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1 Introduction

The motivation for this paper is to continue combinatorics research in the area
of pattern avoidance. We have constructed a subset of words to study called
“double lists” which are based on the standard permutations used in counting
pattern avoiding lists. We will begin this paper with an introduction to pattern
avoidance for those unfamiliar. However, the majority of this paper will focus
on our own research of pattern avoidance within double lists.

2 Definitions

2.1 Permutations and Pattern Avoidance

A permutation of length n is a list comprised of the distinct numbers 1, 2, · · · , n.

Ex: (1, 2, 3) is a list of length 3

We denote the set of all permutations of length n with Sn.

Ex: S3 = {(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)}

We denote the list containing no elements, (), as the empty list ε. Thus,

S0 = {ε}.

The reduction of some list π, denoted red(π) is the list obtained by replacing
the ith smallest number(s) of π with i.

Ex: red(1, 7, 28, 5) = (1, 3, 4, 2)

red(2, 8, 8, 5) = (1, 3, 3, 2)

Let π and ρ be lists. Then π contains ρ if ∃ 1 ≤ i1 < i2 < · · · < im ≤ n such
that red(πi1 , πi2 · · · , πim) = ρ.
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If π does not contain a list ρ, then we say that π avoids ρ. We denote the set
of all lists of length n which avoid ρ with Sn(ρ).

Ex: S3(1, 2, 3) = {(1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)}

The predominant question concerning avoidance in combinatorics is to deter-
mine the size of Sn(ρ), often by writing an appropriate formula |Sn(ρ)| = f(n).

Because permutations contain n elements of magnitude 1 though n, we can
graph permutations on the square [1, n]× [1, n] in the xy-plane. This allows us
to extend our results for |Sn(ρ)| = f(n). Using the properties of squares, we
connect our results for ρ to ρr, ρc, and ρi, the reverse, complement, and inverse
of ρ respectively.

|Sn(ρ)| = f(n)⇒ |Sn(ρr)| = |Sn(ρc)| = |Sn(ρi)| = f(n)

2.2 Double Lists

Given a permutation π ∈ Sn, π = (π1, π2, . . . , πn), we define the double list [π, π]
as

[π, π] = (π1, π2, . . . , πn, π1, π2, . . . , πn).

For example, if π = (1, 2, 3) then [π, π] = (1, 2, 3, 1, 2, 3). We denote the set of
all double lists created by permutations of length n with Dn. That is,

Dn = {[π, π] | π ∈ Sn}.

We define the double list of the empty list as equivalent to the empty list.

[ε, ε] = ε = ()

Therefore,
D0 = {[π, π] | π ∈ S0}
⇒ D0 = {[ε, ε]} = {ε}

⇒ D0 = S0.
We let Dn(ρ) denote the set of all [π, π] ∈ Dn which avoid ρ.
Note that because [π, π] contains 2n elements of magnitude 1 through n, double
lists cannot be graphed using squares. However, we can graph them on the
rectangle [1, 2n] × [1, n] so that we may continue to extend our results to the
complement and reverse of ρ.

|Dn(ρ)| = f(n)⇒ |Dn(ρr)| = |Dn(ρc)| = f(n)

3 Avoidance of length 1 Permutations

Theorem 1. |Dn(1)| =

{
1, n = 0

0, n ≥ 1

Proof. With the exception of ε, all permutations must contain at least 1 number.
Any list containing any single number reduces to (1).
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4 Avoidance of length 2 Permutations

Theorem 2. |Dn(12)| =

{
|Dn|, n < 2

0, n ≥ 2

Proof. As π ∈ Sn will contain both 1 and 2 where n ≥ 2, 1 will precede a copy
of 2 in the second iteration of the permutation. Thus Dn will contain (1, 2) ∀
n ≥ 2.

Corollary 1. We use the properties of rectangles to extend our result. As (2, 1)
is the reverse of (1, 2),

|Dn(1, 2)| = |Dn(2, 1)| =

{
|Dn|, n < 2

0, n ≥ 2

5 Avoidance of length 3 Permutations

Theorem 3. |Dn(1, 2, 3)| =

{
|Dn|, n < 3

1, n ≥ 3

Proof. Consider when [π, π] ∈ Dn(1, 2, 3) for n ≥ 3. If (n− 1) precedes n, then
choosing (n − 2) in the first iteration of π and (n − 1) and n in the second
creates a (1, 2, 3) pattern. Thus n must precede (n − 1) and likewise for all
other numbers within the list. Therefore the elements of π must be in a strictly
decreasing order, which there is only one way to accomplish.

Corollary 2. We use the properties of rectangles to extend our result. As
(3, 2, 1) is the reverse of (1, 2, 3),

|Dn(1, 2, 3)| = |Dn(3, 2, 1)| =

{
|Dn|, n < 3

1, n ≥ 3
.

Theorem 4. |Dn(1, 3, 2)| =


|Dn|, n < 3

1, n = 3

0, n > 3

Proof. Let π = (A,n,B) where A = (a1, a2, · · · ) and B = (b1, b2, · · · ). Consider
when [π, π] ∈ Dn(1, 3, 2). Then ai > bj ∀ ai ∈ A and bj ∈ B else red(ai, n, bj) =
(1, 3, 2). If A contains 2 or more elements ai, aj where ai < aj then choosing ai
and n in the first iteration of π and aj in the second iteration creates a (1, 3, 2)
pattern. Likewise if B contains 2 or more elements bi, bj where bi < bj then
choosing bi in the first iteration of π and n and bj in the second iteration creates
a (1, 3, 2) pattern. Thus |A| ≤ 1 and |B| ≤ 1 which implies Dn(1, 3, 2) = ∅ ∀
n ≥ 4.
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Corollary 3. We use the properties of rectangles to extend our result. The
reverse of (1, 3, 2) is (2, 3, 1). The complement of (2, 3, 1) is (3, 1, 2) whose own
reverse is (2, 1, 3). Thus,

|Dn(1, 3, 2)| = |Dn(2, 3, 1)| = |Dn(3, 1, 2)| = |Dn(2, 1, 3)| =


|Dn|, n < 3

1, n = 3

0, n > 3

.

6 Avoidance of length 4 Permutations

We begin to look at avoiding permutations of length 4 by first applying the
symmetries of rectangles to the 24 permutations in S4. By doing so we find that
|Dn(ρ)|, where ρ ∈ S4, has 8 different equivalence classes:

1. |Dn(1, 2, 3, 4)| = |Dn(4, 3, 2, 1)|

2. |Dn(1, 3, 4, 2)| = |Dn(2, 4, 3, 1)| = |Dn(3, 1, 2, 4)| = |Dn(4, 2, 1, 3)|

3. |Dn(1, 2, 4, 3)| = |Dn(3, 4, 2, 1)| = |Dn(2, 1, 3, 4)| = |Dn(4, 3, 1, 2)|

4. |Dn(1, 3, 2, 4)| = |Dn(4, 2, 3, 1)|

5. |Dn(1, 4, 2, 3)| = |Dn(3, 2, 4, 1)| = |Dn(4, 1, 3, 2)| = |Dn(2, 3, 1, 4)|

6. |Dn(1, 4, 3, 2)| = |Dn(2, 3, 4, 1)| = |Dn(3, 2, 1, 4)| = |Dn(4, 1, 2, 3)|

7. |Dn(2, 1, 4, 3)| = |Dn(3, 4, 1, 2)|

8. |Dn(2, 4, 1, 3)| = |Dn(3, 1, 4, 2)|

Thus the problem of avoidance of length 4 permutations has 8 cases. The
enumeration of these 8 classes constitutes the remainder of this paper. Sec-
tion 6.1 focuses on Dn(1, 3, 4, 2). Section 6.2 focuses on Dn(1, 2, 3, 4). Sec-
tion 6.4 deals with Dn(2, 4, 1, 3), and section 6.4 focuses on Dn(1, 3, 2, 4). Sec-
tion 6.5 deals with Dn(2, 1, 4, 3). Sections 6.6, 6.7, and 6.8 are concerned with
Dn(1, 4, 2, 3),Dn(1, 2, 4, 3), and Dn(1, 4, 3, 2) respectively.

We also have the following lemma to assist our computations.
Let π ∈ Sn and π′ be the list obtained by deleting n from π.

Lemma 1. If [π, π] ∈ Dn(ρ), then [π′, π′] ∈ Dn−1(ρ)

Proof. (By contradiction) Suppose that [π, π] ∈ Dn(ρ) and [π′, π′] /∈ Dn−1(ρ).
Then [π′, π′] contains ρ. Note that inserting n anywhere into π′ does not change
the subsequence which reduces to ρ. Therefore [π, π] contains ρ.
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6.1 Dn(1, 3, 4, 2)

We first consider the slowest growing class of double lists, i.e. those which avoid
(1, 3, 4, 2).

