all other entries. We are trying to determine which subspaces of $\mathbb{C}^{k k}$ have certain properties that make them equivalent to rank one matrices.

Definition 1. Let S be a subspace of $\mathbb{C}^{k k}$. Then $S^{\perp}=\left\{T \in \mathbb{C}^{k k}\right.$ such that $\forall M \in$ $S, \operatorname{tr}(M T)=0\}$ where $\operatorname{tr}()$ is the trace function.

Since the trace function is linear, it is easy to show that S^{\perp} is a subspace of $\mathbb{C}^{k k}$. It is important to note that $\operatorname{dim}(S)+\operatorname{dim}\left(S^{\perp}\right)=\operatorname{dim}\left(\mathbb{C}^{k k}\right)=k^{2}$ 。

Definition 2. Let S be a subspace of $\mathbb{C}^{k k}$. Then the quotient space $Q_{S}=$ $\mathbb{C}^{k k} / S^{\perp}$.

We will denote elements of Q_{S} as $[A]$ where A is in $\mathbb{C}^{k k}$. Then $[A]=[B]$ iff $A-B \in S^{\perp}$. Note that the $\operatorname{dim}\left(Q_{S}\right)=\operatorname{dim}(S)$ so to determine a basis for Q_{S} we merely find $\operatorname{dim}\left(\mathbb{C}^{k k}\right)-\operatorname{dim}\left(S^{\perp}\right)$ linearly independent vectors such that they are also linearly independent of the basis vectors for S^{\perp} and let their equivalence classes form the basis.

Definition 3. Given two vectors $\vec{x}=\left\{x_{i}\right\}$ and $\vec{y}=\left\{y_{j}\right\}$ in \mathbb{C}^{k}, we define their

[^0]tensor product
\[

\vec{x} \otimes \vec{y}=\left($$
\begin{array}{cccc}
x_{1} \overline{y_{1}} & x_{1} \overline{y_{2}} & \cdots & x_{1} \overline{y_{k}} \\
x_{2} \overline{y_{1}} & x_{2} \overline{y_{2}} & \cdots & x_{2} \overline{y_{k}} \\
\vdots & \vdots & \ddots & \vdots \\
x_{k} \overline{y_{1}} & x_{k} \overline{y_{2}} & \cdots & x_{k} \overline{y_{k}}
\end{array}
$$\right)
\]

Notice that $\vec{x} \otimes \vec{y}$ is a rank one matrix, and for all $u \in \mathbb{C}^{k},(\vec{x} \otimes \vec{y}) \vec{u}=$ $(\vec{u}, \vec{y}) \vec{x}$ where (\vec{u}, \vec{y}) is the standard inner product on C^{k}.

Definition 4. We say that a subspace S has property $\mathbb{A}_{m, n}$ if for every array of equivalence classes $\left[L_{i j}\right] \in Q_{S}$ with $1 \leq i \leq m$ and $1 \leq j \leq n$, we can find vectors $\overrightarrow{x_{i}}$ and $\overrightarrow{y_{j}} \in \mathbb{C}^{k}$ such that $\left[x_{i} \otimes y_{j}\right]=\left[L_{i j}\right]$.

Originally property $\mathbb{A}_{m, n}$ was defined for infinite dimensional vector spaces. See [2] for details. For finite dimensional vector spaces, property $\mathbb{A}_{1,1}$ was explored in [1], however different methods were used.

Note that by definition, if S has property $\mathbb{A}_{m, n}$, it must also have property $\mathbb{A}_{p, q}$, where $p \leq m$ and $q \leq n$.

2 Property $\mathbb{A}_{1,1}$

Example 1.

$$
\text { Let } S=\operatorname{span}\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\right\} .
$$

We will show that S has property $\mathbb{A}_{1,1}$.
A basis for S^{\perp} is

$$
\left\{\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)\right\} .
$$

Therefore a basis for Q_{S} is

$$
\left\{\left[\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\right]\right\} .
$$

An arbitrary element of Q_{S} is:

$$
\left[L_{11}\right]=\left[\left(\begin{array}{cc}
c_{11} & 0 \\
0 & 0
\end{array}\right)\right]
$$

If we let $\overrightarrow{x_{1}}=\binom{c_{11}}{0}$ and $\overrightarrow{y_{1}}=\binom{1}{0}$, then $\left[L_{11}\right]=\left[x_{1} \otimes y_{1}\right]$ so S has property $\mathbb{A}_{1,1}$.

