Pattern Avoidance in Ternary Trees Nathan Gabriel, Katie Peske, Sam Tay July 30, 2010 #### Abstract This paper considers the enumeration of ternary trees (i.e. rooted trees in which each vertex has 0 or 3 children) avoiding a contiguous ternary tree pattern. We begin by finding the recurrence relations for several simple ternary trees; then, for more complex trees, we extend a known algorithm for finding the generating function that counts n-leaf binary trees avoiding a given pattern. After investigating bijections between these trees' avoidance sequences and other common combinatorial objects, we conclude by finding a bijective method to restructure specific tree patterns that give the same generating function, and generalizing this process to a larger class of ternary trees. ## 1 Introduction In recent years, pattern avoidance has proven to be a useful language to describe connections between various combinatorial objects. The notion of one object avoiding another has been studied in permutations, word, partitions, and graphs. In 2010, Rowland explored pattern avoidance in binary trees (that is, rooted trees in which each vertex has 0 or 2 children) because of the natural bijection between n-leaf binary trees and n-vertex trees. His study had two main objectives. First, he developed an algorithm to find the generating function denoting the number of n-leaf binary trees avoiding a given tree pattern; he adapted this to count the number of occurrences of the given pattern. Second, he determined equivalence classes for binary tree patterns, classifying two trees s and t as equivalent if the same number of n-leaf binary trees avoid s as avoid t for $n \ge 1$. He completed the classification for all binary trees with at most six leaves, using these classes to develop replacement bijections between equivalent binary trees [1]. In this paper, we extend Rowland's work by exploring pattern avoidance in ternary trees, i.e. ordered rooted trees in which each vertex has 0 or 3 children. We follow a similar outline to work done in binary trees. As a preface to our work, we define a new system of notation to represent m-ary trees (that is, trees where each vertex has 0 or m children), which we use to discuss ternary trees. We then find and explain the recurrence relations that count trees avoiding relatively simple ternary tree patterns (those with at most seven leaves), where the nth term denotes the number of n-leaf trees avoiding the given tree pattern. Next, we adapt Rowland's algorithm to find the avoidance generating function for ternary trees; this is followed with a discussion of a Maple package written to produce the terms of the series representation of the generating function for any tree taken as input. Finally, we put forth bijections for several pairs of equivalent tree patterns, and begin generalizing this process to fit a wider class of equivalent trees. The first appendix contains all the equivalence classes of ternary trees with at most nine leaves found using the Maple package; the Maple package itself is given in Appendix Two. #### 1.1 Definitions #### 1.1.1 Avoidance Following Rowland's definitions of containment and avoidance, a ternary tree T contains a tree pattern t if there is a contiguous, rooted, and ordered subtree of T that is a copy of t. Conversely, it avoids the given pattern t if there is no such subtree of T that is a copy of t. For example, consider T contains the tree $$t = \Lambda^{\uparrow} \Lambda$$ because this pattern occurs beginning at the center child of the root of T (see bolded subtree). However, T avoids $$s = \bigwedge$$ because no vertex in T has children extending from both its left and center children. We define $Av_n(t)$ to be the set of *n*-leaf ternary trees that avoid the given t, and $av_n(t) = |Av_n(t)|$. This notation will be used in both the recurrence relations and generating functions of the following sections. #### 1.1.2 Intersections An important operation in analyzing trees is the intersection. The *intersection* of two trees, denoted by \cap , is the tree obtained by drawing one tree on top of the other, such that they have the same root. For example, While "union" is often used for similar operations, we call it "intersection" here because when talking about trees