Theorem 5.

|Dn(1, 3, 4, 2)| =


|Dn|, n < 4

12, n = 4

15, n > 4

Proof. (By induction) Define 15 double lists of length n, labeled L1, L2, · · · , L15,
in the following manner:

L1(n) = (n, (n− 1), · · · , 2, 1, n, (n− 1), · · · , 2, 1)

L2(n) = (n, (n− 1), · · · , 3, 1, 2, n, (n− 1), · · · , 3, 1, 2)

L3(n) = (n, (n− 1), · · · , 2, 3, 1, n, (n− 1), · · · , 2, 3, 1)

L4(n) = ((n− 1), · · · , 2, n, 1, (n− 1), · · · , 2, n, 1)

L5(n) = ((n− 1), · · · , 1, n, (n− 1), · · · , 1, n)

L6(n) = ((n− 1), · · · , 3, 1, 2, n, (n− 1), · · · , 3, 1, 2, n)

L7(n) = ((n− 1), · · · , 2, 3, n, 1, (n− 1), · · · , 2, 3, n, 1)

L8(n) = ((n− 1), · · · , 2, 3, 1, n, (n− 1), · · · , 2, 3, 1, n)

L9(n) = ((n− 2), · · · , n, (n− 1), 1, (n− 2), · · · , n, (n− 1), 1)

L10(n) = ((n− 2), · · · , 2, n, 1, (n− 1), (n− 2), · · · , 2, n, 1, (n− 1))

L11(n) = ((n− 2), · · · , 1, n, (n− 1), (n− 2), · · · , 1, n, (n− 1))

L12(n) = ((n− 2), · · · , 1, 2, n, (n− 1), (n− 2), · · · , 1, 2, n, (n− 1))

L13(n) =

{
(2, 3, n, (n− 1), 1, 2, 3, n, (n− 1), 1); n = 5

((n− 2), · · · , 2, 3, n, (n− 1), 1, (n− 2), · · · , 2, 3, n, (n− 1), 1); n ≥ 6

L14(n) =

{
(2, 3, n, 1, (n− 1), 2, 3, n, 1, (n− 1)); n = 5

((n− 2), · · · , 2, 3, n, 1, (n− 1), (n− 2), · · · , 2, 3, n, 1, (n− 1)); n ≥ 6

L15(n) =

{
(2, 3, 1, n, (n− 1), 2, 3, 1, n, (n− 1)); n = 5

((n− 2), · · · , 2, 3, 1, n, (n− 1), (n− 2), · · · , 2, 3, 1, n, (n− 1)); n ≥ 6

Note that L1, L2, · · · , L15 ∈ Dn(1, 3, 4, 2).

Assume that for some number n ≥ 5, Dn(1, 3, 4, 2) = {Li(n) : 1 ≤ i ≤ 15}.
We now show that Dn+1(1, 3, 4, 2) = {Li(n+ 1)) : 1 ≤ i ≤ 15}.

By the lemma, lists in Dn+1(1, 3, 4, 2) can only be constructed from lists in
Dn(1, 3, 4, 2).

For L1(n), if we insert (n + 1) before n, before the 1, or after the 1, the
new double list still avoids (1, 3, 4, 2) as the results have the forms L1(n + 1),
L4(n + 1) and L5(n + 1). However, if we insert (n + 1) anywhere else, the
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resulting double list will contain the pattern (1, 3, 4, 2) using 1, n, (n+ 1), and
2.

For L2(n), if we insert (n + 1) before n or after 2, the new double list still
avoids (1, 3, 4, 2). The results have the forms L2(n + 1) and L6(n + 1). Again,
if we insert n+ 1 anywhere else, it will contain the pattern (1, 3, 4, 2) using the
digits 1, n, (n+ 1), and 2.

For L3(n), if we insert (n+ 1) before n, before 1, or after 1, the new double
list still avoids (1, 3, 4, 2). The results have the forms L3(n+ 1), L7(n+ 1) and
L8(n+1). By inserting n+1 anywhere else, it will contain the pattern (1, 3, 4, 2)
using the digits 1, n, (n+ 1), and 3.

For L4(n), we can only insert (n + 1) before n to avoid (1, 3, 4, 2)and the
result is L9(n+1). By inserting (n+1) anywhere else, it will contain the pattern
(1, 3, 4, 2) using the digits (n− 2), n, (n+ 1), and (n− 1).

For L5(n), we can only insert (n+ 1) before 1 or after 1 to avoid (1, 3, 4, 2).
The results are L10(n+ 1) and L11(n+ 1).

For L6(n), we can only insert (n + 1) before n to avoid (1, 3, 4, 2) and the
result is L12(n+ 1).

For L7(n), we can only insert (n + 1) before n to avoid (1, 3, 4, 2) and the
result is L13(n+ 1).

For L8(n), we can only insert (n+ 1) before 1 or after 1 to avoid (1, 3, 4, 2).
The results are L14(n+ 1) and L15(n+ 1).

For Li(n) where 9 ≤ i ≤ 15, no matter where we insert (n+ 1), the resulting
double list will always contain (1, 3, 4, 2).

As these are the only viable constructions for elements of Dn+1(1, 3, 4, 2)
formed from lists in Dn(1, 3, 4, 2), we may conclude that |Dn+1(1, 3, 4, 2)| = 15
and

Dn+1(1, 3, 4, 2) = {Li(n+ 1)) : 1 ≤ i ≤ 15}.

Note that D5(1, 3, 4, 2) = {Li(5) : 1 ≤ i ≤ 15}. Therefore, |Dn(1, 3, 4, 2)| =
15 ∀ n ≥ 5.

Corollary 4. We use the properties of rectangles to extend our result. The
reverse of (1, 3, 4, 2) is (2, 4, 3, 1). The complement of (2, 4, 3, 1) is (3, 1, 2, 4)
whose own reverse is (4, 2, 1, 3). Thus,

|Dn(1, 3, 4, 2)| = |Dn(2, 4, 3, 1)| = |Dn(3, 1, 2, 4)| =

|Dn(4, 2, 1, 3)| =


|D − n|, n < 4

12, n = 4

15, n > 4

.

Surprisingly |Dn(1, 3, 4, 2)| and its equivalences are unique among length 4
patterns in having a constant size. This is a stark contrast to the next class,
|Dn(1, 2, 3, 4)|, which grows exponentially.
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6.2 Dn(1, 2, 3, 4)

We prove three lemmas before looking at the size of Dn(1, 2, 3, 4).

Lemma 2. ∀ [π, π] ∈ Dn(1, 2, 3, 4), if πk = n, then

π1 > π2 > π3 > · · · > πk−1.

Proof. By cases for the value of k.

1. Case: k < 3
Vacuously true as there are not 2 numbers preceding n to be in an in-
creasing sequence.

2. Case: k = n
Let π′ be the sequence obtained by removing n from π. Then π′ and [π′, π′]
must avoid both (1, 2, 3) and (1, 2, 3, 4). Thus [π′, π′] ∈ Dn(1, 2, 3). All
lists in Dn(1, 2, 3) are constructed with a strictly decreasing list. Therefore
π′ ∈ Sn−1(1, 2) and the lemma holds.

3. Case: 3 ≤ k ≤ (n− 1)
Let πa, πb, and πc ∈ π where πa < πb < πc < n and at least 2 of the three
elements πa, πb, or πc appear before n. Then red(πa, πb, πc, n) = (1, 2, 3, 4).
For simplicity of notation, any other numbers in π are omitted. Note that
case 2 implies that n cannot be the final value for any permutation except
(πc, πb, πa).

Assume for the sake of contradiction that there exists an increasing pair
of digits before n. The three representative permutations of this form are
(πa, πb, n, πc), (πa, πc, n, πb), and (πb, πc, n, πa). The double lists for these
permutations are (πa, πb, n, πc, πa, πb, n, πc), (πa, πc, n, πb, πa, πc, n, πb), and
(πb, πc, n, πa, πb, πc, n, πa). These all contain (πa, πb, πc, n) which reduces
to (1, 2, 3, 4). Thus there cannot be an increasing pair of digits preceding
n and the lemma holds for 3 ≤ k ≤ (n− 1).

Thus the lemma holds for all possible values of k.

Lemma 3. ∀ [π, π] ∈ Dn(1, 2, 3, 4), if πk = 1, then

πk+1 > πk+2 > · · · > πn−1 > πn.

Proof. By cases for the value of k.

1. Case: n− 2 < k
Vacuously true as there are no 2 numbers following 1 to be in an increasing
order.

2. Case: k = 1
Let π′ be the sequence obtained by removing 1 from π and reducing the
resulting list. Then π′ and [π′, π′] must avoid both (1, 2, 3) and (1, 2, 3, 4).
Thus [π′, π′] ∈ Dn(1, 2, 3). All lists in Dn(1, 2, 3) are constructed with a
strictly decreasing list. Therefore π′ ∈ Sn−1(1, 2) and the lemma holds.
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3. Case: 2 ≤ k ≤ n− 2
Let πa, πb, and πc ∈ π such that 1 < πa < πb < πc and 2 or more of
the elements follow 1. Then red(1, πa, πb, πc) = (1, 2, 3, 4). Note that case
2 implies that all three numbers πa, πb, and πc cannot follow 1 in any
permutation except (πc, πb, πa).
Assume for the sake of contradiction that there exists an increasing pair of
digits following 1. The three representative permutations of this form are
(πc, 1, πa, πb), (πb, 1, πa, πc), and (πa, 1, πb, πc). The double lists for these
permutations are (πc, 1, πa, πb, πc, 1, πa, πb), (πb, 1, πa, πc, πb, 1, πa, πc), and
(πa, 1, πb, πc, πa, 1, πb, πc). These all contain (1, πa, πb, πc) which reduces
to (1, 2, 3, 4). Thus there cannot be an increasing pair of digits following
1 and the lemma holds for 2 ≤ k ≤ n− 2.

Therefore the lemma holds for all possible values of k.

Lemma 4. If [π, π] ∈ Dn(1, 2, 3, 4), then π ∈ Sn(1, 2, 3) ∀ n ≥ 4.

Proof. (By contradiction) Suppose there exists [π, π] ∈ Dn(1, 2, 3, 4) such that
π /∈ Sn(1, 2, 3) for n ≥ 4. Let πa, πb, and πc be three numbers in π such that a <
b < c and πa < πb < πc. As [π, π] avoids (1, 2, 3, 4), π cannot contain a number
smaller than πa nor a number larger than πc. For some number e such that πa <
e < πb all possible permutations (e, πa, πb, πc), (πa, e, πb, πc), (πa, πb, e, πc), and
(πa, πb, πc, e) result in a double list containing the sequence (πa, e, πb, πc) which
reduces to (1, 2, 3, 4). A similar result occurs for some number f where πb < f <
πc and the possible permutations (f, πa, πb, πc), (πa, f, πb, πc), (πa, πb, f, πc), and
(πa, πb, πc, f).
Thus such a permutation π cannot exist.