This subspace also has property $\mathbb{A}_{m, 1}$ for all $m \geq 1$. There are m elements from Q_{S}, call them $\left[L_{11}\right],\left[L_{21}\right], \ldots,\left[L_{m 1}\right]$ where each $\left[L_{i 1}\right]=\left[\left(\begin{array}{cc}c_{i 1} & 0 \\ 0 & 0\end{array}\right)\right]$. Let each $\overrightarrow{x_{i}}=\binom{c_{i 1}}{0}$ and let $\overrightarrow{y_{1}}=\binom{1}{0}$ and we are done.

In addition, this subspace has property $\mathbb{A}_{1, n}$ for all $n \geq 1$. Now there are n elements from Q_{S}, call them $\left[L_{11}\right],\left[L_{12}\right], \ldots,\left[L_{1 n}\right]$ where each $\left[L_{1 j}\right]=$ $\left[\left(\begin{array}{cc}c_{1 j} & 0 \\ 0 & 0\end{array}\right)\right]$. Let $\overrightarrow{x_{1}}=\binom{1}{0}$ and each $\overrightarrow{y_{j}}=\binom{\overline{c_{1 j}}}{0}$ and this shows that S has property $\mathbb{A}_{1, n}$.

In the previous example we saw that the suspace had both property $\mathbb{A}_{m, 1}$ and $\mathbb{A}_{1, n}$. However, having one property does not necessarily imply the subspace also has the other property as the following example shows.

Example 2. Let

$$
S=\operatorname{span}\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)\right\}
$$

We will show that it has property $\mathbb{A}_{m, 1}$ for all $m \geq 1$, but property $\mathbb{A}_{1, n}$ fails to hold for all $n>1$.

A basis for S^{\perp} is:

$$
\left\{\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)\right\} .
$$

A basis for Q_{S} is:

$$
\left\{\left[\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\right],\left[\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)\right]\right\}
$$

Each $\left[L_{i 1}\right] \in Q_{S}=\left[\left(\begin{array}{cc}c_{i 1} & 0 \\ d_{i 1} & 0\end{array}\right)\right]$ so if we let each $\overrightarrow{x_{i}}=\binom{c_{i 1}}{d_{i 1}}$ and $\overrightarrow{y_{1}}=\binom{1}{0}$ it is clear that S has property $\mathbb{A}_{m, 1}$.

To show property $\mathbb{A}_{1, n}$ fails we let $L_{1 j}=\left(\begin{array}{cc}j & 0 \\ j+1 & 0\end{array}\right)$ and we will show that we cannot find $\overrightarrow{x_{1}}$ and $\overrightarrow{y_{j}}$ such that $\left[\overrightarrow{x_{1}} \otimes \overrightarrow{y_{j}}\right]=\left[L_{1 j}\right]$.

We must consider three cases. First suppose $\overrightarrow{x_{1}}=\binom{p}{0}$ where $p \in \mathbb{C}$ and $\left[\overrightarrow{x_{1}} \otimes \overrightarrow{y_{1}}\right]=\left[L_{11}\right]$. Then we have $x_{1} \otimes y_{1}=\left(\begin{array}{cc}p \overline{y_{11}} & p \overline{y_{12}} \\ 0 & 0\end{array}\right)$ so $x_{1} \otimes y_{1}-L_{11}=$ $\left(\begin{array}{cc}p \overline{y_{11}}-1 & p \overline{y_{12}} \\ -2 & 0\end{array}\right) \notin S^{\perp}$ since the 2,1 entry is non-zero. This is a contradiction.