with a certain pattern at the root, the set of trees with a tree pattern s at the root intersected with the set of trees with another pattern t at the root is the set of trees with $s \cap t$ at the root. The intersection will be used when converting trees to our numeric notation in section 3, as well as when finding a tree's generating function in section 5. #### 1.1.3 Generating Functions One of the most useful tools in analyzing pattern avoidance in ternary trees is the generating function, $gf_t(x)$. The generating function encodes the number of n-leaf trees that avoid a pattern t. In series form, we have $$gf_t(x) = \sum_{n=0}^{\infty} av_n x^n,$$ where the coefficient av_n of x^n is the number of trees with n leaves avoiding t. # 2 Ten Ternary Trees Before we begin exploring avoidance in ternary trees, we first list all of the 3-, 5-, and 7-leaf trees.* We will refer back to these by the assigned labels below. *Note: The same number of trees avoid the reflection of any given t as avoid t; therefore, to avoid redundancy, we do not explicitly list the trees' reflections. # 3 List Notation and TS_m In order to discuss pattern avoidance in trees numerically in a clear and concise way, we present an alternate notation for ternary trees. This notation is easily extends to m-ary trees (i.e. tree where each vertex has 0 or m children). This system, which we will refer to as "list notation," will be especially useful when we consider bijections between sets of pattern-avoiding trees in section 6. #### 3.1 *m*-leaf Parents and Sets of Lists At the foundation of list notation are m-leaf parents, which will be used as the basis for determining a tree's representation as a set of lists. **Definition 3.1.** An m-leaf parent is an internal vertex, v, of an m-ary tree such that v has exactly m children, all of which are leaves. For example, t_6 has one 3-leaf parent and t_3 has two 3-leaf parents. List notation represents an m-ary tree with a set of lists, where each list follows the path from the root to one m-leaf parent. We construct such a set from the following Tree-Set Algorithm: • Since we are dealing with ordered trees, label the children of each internal vertex of an *m*-ary tree from left to right, 1 through *m*. (In ternary trees, then, a vertex's left child is labeled 1, its center child 2, and its right child 3.) 3 • Denote a path from the root of a tree to an m-leaf parent by an ordered list of numbers $[x_1, ..., x_k]$, where k is the length of the path from the root to the m-leaf parent, such that $x_i \in \mathbb{Z}$ and $1 \le x_i \le m$ for $1 \le i \le k$. The first number x_1 in the list represents the child of the root labeled x_1 ; x_i then refers to the child of the vertex given by x_{i-1} that is labeled x_i . As an example, let us look again look at t_6 and t_3 . In t_6 , the only 3-leaf parent is reached by a path beginning at the root, going it the root's left child, then to this vertex's center child; in list notation, t_6 is denoted by the set of the single list $\{[1,2]\}$. For t_3 , we reach one of its 3-leaf parents by going to the root's left child, and the other by the root's center child; this becomes a set of two lists, $\{[1], [2]\}$. **Theorem 3.2.** An ordered m-ary tree T is uniquely defined by the set of paths from its root to each m-leaf parent. The single vertex tree is represented by an empty set, $\{\}$, and the 3-leaf tree (t_0) by a set containing the empty list, $\{/\}$. **Example 3.3.** According to Theorem 3.2, is uniquely defined by $\{[1,1],[1,3],[2],[3,2,3]\}.$ To prove Theorem 3.2, we first state two lemmas. **Lemma 3.4.** In a finite m-ary tree, every internal vertex is either an m-leaf parent or has a descendant that is an m-leaf parent. *Proof.* Assume the lemma is false for the sake of a contradiction. Let v_0 be an internal vertex of a finite m-ary tree such that neither it nor any of its descendants is an m-leaf parent. Since all internal vertices of an m-ary tree have m children, and since v_0 is not an m-leaf parent, at least one of its children v_1 must also have children of its own. Because v_1 is an internal vertex, it must for the same reason have a child v_2 that is an internal vertex. Thus, we generate an infinite list $[v_0, v_1, v_2, ...]