We now move on to the main result of this section.

Theorem 6. |Dn(1, 2, 3, 4)| =

{
|Dn|, n < 4

2n − n, n ≥ 4

Proof. Let [π, π] ∈ Dn(1, 2, 3, 4) and π = (A,n,B, 1, C), where A, B, and C are
independent lists formed from the numbers 2 through (n− 1) and neither A, B,
nor C are equal to the empty list ε.

Then [π, π] contains the sub-sequence (1, c, a, n) where a ∈ A and c ∈ C.
Thus no number in A can be greater than any number in C. i.e., a < c ∀
a ∈ A, c ∈ C.

When 1 precedes n in π, Lemmas 2 and 3 imply that 1 must the be number
immediately preceding n. This, combined with the last statement, implies that
there is only one permutation of π such that [π, π] ∈ Dn(1, 2, 3, 4) for all possible
n− 1 ways to place 1 before n. Likewise there is one permutation of π when 1
immediately follows n.

The list [π, π] also contains the subsequence (1, a, b, c) where b ∈ B. As
a < c, we cannot have a < b < c. Thus b < a ∀ a ∈ A or b > c ∀ c ∈ C.
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Suppose b1, b2 ∈ B where b1 < b2 < a ∀ a ∈ A. Then [π, π] contains the
sub-sequence (1, b1, b2, c) which reduces to (1, 2, 3, 4). Thus all numbers in B
smaller than elements in A must avoid (1, 2).

Likewise if b1, b2 ∈ B where c < b1 < b2 ∀ c ∈ C. Then [π, π] contains
the subsequence (1, a, b1, b2) which reduces to (1, 2, 3, 4).Thus all numbers in B
greater than C must avoid (1, 2).

Let B consist of numbers E = {e1, e2, · · · , ek} and F = {f1, f2, · · · , f`}
where e1 > e2 > · · · > ek > c ∀ c ∈ C and a > f1 > f2 > · · · > f` ∀ a ∈ A.
Then the numbers in E must be listed in descending order and the numbers in
F must be listed in descending order. Then of the total number of permutations
of B is equal to the different distributions of the elements of E and F ,

(
`+k
`

)
.

Let πi = n and πj = 1 where j > 1 and i < n. Then we may sum the total
number of permutations in this form of π where [π, π] ∈ Dn(1, 2, 3, 4) with

n−2∑
i=2

n−1∑
j=i+1

j−i−1∑
k=0

(
j − i− 1

k

)

where
∑j−i−1

k=0

(
j−i−1

k

)
counts the ways to arrange the remaining n− 2 numbers

for any choice of i and j. Note that the placement of 1 immediately following n
results in

(
0
0

)
= 1 which follows our conclusion earlier.

Suppose that A contains no elements. Then π = (n,B, 1, C). Let b1 and
b2 be 2 numbers in B such that b1 < b2 < c ∀ c ∈ C. Then [π, π] contains
the sequence (1, b1, b2, c) which reduces to (1, 2, 3, 4). Likewise if c < b1 < b2
∀c ∈ C, then [π, π] contains the sequence (1, c, b1, b2). Thus the set of numbers in
B which are greater than the numbers in C must avoid (1, 2) and the numbers
in B which are smaller than the numbers in C must avoid (1, 2). Note that
the different permutations of these 2 sequences can be calculated in the same
manner as before. So our expression now allows i (the placement of n) to begin
at the value 1. Therefore the number of double lists such that π1 = n is
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n−2∑
i=1

n−1∑
j=i+1

j−i−1∑
k=0

(
j − i− 1

k

)
=

n−2∑
i=1

n−1∑
j=i+1

2j−i−1

=

n−2∑
i=1

n−1∑
j=i+1

2j

2i+1

=

n−2∑
i=1

1

2i+1

n−1∑
j=i+1

2j

=

n−2∑
i=1

1

2i+1
(2n − 2i+1)

=

n−2∑
i=1

2n

2i+1
− 1

=

n−2∑
i=1

2n−1
1

2i
−

n−2∑
i=1

1

= 2n−1
n−2∑
i=1

1

2i
− (n− 2)

= 2n−1(1− 22−n)− n+ 2

= (2n−1 − 2)− n+ 2

= 2n−1 − n.

Similar logic applies if we consider the case where C contains no elements and
π = (A,n,B, 1). Let b1 and b2 be 2 numbers in B such that b1 < b2 < a ∀a ∈
A. Then [π, π] contains the sequence (b1, b2, a, n) which reduces to (1, 2, 3, 4).
Likewise if a < b1 < b2 ∀a ∈ A, then [π, π] contains the sequence (1, a, b1, b2).
Thus the set of numbers in B which are greater than the numbers in A must
avoid (1, 2) and the numbers in B which are smaller than the numbers in A
must avoid (1, 2). This matches with our calculations for when A contains no
element. So we now consider separately when j = n and i may continue until
the position immediately before j, that is i may continue through i = n − 1.
The number of double lists of this form is
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n−1∑
i=2

n−i−1∑
k=0

(
n− i− 1

k

)
=

n−1∑
i=2

2n−i−1

=

n−1∑
i=2

2n−1

2i

= 2n−1
n−1∑
i=2

1

2i

= 2n−1
(

1

2
− 21−n

)
.

The only remaining uncounted possibilities are when π1 = n and πn = 1. In
this instance we construct a list π′ by removing n and 1 from π and reducing the
resulting list. Note that π′ must avoid (1, 2, 3) and [π′, π′] must avoid (1, 2, 3, 4).
Lemma 4 tells us that [π′, π′] avoiding (1, 2, 3, 4) ensures that π′ avoids (1, 2, 3).
The total possible permutations are equal to |Dn−2(1, 2, 3, 4)|.

We now combine the four separate cases to create a recurrence formula for
|Dn(1, 2, 3, 4)|.

|Dn(1, 2, 3, 4)| = (n− 1) + (2n−1 − n) + (2n−1(
1

2
− 21−n)) + |Dn−2(1, 2, 3, 4)|

= 2n−1
(

3

2

)
− 21−n − 1 + |Dn−2(1, 2, 3, 4)|

= 3 · 2n−2 − 2 + |Dn−2(1, 2, 3, 4)|

Note that |D4(1, 2, 3, 4)| = 12 = 24−4 and |D5(1, 2, 3, 4)| = 27 = 25−5. This
suggests |Dn(1, 2, 3, 4)| has the form 2n − n, which we prove is correct through
a proof by induction.

Suppose that |Dk(1, 2, 3, 4)| = 2k − k ∀ 4 ≤ k < n. Then,

|Dn(1, 2, 3, 4)| = 3 · 2n−2 − 2 + |Dn−2(1, 2, 3, 4)|
= 3 · 2n−2 − 2 + (2n−2 − (n− 2))

= 3 · 2n−2 + 2n−2 − n
= 4 · 2n−2 − n
= 2n − n.

Corollary 5. We use the properties of rectangles to extend our result. The
reverse of (1, 2, 3, 4) is (4, 3, 2, 1). Thus,

|Dn(1, 2, 3, 4)| = |Dn(4, 3, 2, 1)| =

{
|Dn|, n < 4

2n − n, n ≥ 4
.
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Next, we consider another set, Dn(2, 4, 1, 3) which grows exponentially, but
it is also interesting because of the appearance of a familiar sequence, the Lucas
numbers.

6.3 Dn(2, 4, 1, 3)

We will use the following lemma in the theorem to show that |Dn(2, 4, 1, 3)| has
a recurrence formula.

Lemma 5.
∑n

k=0

(
n−k−1

k

)
+
∑n−1

k=0

(
n−k−2

k

)
=
∑n+1

k=0

(
n−k
k

)
Proof.

n∑
k=0

(
n− k − 1

k

)
+

n−1∑
k=0

(
n− k − 2

k

)
=

[(
n− 1

0

)
+

(
n− 2

1

)
+

(
n− 3

2

)
+ · · ·+

(
0

n− 1

)
+

(
−1

n

)]
+

[(
n− 2

0

)
+

(
n− 3

1

)
+

(
n− 4

2

)
+ · · ·+

(
0

n

)
+

(
−1

n− 1

)]
=

(
n− 1

0

)
+

(
n− 1

1

)
+

(
n− 2

2

)
+ · · ·+

(
1

n− 1

)
+

(
0

n

)
+

(
−1

n− 1

)
=

n∑
k=1

(
n− k
k

)
+

(
n− 1

0

)
+

(
−1

n− 1

)
(
n− 1

0

)
= 1 =

(
n

0

)
and

(
−1

n− 1

)
= 0 =

(
−1

n+ 1

)
=

(
n− (n+ 1)

n+ 1

)

⇒
n∑

k=0

(
n− k − 1

k

)
+

n−1∑
k=0

(
n− k − 2

k

)
=

n+1∑
k=0

(
n− k
k

)

Theorem 7. |Dn(2, 4, 1, 3)| =


|Dn|, n < 4

12, n = 4

Ln+2, n > 4

Where Ln is the nth Lucas number.

Proof. Let [π, π] ∈ Dn(2, 4, 1, 3) for n ≥ 7 and A, B, and C be independent lists
comprised of the numbers n− 1 through 2.

We first consider the cases where π = (A, 1, B, n, C).
Suppose B contains 2 or more elements b1 and b2. Without loss of generality,

let b1 < b2. Then [π, π] contains the subsequence (b1, n, 1, b2) which reduces to
(2, 4, 1, 3). Thus 0 ≤ |B| ≤ 1.