The second case, where $\overrightarrow{x_{1}}=\binom{0}{q}$, leads to a similar contradiction.
The third case supposes $\overrightarrow{x_{1}}=\binom{p}{q}$ with $p, q \neq 0$. Since $x_{1} \otimes y_{j}=\left(\begin{array}{ll}p \overline{y_{j 1}} & p \overline{y_{j 2}} \\ q \overline{y_{j 1}} & q \overline{y_{j 2}}\end{array}\right)$ we have

$$
x_{1} \otimes y_{1}-L_{11}=\left(\begin{array}{cc}
p \overline{y_{11}}-1 & p \overline{y_{12}} \\
q \overline{y_{11}}-2 & q \overline{y_{12}}
\end{array}\right)
$$

and

$$
x_{1} \otimes y_{2}-L_{11}=\left(\begin{array}{cc}
p \overline{y_{21}}-2 & p \overline{y_{22}} \\
q \overline{y_{21}}-3 & q \overline{y_{22}}
\end{array}\right) .
$$

In order for each difference to be in S^{\perp} the 1,1 and 1,2 entries must equal zero. This leads to the following four equations:

$$
p \overline{y_{11}}=1, \quad q \overline{y_{11}}=2, \quad p \overline{y_{21}}=2, \quad q \overline{y_{21}}=3
$$

Therefore, $\overline{y_{11}}=\frac{1}{p}=\frac{2}{q}$ and $\overline{y_{21}}=\frac{2}{p}=\frac{3}{q}$. Simplifying we find that $2 p=q$ and $3 p=2 q$ or in other words, $3 p=4 p$ which is true only when $p=0$ so we have a contradiction. This shows that S does not neccessarily have property $\mathbb{A}_{1, n}$ even though it has $\mathbb{A}_{m, 1}$.
Claim. Every one-dimensional subspace of $\mathbb{C}^{k k}$ has properties $\mathbb{A}_{1,1}, \mathbb{A}_{m, 1}$, and $\mathbb{A}_{1, n}$.

Proof. Since S is one-dimensional, so is Q_{S}. Furthermore, S^{\perp} can not be all of $\mathbb{C}^{k k}$ so there must exist a standard basis vector of $\mathbb{C}^{k k}$ that is not in S^{\perp}. The equivalence class of this basis vector forms a basis for Q_{S}. We can then pick our vectors such that their tensor product and an arbitrary element of Q_{S} are equal.

3 Results

Theorem 1. Let S_{1} be a subspace of $\mathbb{C}^{k k}$ and $P \in \mathbb{C}^{k k}$ be an invertible matrix. If $S_{2}=\left\{P^{-1} A P\right.$ such that $\left.A \in S_{1}\right\}$ then S_{1} has property $\mathbb{A}_{m, n}$ iff S_{2} has property $\mathbb{A}_{m, n}$.

Proof. Let T be in S_{1}^{\perp}. Then for all $L \in S_{1}, \operatorname{tr}(L T)=0$. Since L is in S_{1}, $P^{-1} L P$ is in S_{2}. Then $\operatorname{tr}\left(P^{-1} T P \cdot P^{-1} L P\right)=\operatorname{tr}(L T)=0$ so $P^{-1} T P$ is in S_{2}^{\perp}. Therefore $S_{2}^{\perp}=\left\{P^{-1} T P\right.$ such that $\left.T \in S_{1}^{\perp}\right\}$.

Suppose S_{1} has property $\mathbb{A}_{m, n}$. If $L_{i j} \in \mathbb{C}^{k k}$ for $1 \leq i \leq m$ and $1 \leq j \leq n$ let $M_{i j}=P L_{i j} P^{-1}$. Since S_{1} has property $\mathbb{A}_{m, n}$ we can find $\overrightarrow{x_{i}}$ and $\overrightarrow{y_{j}}$ such that $M_{i j}-\overrightarrow{x_{i}} \otimes \overrightarrow{y_{j}} \in S_{1}^{\perp}$. So $P^{-1}\left(M_{i j}-\overrightarrow{x_{i}} \otimes \overrightarrow{y_{j}}\right) P=L_{i j}-P^{-1}\left(\overrightarrow{x_{i}} \otimes \overrightarrow{y_{j}}\right) P=$ $L_{i j}-P^{-1} \overrightarrow{x_{i}} \otimes P^{*} \overrightarrow{y_{j}}$ where P^{*} is the conjugate transpose of P. Therefore S_{2} has property $\mathbb{A}_{m, n}$. By symmetry the converse is also true.