$ of distinct vertices in our finite graph. This is a contradiction, proving the lemma to be true. **Lemma 3.5.** In a finite m-ary tree, T, every leaf is the child of an m-leaf parent or the child of a vertex on a path to an m-leaf parent. *Proof.* Given a specific leaf l_0 , there are two possible cases: Case 1: l_0 is the child of an m-leaf parent. The lemma is true trivially. Case 2: l_0 is not the child of an m-leaf parent. In this case, at least one of l_0 's siblings, l_1 , must have children. Then, by Lemma 3.4 l_1 or one of its descendants is an m-leaf parent. Since the path between two vertices is always unique in a tree, l_0 's parent is on the path to this m-leaf parent. \square We now define a Set-Tree Algorithm to reverse the process of creating a set of lists; that is, a method to generate an *m*-ary tree from a set of lists: - 1. Create an m-ary tree from each list by the following procedure: - (a) Create a root. - (b) Give the root m children, labeled left to right from 1 to m. - (c) For the list $[x_1, x_2, ..., x_k]$ give x_1 -st child of the root m children. Label these children 1 to m as before, repeating the process at each level where x_i denotes giving m children to the x_i -th child of the vertex that was given children by x_{i-1} . - 2. Take the intersection of all graphs obtained from step one to
find the final m-ary tree. With this algorithm and the two lemmas, we can now prove Theorem 3.2. *Proof.* First, we prove that this Set-Tree Algorithm is an inverse map to the Tree-Set Algorithm; that is, given a set of lists produced by inputing a tree into the Tree-Set Algorithm, the Set-Tree Algorithm returns the original tree. The algorithm gives all of the vertices on each path from an *m*-leaf parent to the root and all of those vertices' children by construction. Thus, by our two lemmas, the algorithm produces all of the internal vertices and leaves of the graph that our lists came from. The algorithm does not give us a tree with extra vertices (i.e. vertices not in the original tree) since all of the vertices created by the algorithm are internal vertices from a path between an m-leaf parent and the root or the children of such vertices. By our lemmas, then, the algorithm preserves the number of vertices in the original tree. Furthermore, the ordering of our graph is preserved by nature of the algorithm. Therefore we get the same tree from our set of lists as was originally used to obtain the set of lists. \Box ## 3.2 TS_m Notation **Definition 3.6.** Let S be a set of lists whose elements are integers 1 through m, such that no list is a prefix of another list in S. Namely, S is an arbitrary set of lists describing an m-ary tree. We write TS_m for the set of all such sets of lists S. **Theorem 3.7.** Each $S \in TS_m$ describes a distinct m-ary tree. *Proof.* By the Set-Tree Algorithm, we know that the set of lists S describes some m-ary tree. Consider two distinct sets S_1 and S_2 of this form and some list L_0 in S_1 but not in S_2 . Since L_0 is not the prefix of another list it represents a path to an m-leaf parent v_0 in the tree S_1 . Since L_0 is not in S_2 then v_0 is not an m-leaf parent in the tree given by S_2 . **Theorem 3.8.** By applying our procedure for denoting an m-ary tree by a set of lists to all m-ary trees we obtain all $S \in TS_m$. *Proof.* By the Tree-Set Algorithm for obtaining a set of lists from an m-ary tree, a list L_1 denotes a path to an m-leaf parent v_1 . If L_1 is a prefix of another list L_2 , where $L_1 \neq L_2$, then v_1 is on the path to some other m-leaf parent v_2 , and v_1 would not be an m-leaf parent. Thus, we cannot obtain a set of lists from our procedure such that one list is the prefix of another. By Theorem 3.2, we now know that our procedure produces a distinct $S \in TS_m$. Furthermore, by Theorem 3.7, each $S \in TS_m$ produces a distinct m-ary tree. Therefore, by applying our procedure to each m-ary tree we must obtain each $S \in TS_m$. ## 3.3 Pattern Avoidance in TS_m In order to make this TS_m notation useful for defining bijections between ternary trees, we must identify exactly what pattern avoidance looks like using sets of lists. Consider a set of lists $\{L_i\}_{i=1}^l$ that denotes an m-ary tree t. A tree T denoted by $\{M_h\}_{h=1}^p$ contains t if there