Suppose there exists some number c ∈ C such that c > b. Then [π, π] con-
tains the subsequence (b, n, 1, c) which reduces to (2, 4, 1, 3). Similarly, suppose

12



there exists some number a ∈ A such that a < b. Then [π, π] contains the sub-
sequence (a, n, 1, b) which reduces to (2, 4, 1, 3). Thus c < b < a ∀ c ∈ C, a ∈ A.

Suppose that neither A nor C are equal to the empty list ε. Then the pigeon
hole principle implies that |A| ≥ 2 or |C| ≥ 2. Let A contain the elements a1
and a2 where a1 < a2. Then [π, π] contains the subsequence (a1, n, c, a2) which
reduces to (2, 4, 1, 3). Similarly let C contain the elements c1 and c2 where
c1 < c2. Then [π, π] contains the subsequence (c1, a1, 1, c2) which reduces to
(2, 4, 1, 3). Thus either A or C must contain no elements.

The argument for either case is, essentially, the same. First, we let A contain
no elements. Since b > c ∀ c ∈ C, b = n− 1, and as n ≥ 7, |C| ≥ 4
Suppose for some ci ∈ C, a number cj ≤ ci − 2 precedes ci. Let cm ∈ C such
that ci < cm < cj . Then [π, π] contains the subsequence (cj , ci, 1, cm) which
reduces to (2, 4, 1, 3). Thus for any ci ∈ C all numbers less than or equal to
ci − 2 must appear after ci. Observe that this implies that the only number in
C smaller than ci which can precede ci is ci − 1.

We construct permutations of C given this restriction by beginning with the
list C = (n−2, n−3, · · · , 4, 3, 2). We permute this list by choosing the numbers
c1, c2, · · · from the set of n − 4 numbers {n − 3, · · · , 4, 3, 2} and rearrange the
elements in C so that c1 immediately precedes c1 + 1, c2 immediately precedes
c2 +1, etc. Note that if we choose 2 consecutive elements, say c1 and c1 +1 then
the resulting permutation of C has the subsequence (c1, c1 + 1, c1 + 2) which
violates the restriction on permutations of C. To choose k nonadjacent elements
from a list of length n we use the formula

(
n−k+1

k

)
. Thus the number of possible

permutations of C is
n−4∑
k=0

(
(n− 4)− k + 1

k

)

=

n−4∑
k=0

(
n− k − 3

k

)
.

Next we consider when C contains no elements. Since a > b ∀ a ∈ A, b = 2,
and as n ≥ 7, |A| ≥ 4.
The restriction on permutations of A are the same as those for permutations of
C. The set up differs in that we begin with the list A = (n−1, n−2, · · · , 4, 3) and
are choosing numbers to rearrange from the set of n−4 numbers {n−2, · · · , 4, 3}.
Thus the total number of permutations of A is also

n−4∑
k=0

(
n− k − 3

k

)
.

Note that none of the arguments for restrictions on A or C made use of the
existence of B. Thus, we may count the possible permutations of A and C when
π = (A, 1, n) or π = (1, n, C) in a similar way. In these 2 cases, we are choosing
from a set of numbers of size n− 3. Thus the number of possible permutations
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for either A or C is
n−3∑
k=0

(
(n− 3)− k + 1

k

)

=

n−3∑
k=0

(
n− k − 2

k

)
.

Therefore the total number of double lists in Dn(2, 4, 1, 3) where 1 precedes
n is

2 ·
n−4∑
k=0

(
n− k − 3

k

)
+ 2 ·

n−3∑
k=0

(
n− k − 2

k

)
.

We now consider the cases where π = (A,n,B, 1, C).
Suppose C contains 2 or more elements c1 and c2. Without loss of generality,

let c1 < c2. Then [π, π] contains the subsequence (c1, n, 1, c2) which reduces to
(2, 4, 1, 3). Thus 0 ≤ |C| ≤ 1. Additionally if we suppose A contains 2 or more
elements a1 and a2 and, without loss of generality, a1 < a2. Then [π, π] contains
the subsequence (a1, n, 1, a2) which reduces to (2, 4, 1, 3). Thus 0 ≤ |A| ≤ 1.
This implies that π cannot have the form (A,n, 1, C) for n > 4.

Suppose there exists some number c ∈ C such that c > b for some b ∈
B. Then [π, π] contains the subsequence (b, n, 1, c) which reduces to (2, 4, 1, 3).
Similarly, suppose there exists some number a ∈ A such that a < b. Then [π, π]
contains the subsequence (a, n, 1, b) which reduces to (2, 4, 1, 3). Thus c < b < a
∀ c ∈ C, a ∈ A. This implies that π = (n− 1, n,B, 1, 2)

Suppose for some bi ∈ B, a number bj ≤ bi−2 precedes bi. Let bm ∈ B such
that bi < bm < bj . Then [π, π] contains the subsequence (bj , bi, 1, bm) which
reduces to (2, 4, 1, 3). Thus for any bi ∈ B all numbers less than or equal to
bi − 2 must appear after bi. Again, this is the similar pattern as in all of the
previous cases studied. Thus the total number of valid permutations of B is

n−5∑
k=0

(
(n− 5)− k + 1

k

)

=

n−5∑
k=0

(
n− k − 4

k

)
.

Note that the basis for this result does not rely on the existence of an element
in either A or C. Thus we can count the possible permutations of π where either
A or C equals ε with

n−4∑
k=0

(
(n− 4)− k + 1

k

)
+

n−4∑
k=0

(
(n− 4)− k + 1

k

)

= 2 ·
n−4∑
k=0

(
n− k − 3

k

)
.
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And, we may count the possible permutations of π where both A and C
equal ε with

n−3∑
k=0

(
(n− 3)− k + 1

k

)

=

n−3∑
k=0

(
n− k − 2

k

)
.

Thus the total number of double lists in Dn(2, 4, 1, 3) is

3 ·
n−3∑
k=0

(
n− k − 2

k

)
+ 4 ·

n−4∑
k=0

(
n− k − 3

k

)
+

n−5∑
k=0

(
n− k − 4

k

)
,

which also holds for n = 6 and n = 5. We use this formula to show the recur-
rence formula |Dn(2, 4, 1, 3)| = |Dn−1(2, 4, 1, 3)|+ |Dn−2(2, 4, 1, 3)|.

Let n ≥ 5. Then,

|Dn(2, 4, 1, 3)|+ |Dn+1(2, 4, 1, 3)|

= 3 ·
n−3∑
k=0

(
n− k − 2

k

)
+ 4 ·

n−4∑
k=0

(
n− k − 3

k

)
+

n−5∑
k=0

(
n− k − 4

k

)

+ 3 ·
n−2∑
k=0

(
n− k − 1

k

)
+ 4 ·

n−3∑
k=0

(
n− k − 2

k

)
+

n−4∑
k=0

(
n− k − 3

k

)

= 3 ·
n−1∑
k=0

(
n− k
k

)
+ 4 ·

n−2∑
k=0

(
n− k − 1

k

)
+

n−3∑
k=0

(
n− k − 2

k

)
= |Dn+2(2, 4, 1, 3)|.

Note that |D5(2, 4, 1, 3)| = 18 = L7 and |D6(2, 4, 1, 3)| = 29 = L8. Thus
|Dn(2, 4, 1, 3)| = Ln+2 ∀ n ≥ 5 where Ln is the nth Lucas number.

Corollary 6. As (3, 1, 4, 2) is the reverse of (2, 4, 1, 3) we can apply the prop-
erties of rectangles to create the equality

|Dn(2, 4, 1, 3)| = |Dn(3, 1, 4, 2)| =


|Dn|, n < 4

12, n = 4

Ln+2, n > 4

.

Where Ln is the nth Lucas number.

The next equivalence class for length 4 patterns centers around the infamous
(1, 3, 2, 4). Dn(1, 3, 2, 4) shares an exponential growth rate with Dn(1, 2, 3, 4)
and Dn(2, 4, 1, 3) by following a recursive formula once the length n is sufficiently
large.
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6.4 Dn(1, 3, 2, 4)

While n < 7, double lists which avoid (1, 3, 2, 4) are able to take on forms
impossible at larger lengths based on the position of n and 1 within the list.
We first show that these forms are impossible once n ≥ 7 and use multiple
bijections among the remaining forms to show that a recurrence formula exists
for |Dn(1, 3, 2, 4)| where n ≥ 10.

Theorem 8.

|Dn(1, 3, 2, 4)| =



|Dn|, n < 4

12, n = 4

21, n = 5

38, n = 6

69, n = 7

182, n = 8

232, n = 9

|Dn−1(1, 3, 2, 4)|+ |Dn−2(1, 3, 2, 4)|+ |Dn−3(1, 3, 2, 4)| n ≥ 10

Proof. Assume that [π, π] ∈ Dn(1, 3, 2, 4) and π has the form π = (A, 1, B, n, C).
If |B| ≥ 2, then without loss of generality there exists bi, bj ∈ B such

that bi > bj . Then π contains the subsequence (1, bi, bj , n) which reduces to
(1, 3, 2, 4). Thus |B| < 2.

If |B| = 1, then [π, π] = (A, 1, b, n, C,A, 1, b, n, C) and contains the subse-
quence (1, b, C,A, b, n) where (b, C,A, b) must be non-decreasing to avoid (1, 3, 2, 4).
As this can only occur when A and C are both empty, n = 3.

If |B| = 0, then [π, π] = (A, 1, n, C,A, 1, n, C) and contains the subsequence
(1, C,A, n) where (C,A) must be non-decreasing to avoid (1, 3, 2, 4). Thus c > a
∀ c ∈ C, a ∈ A. [A,A] must avoid (1, 3, 2), previous results imply |A| ≤ 3.
Similarly [C,C] must avoid (2, 1, 3) which implies |C| ≤ 3.