Corollary. If A and B are similar $k \times k$ matrices and $S_{1}=\operatorname{span}\left\{I, A, A^{2}, \ldots, A^{n-1}\right\}$ and $S_{2}=\operatorname{span}\left\{I, B, B^{2}, \ldots, B^{n-1}\right\}$ then S_{1} has property $\mathbb{A}_{m, n}$ iff S_{2} has property $\mathbb{A}_{m, n}$.
Theorem 2. Suppose S is a subspace of $\mathbb{C}^{k k}$ and $\exists i, j$ such that $\forall T \in S^{\perp}, T_{i j}=$ 0 . Then S fails to have property $\mathbb{A}_{2,2}$.

Proof. For S to have property $\mathbb{A}_{2,2}$ we must have $\forall k, l, 1 \leq k, l \leq 2,\left[x_{k} \otimes y_{l}\right]=$ [$L_{k l}$]. Since $\forall T \in S^{\perp}, T_{i j}=0$ the $i, j^{t h}$ entry of $x_{k} \otimes y_{l}-L_{k l}=0$. This leads to the following system of equations (where each $c_{k l}$ is the i, j entry of $L_{k l}$):
$x_{1, i} \cdot y_{1, j}-c_{11}=0$
$x_{1, i} \cdot y_{2, j}-c_{12}=0$
$x_{2, i} \cdot y_{1, j}-c_{21}=0$
$x_{2, i} \cdot y_{2, j}-c_{22}=0$.
Let $c_{11}=0$ and the remaining $c_{k, l} \neq 0$. Then we have $x_{1, i} \cdot y_{1, j}=0$ which implies that either $x_{1, i}=0$ or $y_{1, j}=0$. Suppose first that $x_{1, i}=0$. The second equation implies that $x_{1, i} \cdot y_{2, j}=c_{12} \neq 0$ which is a contradiction. If we let $y_{1, j}=0$ then we get a similar contradiction with the third equation. Therefore S cannot have property $\mathbb{A}_{2,2}$.
Corollary. Suppose $A \in \mathbb{C}^{k k}$ is a diagonal matrix having at least one eigenvalue of multiplicity 1 and let $S=\operatorname{span}\left\{I, A, A^{2}, \ldots, A^{c-1}\right\}$ where c is the degree of the minimal polynomial of A. Then S fails to have property $\mathbb{A}_{2,2}$.
Proof. Clearly $\operatorname{dim}(S)=c$ so $\operatorname{dim}\left(S^{\perp}\right)=k^{2}-c$. There are $k^{2}-k$ basis vectors for S^{\perp} that are standard basis vectors in $\mathbb{C}^{k k}$. These correspond to the entries in A that are zero. Any remaining basis vectors for S^{\perp} can be constructed as follows. If the same eigenvalue appears in the i, i and j, j positions of A, where $i<j$, then we place a 1 in the i, i position and a -1 in the j, j position. These remaining vectors fill out the basis for S^{\perp}.

Now let the eigenvalue of multiplicity 1 be in the n, n position in A. Clearly every basis vector in S^{\perp} will have a zero in the n, n position so by theorem 2 , S fails to have property $\mathbb{A}_{2,2}$.

4 Future Work

We are close to proving the following conjecture.
Conjecture 1. Let A be a $k \times k$ Jordan block having one eigenvalue. Define S as the span of $\left\{I, A, A^{2}, \ldots, A^{e-1}\right\}$, where e is the degree of the minimum polynomial in A. Then S does not have property $\mathbb{A}_{m, n}$ for $m, n>k$.

A proof of this conjecture may help lead to a proof of the following, more general statement.
Conjecture 2. If S is a subspace of $\mathbb{C}^{k k}$ then S does not have property $\mathbb{A}_{m, n}$ for $m, n>k$.

References

[1] E.A. Azoff, On Finite Rank Operators and Preannihilators, Memoirs of the American Mathematical Society, vol. 64, no. 357, American Mathematical Society, Providence, RI, 1986.
[2] H. Bercovici, C. Foias, and C. Pearcy, Dual Algebras with Applications to Invariant Subspaces and Dilation Theory CBMS Regional Conference Series in Mathematics, no. 56, American Mathematical Society, Providence, RI, 1985.

[^0]: *Research supported by the NSF under grant number DMS0353870. Special thanks to Professor Patrick Sullivan of Valparaiso University for his help during this research project.