When |A| = 3, A reduces to (2, 3, 1). Then red(A, 1, A, 1, n) = (1, 5, 4, 2, 3, 1, 5, 4, 2, 3).
Thus [π, π] contains (1, 3, 2, 4) as underlined which implies that |A| < 3. Simi-
larly when |C| = 3, C reduces to (3, 1, 2). Then red(1, n, C, 1, n, C) = (3, 4, 2, 1, 5, 3, 4, 2, 1, 5).
Thus [π, π] contains (1, 3, 2, 4) as underlined which implies that |C| < 3. Thus
n ≤ 6 and there are no lists of this form for n ≥ 7.

Assume that [π, π] ∈ Dn(1, 3, 2, 4) and n ≥ 7. We now study the remaining
possible lists where n precedes 1 within π. That is π = (A,n,B, 1, C).

Suppose ai, aj ∈ A where i < j, such that ai > aj . Then [π, π] contains the
subsequence (1, ai, aj , n) which reduces to (1, 3, 2, 4). Thus A avoids (2, 1).

Since [π, π] contains the sequence (A,A, n), [A,A] must avoid (1, 3, 2). As
we have previously shown no such double lists exist of length greater than three,
|A| ≤ 3.

If |A| = 3, then red(a1, a2, a3) = (2, 3, 1). Then red(A,n, 1, A, n, 1) =
(3, 4, 2, 5, 1, 3, 4, 2, 5, 1), which contains (1, 3, 2, 4) as underlined. Thus |A| ≤ 2.

Let |A| = 2 and suppose a1 ≤ (n−3). As A must avoid (2, 1), a2 = a1 +1 or
a2 ≥ a1 + 2 in which case there exists b ∈ B such that a1 < b < a2. Then [π, π]
contains the sequence (a1, b, a2, n) or (a1, a2, b, n) respectively, both of which
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reduce to (1, 3, 2, 4). Thus a1 > n− 3, and by accounting for avoidance of (2, 1)
we make the following statement: |A| = 2 implies A = (n− 2, n− 1).

Let |A| = 1 and suppose a ≤ n − 4, then {n − 1, n − 2, n − 3} ⊆ B. If
n − 1 precedes n − 2 or n − 3, then [π, π] contains (n − 4, n − 1, n − 2, n) or
(n− 4, n− 1, n− 3, n). Both of which reduce to (1, 3, 2, 4). Else [π, π] contains
(n − 4, n − 2, n − 3, n − 1) which also reduces to (1, 3, 2, 4). Therefore |A| = 1
implies a > n− 4.

Let ρ = (n− 2, ρ′) ∈ Sn−2 and π = (n− 2, n− 1, n, ρ′) ∈ Sn. We now show
that [ρ, ρ] ∈ Dn−2(1, 3, 2, 4) if and only if [π, π] ∈ Dn(1, 3, 2, 4).

Suppose [ρ, ρ] ∈ Dn−2(1, 3, 2, 4). Then [ρ′, ρ′] ∈ Dn−3(1, 3, 2, 4) and ρ′ avoids
1, 3, 2. Note that inserting (n− 1, n) into ρ to create π does not violate a valid
construction of the subsequence preceding n (i.e. the subsequence A). Thus
[π, π] ∈ Dn(1, 3, 2, 4).

We prove the converse by assuming that [ρ, ρ] /∈ Dn−2. Then, as [π, π]
contains [ρ, ρ], [π, π] /∈ Dn(1, 3, 2, 4). Thus there exists a bijection between
these 2 sets of lists in Dn−2(1, 3, 2, 4) and Dn(1, 3, 2, 4).

Let ρ = (a, n, ρ′) ∈ Sn where a ∈ N and π = (n, a, ρ′) ∈ Sn. We want to
show that [ρ, ρ] ∈ Dn(1, 3, 2, 4) if and only if [π, π] ∈ Dn(1, 3, 2, 4).

Suppose [ρ, ρ] ∈ Dn(1, 3, 2, 4). Then (a, ρ′, a, ρ′) avoids (1, 3, 2, 4) and (a, ρ′)
avoids (1, 3, 2). Then (n, a, ρ′, n, a, ρ′) avoids (1, 3, 2, 4). Thus [π, π] ∈ Dn(1, 3, 2, 4).

Now, suppose [π, π] ∈ Dn(1, 3, 2, 4). Then (a, ρ′, a, ρ′) avoids (1, 3, 2, 4)
and (a, ρ′) avoids (1, 3, 2). Thus (a, n, ρ′, a, n, ρ′) avoids (1, 3, 2, 4) and [ρ, ρ] ∈
Dn(1, 3, 2, 4). Therefore [ρ, ρ] ∈ Dn(1, 3, 2, 4) if and only if [π, π] ∈ Dn(1, 3, 2, 4),
and a bijection between the 2 sets exists.

Let π = (π1, π2, · · · , πn) and define the set

D∗n(1, 3, 2, 4) = {[π, π] ∈ Dn(1, 3, 2, 4)|π1 = n}.

The final bijection needed to enumerateDn(1, 3, 2, 4) is between the setsD∗n(1, 3, 2, 4)
and D∗n−1(1, 3, 2, 4)

⋃
D∗n−2(1, 3, 2, 4)

⋃
D∗n−3(1, 3, 2, 4).

Construct the set U from D∗n−1(1, 3, 2, 4)
⋃
D∗n−2(1, 3, 2, 4)

⋃
D∗n−3(1, 3, 2, 4)

by inserting (n− 2, n− 1) immediately after n− 3 for all [ρ, ρ] ∈ D∗n−3(1, 3, 2, 4)
and inserting (n − 1) immediately after n − 2 for all [ρ, ρ] ∈ D∗n−2(1, 3, 2, 4).
It has already been shown that inserting (n − 2, n − 1) will not cause [ρ, ρ]
to contain (1, 3, 2, 4). By a similar argument, it can be shown that inserting
(n − 1) also does not cause [ρ, ρ] to contain (1, 3, 2, 4). Thus σ ∈ U implies
σ ∈ Dn−1(1, 3, 2, 4). Note that this is an injective function between the 2 sets.
We now show [σ, σ] ∈ U if and only if (n, σ, n, σ) ∈ D∗n(1, 3, 2, 4).

Let π = (n, π′) and suppose [π, π] ∈ D∗n(1, 3, 2, 4). Then π′ ∈ Dn−1(1, 3, 2, 4)
and π2 ≥ n − 4. If π2 = n − 4, then n − 3, n − 2, and n − 1 must form a non-
decreasing list in π′. However, this implies [π, π] contains (n−4, n−2, n−3, n−1)
which reduces to (1, 3, 2, 4). Thus π2 > n− 4. Thus [π′, π′] ∈ U .

Note that for all σ where [σ, σ] ∈ D∗n(1, 3, 2, 4), the subsequence (σ2, σ3, · · · , σn)
must avoid (1, 3, 2) and the insertion of (n − 2, n − 1) or (n − 1) does not al-
ter this fact when constructing U . Let [σ, σ] ∈ U . The previous statements
show (σ2, · · · , σn) avoids (1, 3, 2), thus σ contains (1, 3, 2) only if there exists
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a subsequence (σ1, σi, σj), i < j where σ1 < σj < σi. This is impossible when
σ1 > n − 3 and the insertion of (n − 2, n − 1) when σ1 = n − 3 prevents this
from happening also. Thus [σ, σ] ∈ U implies σ ∈ Sn(1, 3, 2).

Let π = (n, σ) and suppose [σ, σ] ∈ U . Then [σ, σ] avoids (1, 3, 2, 4) and
σ avoids (1, 3, 2). Thus (n, σ, n, σ) avoids (1, 3, 2, 4) and [π, π] ∈ D∗n(1, 3, 2, 4).
Hence [σ, σ] ∈ U if and only if (n, σ, n, σ) ∈ D∗n(1, 3, 2, 4) and a bijection exists
between these 2 sets. This implies that there is a bijection between D∗n(1, 3, 2, 4)
and D∗n−1(1, 3, 2, 4)

⋃
D∗n−2(1, 3, 2, 4)

⋃
D∗n−3(1, 3, 2, 4) through U and that

|D∗n(1, 3, 2, 4)| = |D∗n−1(1, 3, 2, 4)|+ |D∗n−2(1, 3, 2, 4)|+ |D∗n−3(1, 3, 2, 4)|.

This accounts all possible lists within Dn(1, 3, 2, 4) where n ≥ 7. Note that

|Di(1, 3, 2, 4)| = 2(|D∗i−1(1, 3, 2, 4)|+ |D∗i−2(1, 3, 2, 4)|+ |D∗i−3(1, 3, 2, 4)|) + |D∗i−2(1, 3, 2, 4)|
⇒ |Di(1, 3, 2, 4)| = 2|D∗i (1, 3, 2, 4)|+ |D∗i−2(1, 3, 2, 4)|.

Now,

|Dn(1, 3, 2, 4)| = 2(|D∗n−1(1, 3, 2, 4)|+ |D∗n−2(1, 3, 2, 4)|+ |D∗n−3(1, 3, 2, 4)|) + |D∗n−2(1, 3, 2, 4)|
= 2|D∗n−1(1, 3, 2, 4)|+ 2|D∗n−2(1, 3, 2, 4)|+ 3|D∗n−3(1, 3, 2, 4)|

+ |D∗n−4(1, 3, 2, 4)|+ |D∗n−5(1, 3, 2, 4)|
= |Dn−1(1, 3, 2, 4)|+ |Dn−2(1, 3, 2, 4)|+ |Dn−3(1, 3, 2, 4)|.

Given that |D7(1, 3, 2, 4)| = 69, |D8(1, 3, 2, 4)| = 128, and |D9(1, 3, 2, 4)| = 232,
|Dn(1, 3, 2, 4)| = |Dn−1(1, 3, 2, 4)| + |Dn−2(1, 3, 2, 4)| + |Dn−3(1, 3, 2, 4)| for all
n ≥ 10.

Corollary 7. We use the properties of rectangles to extend our results for
(1, 3, 2, 4) to its reverse (4, 2, 3, 1). Thus,

|Dn(1, 3, 2, 4)| = |Dn(4, 2, 3, 1)| =



|Dn|, n < 4

12, n = 4

21, n = 5

38, n = 6

69, n = 7

182, n = 8

232, n = 9

|Dn−1(1, 3, 2, 4)|+ |Dn−2(1, 3, 2, 4)|+ |Dn−3(1, 3, 2, 4)| n ≥ 10

.

The growth rate for double lists has a wide range of possibilities, as is seen
in the linear growth of the next 2 patterns, (2, 1, 4, 3) and (1, 4, 2, 3).
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6.5 Dn(2, 1, 4, 3)

Theorem 9. |Dn(2, 1, 4, 3)| =


|Dn|, n < 4

12, n = 4

13, n = 5

2n+ 2, n ≥ 6

Proof. Let [π, π] ∈ Dn(2, 1, 4, 3) for n ≥ 6 and A, B, and C be independent lists
comprised of the numbers 2 through n− 1.

We first consider the cases where π = (A,n,B, 1, C).
Suppose B contains 2 or more elements b1 and b2. Let’s say that b1 < b2.

Then [π, π] contains the subsequence (b1, 1, n, b2) which reduces to (2, 1, 4, 3).
Thus |B| = 0 or |B| = 1.

Suppose there exists some number c ∈ C such that c > b. Then [π, π] con-
tains the subsequence (b, 1, n, c) which reduces to (2,1,4,3). Similarly, suppose
there exists some number a ∈ A such that a < b. Then [π, π] contains the sub-
sequence (a, 1, n, b) which reduces to (2,1,4,3). Thus c < b < a ∀ c ∈ C, a ∈ A.

Let’s look at (A,n,1,C).
Suppose that a < c where a ∈ A and c ∈ C. Then [π, π] contains the

subsequence (a, 1, n, c) which reduces to (2,1,4,3). Thus c < a ∀ c ∈ C, a ∈ A.
Suppose A contains 2 or more elements a1, a2, and a3. Let’s say that

a1 > a2 > a3. Suppose that a1 comes before a2. So the possible lists are
(a1, a2, a3, n,B, 1, C), (a1, a3, a2, n,B, 1, C), and (a3, a1, a2, n,B, 1, C). Then in
[π, π] each list contains the subsequence (a3, 1, a1, a2) which reduces to (2,1,4,3).
Therefore, we know that everything larger than a3 is in increasing order. Also,
let’s say that a3 is not the first element of A. So we get (a2, a3, a1, n,B, 1, C) or
(a2, a1, a3, n,B, 1, C). Then in [π, π] both contain the subsequence (a2, a3, n, a1)
which reduces to (2,1,4,3). So all of A is in increasing order for |A| ≥ 3. By a
similar argument, C is in increasing order.

Let’s say that |A| = 0 or |A| = 1. Then we have (n, 1, C) or (a, n, 1, C).
For (n, 1, C), we know that we have to start with n followed by 1 and C has
to be increasing. Therefore, there is only one way to create a list of this form.
For (a, n, 1, C), we know that n is in the second position and a > c ∀ c ∈ C so
a = (n− 1). There is exactly one list of this form.

Let’s say that |C| = 0 or |C| = 1. Then we have (A,n, 1) or (A,n, 1, c). For
(A,n, 1), we know that we have to end with 1 and n is in (n− 1) position, and
A has to be increasing. Therefore, there is only one way to create a list of this
form. For (A,n, 1, c), we know that 1 is in position (n − 1) and n in position
(n− 2). There is exactly one list of this form.

Let |A| = 2, a1 and a2 where a1 < a2. We have (a1, a2, n, 1, C), where n is
in position 3 followed by 1. We know that C has to be in increasing order. Then
the list still avoids (2,1,4,3). And same thing happens if a1 > a2. Therefore,
there are exactly 2 double lists of this form. Similarly, when |C| = 2, we have
(A,n, 1, c1, c2) where n is in position (n − 3). When c1 < c2 and c1 > c2, the
pattern still avoids (2,1,4,3). Again there are 2 double lists of this form.
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So far we have determined the number of double lists when n is in position
1, 2, 3, (n− 3), (n− 2), or (n− 1). When n is somewhere in between position
4 and position (n− 4), we have (n− 7) different lists since both A and C must
be increasing.

Finally, if we add everything up, we get [(n − 7) + 8] = (n + 1) lists of the
form (A,n,1,C).

Let’s look at (A,n,b,1,C).
Suppose A contains 2 or more elements a1 and a2. Let’s say that a1 > a2.

Then [π, π] contains the subsequence (b, 1, a1, a2) which reduces to (2,1,4,3).
Therefore, A has to be increasing. By similar argument C has to also be in-
creasing.

Since c < b < a ∀ c ∈ C and ∀ a ∈ A and since A and C must both be
increasing, as soon as we pick a position for n, there is exactly one way to fill in
the double list. There are (n− 2) possible positions for n, so there are (n− 2)
double lists of the form (A,n,b,1,C).

Let’s consider the cases where π = (A, 1, B, n, C).
Suppose C contains 2 or more elements c1 and c2. Let’s say that c1 < c2.

Then [π, π] contains the subsequence (c1, 1, n, c2) which reduces to (2,1,4,3).
Thus |C| = 0 or |C| = 1. Also, if we suppose A contains 2 or more elements a1
and a2, and say that a1 < a2. Then [π, π] contains the subsequence (a1, 1, n, a2)
which reduces to (2,1,4,3). Thus |A| = 0 or |A| = 1. This implies that π cannot
have the form A1nC for n > 4.

Suppose there exists some number c ∈ C such that c > b for some b ∈
B. Then [π, π] contains the subsequence (b, 1, n, c) which reduces to (2,1,4,3).
Similarly, suppose there exists some number a ∈ A such that a < b. Then [π, π]
contains the subsequence (a, 1, n, b) which reduces to (2,1,4,3). Thus c < b < a
∀ c ∈ C, a ∈ A.

Since |A| ≤ 1 and |C| ≤ 1 we have 4 cases. The cases are π = (n −
1, 1, B, n, 2), π = (n− 1, 1, B, n), π = (1, B, n, 2), and π = (1, B, n).

In the case where π = (n − 1, 1, B, n, 2), suppose B contains 2 or more
elements b1 and b2. Let’s say that b1 > b2. Then [π, π] contains (b2, 2, n, b1)
which reduces to (2,1,4,3). So there are no lists of this form for n ≥ 7.

In the other 3 cases, let B contain 2 or more elements b1 and b2 where b1 > b2.
Then [π, π] contains (b1, b2, n, a) which reduces to (2,1,4,3). Therefore, B has to
be increasing. For (A, 1, B, n, C), there are exactly 3 double list that form this
and they are (n− 1, 1, B, n), (1, B, n, 2), and (1, B, n), where |B| = 4 for n ≥ 7.

Adding everything up, we have (n+ 1) + (n− 2) + 3 = (2n+ 2).

Corollary 8. We use the properties of rectangles to extend our result. The
reverse of (2,1,4,3) is (3,4,2,1). Thus,

|Dn(2, 1, 4, 3)| = |Dn(3, 4, 2, 1)| =


|Dn|, n < 4

12, n = 4

13, n = 5

2n+ 2, n ≥ 6

.
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6.6 Dn(1, 4, 2, 3)

Theorem 10. |Dn(1, 4, 2, 3)| =



|Dn|, n < 4

12, n = 4

17, n = 5

23, n = 6

3n+ 6, n > 6

Proof. Let [π, π] ∈ Dn(1, 4, 2, 3) for n ≥ 7 and A, B, and C be independent lists
comprised of the numbers 2 through n− 1.

We first consider the cases where π = (A, 1, B, n, C).
Suppose that a < b where a ∈ A and b ∈ B. Then [π, π] contains the

subsequence (1, n, a, b) which reduces to (1, 4, 2, 3). Similarly, suppose there
exists some number c ∈ C such that a < c or b < c. Then [π, π] contains
the subsequence (1, n, a, c) or (1, n, b, c) which both reduce to (1, 4, 2, 3). Thus
a > b > c ∀ a ∈ A, b ∈ B, c ∈ C.

Suppose A contains 2 or more elements a1 and a2. Let’s say that a1 < a2.
Then [π, π] contains the subsequence (1, n, a1, a2) which reduces to (1, 4, 2, 3).
However, if a1 > a2 the list still avoids (1, 4, 2, 3). Therefore, A has to be in
decreasing order.

Suppose C contains 2 or more elements c1 and c2. Let’s say that c1 < c2.
Then [π, π] contains the subsequence (1, n, c1, c2) which reduces to (1, 4, 2, 3).
Thus |C| = 0 or |C| = 1. However, since we know that a > c then [π, π] contains
the subsequence (1, n, c, a) which reduces to (1, 4, 2, 3). Therefore, C has to be
the empty set.

Suppose B contains 2 or more elements b1 and b2. Let’s say that b1 < b2.
Then [π, π] contains the subsequence (1, n, b1, b2) which reduces to (1, 4, 2, 3).
However, if b1 > b2 the list still avoids (1, 4, 2, 3). Therefore, B has to be in
decreasing order. If |B| ≥ 3, then [π, π] contains the subsequence (1, b1, b3, b2)
which reduces to (1, 4, 2, 3). Therefore, |B| ≤ 2.

We know that A is in decreasing order, a > b for all a ∈ A and b ∈ B,
and |B| ≤ 2. Therefore, there are only 3 lists of this form: (A, 1, b1, b2, n),
(A, 1, b1, n), and (A, 1, n).

Let’s consider the cases where π = (A,n,B, 1, C).
Suppose B contains 2 or more elements b1 and b2. Let’s say that b1 < b2.

Then [π, π] contains the subsequence (1, n, b1, b2) which reduces to (1, 4, 2, 3).
However, if b1 > b2 the list still avoids (1, 4, 2, 3). Therefore, B has to be in
decreasing order.

Suppose C contains 2 or more elements c1 and c2. Let’s say that c1 < c2.
Then [π, π] contains the subsequence (1, n, c1, c2) which reduces to (1, 4, 2, 3).
However, if c1 > c2 the list still avoids (1, 4, 2, 3). Therefore, C has to be in
decreasing order. If |C| ≥ 3, where c1 > c2 > c3, then [π, π] contains the
subsequence (1, c1, c3, c2) which reduces to (1,4,2,3). Therefore, |C| ≤ 2. We
have the forms (A,n,B, 1, c1, c2), (A,n,B, 1, c), and (A,n,B, 1). We know that
B is decreasing and C is also decreasing.
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Suppose that b < c where b ∈ B and c ∈ C. Then [π, π] contains the
subsequence (1, n, b, c) which reduces to (1,4,2,3). Similarly, suppose there exists
some number a ∈ A, and |C| = 2 such that a < c. Then [π, π] contains the
subsequence (a, n, c2, c1) which reduces to (1, 4, 2, 3). Therefore, c < a and c < b
∀ c ∈ C.

If |A| = 1 and a ≤ n−3 then (a, n,B, 1, C) contains (a, n, n−2, n−1) which
reduces to (1, 4, 2, 3). So if |A| = 1 then either a = n− 1 or a = n− 2.

If |A| = 2 and a1 < a2 there are 3 cases: there exists b ∈ B where b > a2 >
a1, there exists b ∈ B where a2 > b > a1 or a1 > b ∀ b ∈ B. If b > a2 > a1, we
have (a1, n, a2, b) which reduces to (1, 4, 2, 3). If a2 > b > a1, we have (a, n, b, a2)
which reduces to (1, 4, 2, 3). So if |A| = 2 then either A = (n − 1, n − 2) or
A = (n− 2, n− 1).

Suppose A contains 3 or more elements a1, a2, and a3. Let’s say that
a1 < a2 < a3. Suppose that a2 comes before a3. So the possible lists are
(a1, a2, a3, n,B, 1, C), (a2, a1, a3, n,B, 1, C), and (a2, a3, a1, n,B, 1, C). Then in
[π, π] each list contains the subsequence (a1, n, a2, a3) which reduces to (1, 4, 2, 3).
Therefore, everything bigger than a1, which is the smallest element, has to be
in decreasing order. Now suppose a1 < a2 < a3 where a1 is in between a2 and
a3, so we have (a3, a1, a2, n,B, 1, C, a3, a1, a2, n,B, 1, C). Then (1, a3, a1, a2) re-
duces to (1, 4, 2, 3) so a1 must be first or last in A.

Suppose A contains 4 or more elements a1, a2, a3, and a4. Let’s say that a1 <
a2 < a3 < a4, and from the previous paragraph either A contains (a1, a4, a3, a2)
or A contains (a4, a3, a2, a1). In the first case, [π, π] contains the subsequence
(a1, a4, a2, a3) which reduces to (1, 4, 2, 3). Therefore, when |A| ≥ 4 then A has
to be in decreasing order.

When |A| = 0, we have the form (n,B, 1, C), where |C| ≤ 2. We know that
B has to be decreasing and b < c ∀ b ∈ B, c ∈ C, therefore, there are only 3
lists of this form.

When |A| = 1, we have the forms (n − 1, n,B, 1, C) or (n − 2, n,B, 1, C),
where |C| ≤ 2. We know B has to be decreasing, therefore, there are only 6
lists of this form.

When |A| = 2, we have the forms (n − 1, n − 2, n,B, 1, C) or (n − 2, n −
1, n,B, 1, C), where |C| ≤ 2. We know B has to be decreasing, therefore, there
are only 6 lists of this form.

When |A| = 3, we have the forms (n−1, n−2, n−3, n,B, 1, C) or (n−3, n−
1, n− 2, n,B, 1, C), where |C| ≤ 2. We know B has to be decreasing, therefore,
there are only 6 lists of this form.

When |A| = k where 4 ≤ k ≤ n − 4, we have seen that A, B, and C must
each be in decreasing order, and a > b > c for all a ∈ A, b ∈ B, and c ∈ C.
Since |C| ≤ 2, the number of lists where |A| = k is 3. Adding over all values
of 4 ≤ k ≤ n − 4, there are 3(n − 7) lists of the form (A,n,B, 1, C) where
4 ≤ |A| ≤ n− 4.

When |A| = n − 3, we have the form (A,n, b, 1) or (A,n, 1, c). A has to be
decreasing, therefore, there are only 2 lists of this form.

When |A| = n − 2, we have the form (A,n, 1). A has to be decreasing,
therefore, there is only 1 lists of this form.
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Adding everything up we have,

(3 + 3 + 6 + 6 + 6 + 3(n− 7) + 2 + 1) = (24 + 3n− 21 + 3) = 3n+ 6.

Corollary 9. We use the properties of rectangles to extend our result. The
reverse of (1, 4, 2, 3) is (3,2,4,1). The complement of (3,2,4,1) is (2,3,1,4) whose
own reverse is (4,1,3,2). Thus,

|Dn(1, 4, 2, 3)| = |Dn(3, 2, 4, 1)| = |Dn(2, 3, 1, 4)| =

|Dn(4, 1, 3, 2)| =



|Dn|, n < 4

12, n = 4

17, n = 5

23, n = 6

3n+ 6, n > 6

.

The final type of growth rate for double lists avoiding length 4 patterns is
quadratic growth as seen in both |Dn(1, 2, 4, 3)| and |Dn(1, 4, 3, 2)|.

6.7 Dn(1, 2, 4, 3)

Theorem 11. |Dn(1, 2, 4, 3)| =


|Dn|, n < 4

12, n = 4

19, n = 5
1
2n

2 + 5
2n− 8, n > 5

Proof. Let [π, π] ∈ Dn(1, 2, 4, 3) for n ≥ 6 and A, B, and C be independent lists
comprised of the numbers 2 through n− 1.

We first consider the cases where π = (A, 1, B, n, C).
Suppose B contains 2 or more elements b1 and b2. Let’s say that b1 < b2.

Then [π, π] contains the subsequence (1, b1, n, b2) which reduces to (1, 2, 4, 3).
Thus |B| = 0 or |B| = 1.

Suppose that a > b where a ∈ A and b ∈ B. Then [π, π] contains the
subsequence (1, b, n, a) which reduces to (1, 2, 4, 3). Similarly, suppose there
exists some number c ∈ C such that a < c or b < c. Then [π, π] contains
the subsequence (1, a, n, c) or (1, b, n, c) which both reduce to (1, 2, 4, 3). Thus
b > a > c ∀ a ∈ A, b ∈ B, c ∈ C.

Suppose A contains 2 or more elements a1, a2 and |B| = 1. Let’s say that
a1 < a2. Then [π, π] contains the subsequence (a1, a2, n, b) which reduces to
(1, 2, 4, 3). However, if a1 > a2 the list still avoids (1, 2, 4, 3). Therefore, A has
to be in decreasing order.

Suppose C contains 2 or more elements c1 and c2. Let’s say that c1 < c2.
Then [π, π] contains the subsequence (1, c1, n, c2) which reduces to (1, 2, 4, 3).
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Thus |C| = 0 or |C| = 1. However, since n ≥ 6, A has to have at least 2
elements in decreasing order. Then [π, π] contains the subsequence (1, c, a1, a2)
which reduces to (1, 2, 4, 3). Therefore, C has to be the empty set.

Let’s look at (A, 1, n).
Suppose A contains 3 or more elements a1, a2, and a3. Let’s say that a1 <

a2 < a3, where a3 is the largest element of A. Suppose that a1 comes before a2.
So the possible lists are (a1, a2, a3, 1, n), (a1, a3, a2, 1, n), and (a3, a1, a2, 1, n).
Then in [π, π] each list contains the subsequence (a1, a2, n, a3) which reduces to
(1, 2, 4, 3). Therefore, we know that everything smaller than a3 is in decreasing
order. Now, we know A looks like (n − 2), (n − 3), · · · , 2 with (n − 1) inserted
somewhere. There are (n − 2) places to insert (n − 1) in this list, so there are
(n− 2) lists of the form (A, 1, n).

Let’s look at (A, 1, b, n).
Suppose A contains 2 or more elements a1 and a2. Let’s say that a1 < a2.

Then [π, π] contains the subsequence (a1, a2, n, b) which reduces to (1, 2, 4, 3).
Here we know that A has to be decreasing. So we have the form (A, 1, n− 1, n)
and there is only one way to create a list of this form.

So there are (n− 2) + 1 = (n− 1) double lists where 1 precedes n.
Let’s consider the cases where π = (A,n,B, 1, C).
Suppose C contains 2 or more elements c1 and c2. Let’s say that c1 < c2.

Then [π, π] contains the subsequence (1, c1, n, c2) which reduces to (1, 2, 4, 3).
Thus |C| = 0 or |C| = 1.

Suppose that a < b where a ∈ A and b ∈ B. Then [π, π] contains the
subsequence (1, a, n, b) which reduces to (1, 2, 4, 3). Similarly, suppose there
exists some number c ∈ C such that c < b. Then [π, π] contains the subsequence
(1, c, n, b) which reduces to (1, 2, 4, 3). Let a < c where a ∈ A and b ∈ B. Then
[π, π] contains the subsequence (1, a, n, c) which reduces to (1, 2, 4, 3). Thus
b < c < a ∀ a ∈ A, b ∈ B.

Let’s look at (A,n,B, 1).
Suppose A contains 3 or more elements a1, a2, and a3. Let’s say that

a1 < a2 < a3. Suppose that a1 comes before a2. So the possible lists are
(a1, a2, a3, n,B, 1, C), (a1, a3, a2, n,B, 1, C), and (a3, a1, a2, B, 1, C). Then in
[π, π] each list contains the subsequence (a1, a2, n, a3) which reduces to (1, 2, 4, 3).
Therefore, we know that everything smaller than a3 is in decreasing order. Now,
we know A looks like (n−2), (n−3), · · · , 2 with (n−1) inserted somewhere. By
similar argument for B we know that everything smaller than b3 is in decreasing
order. In this case we know that B looks like (n−2), (n−3), · · · , 2 with (n−1)
inserted somewhere.

When |A| = 0 then |B| = (n − 2) and we have (n − 2) lists. When |A| = 1
then |B| = (n − 3) and we have (n − 3) lists. When |A| = 2 then π looks like
(n − 1, n − 2, n,B, 1) or (n − 2, n − 1, n,B, 1). Suppose B contains 2 or more
elements b1 and b2. Let’s say that b1 < b2. Then [π, π] contains the subsequence
(b1, b2, n−1, n−2) which reduces to (1, 2, 4, 3). So,(n−1, n−2, n,B, 1) contains
the pattern but (n − 2, n − 1, n,B, 1) avoids it. Therefore, we have the form
(n− 1, n− 2, n,B, 1), where B is decreasing and there is only one way to create
a list of this form. Let’s look at (n − 2, n − 1, n,B, 1). We have |B| = (n − 4)
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where B is decreasing except the largest element in B which is (n− 3) and we
have (n− 4) lists. There are (n− 4) + 1 = (n− 3) possible lists when |A| = 2.

Suppose a1 > a2, and B is not decreasing. Then there are b1 < b2 and we get
(b1, b2, a1, a2) which reduces to (1, 2, 4, 3). Therefore, if A has any 2 elements
in decreasing order then B must be decreasing. If |A| ≥ 3, then A must have 2
elements in decreasing order. So there are |A| = k ways to arrange A and one
way to arrange B for a total of k lists when |A| = k. Adding everything up we
get:

(n− 2) + (n− 3) + (n− 3) +

n−2∑
k=3

k =
1

2
n2 +

3

2
n− 10.

Let’s look at (A,n,B, 1, c).
Suppose B contains 2 or more elements b1 and b2. Let’s say that b1 < b2.

Then [π, π] contains the subsequence (b1, b2, n, c) which reduces to (1, 2, 4, 3).
Thus B has to be in decreasing order. Suppose A contains 2 or more elements a1
and a2. Let’s say that a1 > a2. Then [π, π] contains the subsequence (1, c, a1, a2)
which reduces to (1, 2, 4, 3). Also, let’s look at a1, a2, a3, and |B| = 2 for where
a1 < a2 < a3. Then [π, π] contains the subsequence (a1, a2, n, a3) which reduces
to (1, 2, 4, 3). Thus |A| ≤ 2 and A has to be increasing. Therefore, the three
possible cases are (a1, a2, n,B, 1, c), (a1, n,B, 1, c), and (n,B, 1, c). Therefore,
there are only 3 ways to create these forms.

Adding everything up we get:

(n− 1) +

(
1

2
n2 +

3

2
n− 10

)
+ 3 =

1

2
n2 +

5

2
n− 8.

Corollary 10. We use the properties of rectangles to extend our result. The
reverse of (1, 2, 4, 3) is (3,4,1,2). The complement of (3,4,1,2) is (2,1,4,3) whose
own reverse is (3,4,1,2). Thus,

|Dn(1, 2, 4, 3)| = |Dn(3, 4, 1, 2)| = |Dn(2, 1, 4, 3)| =

|Dn(3, 4, 1, 2)| =


|Dn|, n < 4

12, n = 4

19, n = 5
1
2n

2 + 5
2n− 8, n > 5

.

6.8 Dn(1, 4, 3, 2)

Theorem 12. |Dn(1, 4, 3, 2)| =


|Dn|, n < 4

12, n = 4

17, n = 5
1
2n

2 + 3
2n− 4, n > 5
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Proof. Let [π, π] ∈ Dn(1, 4, 3, 2) for n ≥ 6 and A, B, and C be independent lists
comprised of the numbers 2 through n− 1.

We first consider the cases where π = (A, 1, B, n, C).
Suppose C contains 2 or more elements c1 and c2. Let’s say that c1 < c2.

Then [π, π] contains the subsequence (1, n, c2, c1) which reduces to (1, 4, 3, 2).
Thus |C| = 0 or |C| = 1.

Suppose that a > b where a ∈ A and b ∈ B. Then [π, π] contains the
subsequence (1, n, a, b) which reduces to (1, 4, 3, 2). Similarly, suppose there
exists some number c ∈ C . If c > a then [π, π] contains (1, n, c, a) which
reduces to (1, 4, 3, 2). If c < a then [π, π] contains (1, n, a, c) which reduces to
(1, 4, 3, 2). By similar argument B cannot be greater or less than C. Therefore,
C has to be the empty set. So we have (A, 1, B, n).

Let A contain 2 or more elements a1 and a2, where a1 > a2. Then [π, π]
contains the subsequence (1, n, a1, a2) which reduces to (1, 4, 3, 2). Thus A has
to be increasing. By similar argument B has to be increasing as well. There are
(n− 1) possible positions for 1, so there are (n− 1) total lists of this form.

Let’s consider the cases where π = (A,n,B, 1, C).
For this one, we are going to look at the position of n.
When n is in position 1, we have the form (n,B, 1, C). Suppose that b > c

where b ∈ B and c ∈ C. Then [π, π] contains the subsequence (1, n, b, c) which
reduces to (1, 4, 3, 2). Let B contain 2 or more elements b1 and b2, where b1 > b2.
Then [π, π] contains the subsequence (1, n, b1, b2) which reduces to (1, 4, 3, 2).
Thus B has to be increasing. By similar argument C has to be increasing as
well. There are (n − 1) possible positions for 1, so there are (n − 1) total lists
of this form.

When n is in position 2, we have the form (a, n,B, 1, C). From position 1 of
n, we know that B and C have to be increasing and b < c. Suppose that a < b
where a ∈ A and b ∈ B. Then [π, π] contains the subsequence (a, n, c, b) which
reduces to (1, 4, 3, 2). Let a < c. Then [π, π] contains the subsequence (1, c, a, b)
which reduces to (1, 4, 3, 2).Thus b < c < a ∀ a ∈ A, b ∈ B. We have the form
(n−1, n,B, 1, C). There are (n−2) possible positions for 1, so there are (n−2)
total lists of this form.

Let A contain 2 or more elements a1 and a2, where a1 > a2. Then [π, π]
contains the subsequence (1, a1, a2, c) which reduces to (1, 4, 3, 2). Thus A has
to be increasing. Therefore, when n is in position k, where 1 ≤ k ≤ n− 2, there
are (n− k) lists where n is in position k.

When n is in position (n−1), we have the form (A,n, 1). Suppose A contains
3 or more elements a1, a2, and a3. Let’s say that a1 > a2 > a3, where a3 is
the smallest element of A. Suppose that a1 comes before a2. So the possible
lists are (a1, a2, a3, n, 1), (a1, a3, a2, n, 1), and (a3, a1, a2, n, 1). Then in [π, π]
each list contains the subsequence (1, a1, a2, a3) or (a3, n, a1, a2) which reduces
to (1, 4, 3, 2). Therefore, we know that everything bigger than a3 is in increasing
order. Now, we know A looks like 3, 4, 5, · · · , n− 1 with 2 inserted somewhere.
There are (n− 2) places to insert 2 in this list, so there are (n− 2) lists of the
form (A,n, 1).

Summing over every position of n, we get:
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n−2∑
k=1

(n− k) + (n− 2) =
1

2

(
n2 − n− 2

)
+ (n− 2) =

1

2
n2 +

1

2
n− 3.

Adding both cases together, we get:(
1

2
n2 +

1

2
n− 3

)
+ (n− 1) =

1

2
n2 +

3

2
n− 4.

Corollary 11. We use the properties of rectangles to extend our result. The
reverse of (1, 4, 3, 2) is (2,3,4,1). The complement of (2,3,4,1) is (3,2,1,4) whose
own reverse is (4,1,2,3). Thus,

|Dn(1, 4, 3, 2)| = |Dn(2, 3, 4, 1)| = |Dn(3, 2, 1, 4)| =

|Dn(4, 1, 2, 3)| =


|Dn|, n < 4

12, n = 4

17, n = 5
1
2n

2 + 3
2n− 4, n > 5

.

7 Conclusion

Counting double lists which avoid patterns produced a variety of different enu-
merative results. Of particular interest is the variety of growth rates found
for avoidance of length 4 patterns. Three patterns; (1, 2, 3, 4), (1, 3, 2, 4), and
(2, 4, 1, 3), had an exponential growth rate. 2 others; (1, 2, 4, 3) and (1, 4, 3, 2),
had a quadratic growth rate while (1, 4, 2, 3) and (2, 1, 4, 3) each were linear
in their growth. The most interesting result for length four patterns was the
constant size of Dn(1, 3, 4, 2) which does not grow at all with increasing length.
These observations are summarized in the table below.
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