exists $\{M_{h_i}\}_{i=1}^l$ where each M_{h_i} begins with the same prefix (possibly the empty prefix) as all other M_{h_i} 's, followed by exactly the ordered sequence of elements of L_i ; this may or may not be then followed an additional sequence of numbers. This understanding of a tree T containing t follows directly from our previous understanding of one tree containing another. The prefix that we are concerned with is the path from the root of T to the root of the pattern contained in T. If the prefix is not the same for each list in T, then the paths of t do not begin at the same vertex in T; thus, the pattern is not contained in T. **Example 3.9.** The tree pattern $t_a = \{[1, 3, 2, 3], [1, 2, 2, 3]\}$, is contained by $$T_1 = \{[3, 2, 3, \mathbf{1}, \mathbf{3}, \mathbf{2}, \mathbf{3}], [1, 1, 3, 2, 2], [3, 2, 3, \mathbf{1}, \mathbf{2}, \mathbf{2}, \mathbf{3}, 1, 1, 2]\}.$$ Notice that, after the prefix [3,2,3], the first and third lists of T_1 have exactly the sequence of each list of t. However, $T_2 = \{[3,1,3,2,3], [1,2,2,3]\}$ avoids t. Even though it contains each sequence of numbers from the lists of t, T_2 's lists do not begin with the same prefix before the sequences begin. Furthermore, the notion of a pattern occurring at a certain level of a tree is easily translated to list notation. If a pattern t occurs in a tree T where the lists denoting t are preceded by the prefix p_0 , then p_0 represents the path to the vertex v at which t is rooted. If v is at the i-th level of T, then p_0 will be of length i-1; the converse is also true. Thus when a pattern t occurs at the ith level of a tree, the lists giving t all have a prefix of length i-1. # 4 Finding Pattern Avoidance Recurrences In this section, we find recurrence relations for the number of trees avoiding each of the ten trees labeled in section 2. For each tree, we discuss the structure of trees that avoid the given tree pattern, how the recurrence and generating function can be found from this structure, and we list any other equivalent tree patterns. As before, we let $Av_n(t) = \{\text{trees with } n\text{-leaves that avoid } t\}$, and $av_n(t) = |Av_n(t)|$; that is, $av_n(t)$ is the number of trees with n leaves that avoid t. (If T is clear in the given context, we will simply write Av_n and av_n .) ## 4.1 Avoiding t_1 and t_2 $$t_1 = \bigwedge$$ To find $av_n(t_1)$, let us look at how an n-leaf tree T must be structured in order to avoid t_1 . Consider any given internal vertex v of T. Its left child can have no descendants, thus it must be a leaf. Its center child can have a subtree of any number of leaves k, where $1 \le k \le n-2$ (these bounds ensure that v will still have three children). Finally, v's right child can also have a subtree, but because there are n total leaves, it is restricted to n-k-1 leaves. Thus, there are av_k subtrees beginning at v's center child, and av_{n-k-1} possible subtrees at v's right child that also avoid t_1 . Taking the summation of these over the possible values of k gives the recurrence relation $$av_n = \sum_{k=1}^{n-2} av_k av_{n-k-1}.$$ Our initial conditions for this recurrence are $av_0 = 0$, because there are no trees with 0 leaves; $av_1 = 1$, because there is one tree with one leaf, and it avoids any tree pattern with more than one leaf; and $av_2 = 0$, because there are no trees with 2 leaves. We can now solve for $gf_{t_1}(x) = \sum_{k=0}^{\infty} av_k x^k$ as follows: $$av_{n} = \sum_{k=1}^{n-2} av_{k}av_{n-k-1}$$ $$av_{n}x^{n} = \sum_{k=1}^{n-2} av_{k}av_{n-k-1}x^{n}$$ $$\sum_{n=3}^{\infty} av_{n}x^{n} = \sum_{n=3}^{\infty} \sum_{k=1}^{n-2} av_{k}av_{n-k-1}x^{n}$$ $$gf_{t_{1}}(x) - (av_{2})x^{2} - (av_{1})x - (av_{0}) = x \sum_{n=3}^{\infty} \sum_{k=1}^{n-2} av_{k}x^{k}av_{n-k-1}x^{n-k-1}$$ $$gf_{t_{1}}(x) - (av_{1})x = x \sum_{k=1}^{\infty} \sum_{n=k+2}^{\infty} av_{k}x^{k}av_{n-k-1}x^{n-k-1}$$ $$gf_{t_{1}}(x) - (av_{1})x = x \sum_{k=1}^{\infty} av_{k}x^{k} \cdot \sum_{n=k+2}^{\infty} av_{n-k-1}x^{n-k-1}$$ $$gf_{t_{1}}(x) - (av_{1})x = x(gf_{t_{1}} - av_{0})^{2}$$ $$x(gf_{t_{1}}(x))^{2} - gf_{t_{1}}(x) + x = 0$$ $$gf_{t_{1}}(x) = \frac{1 \pm \sqrt{1 - 4x^{2}}}{2x}$$ In order to get positive numbers for av_n , we discard one of these solutions, leaving us with: $$gf_{t_1}(x) = \frac{1 - \sqrt{1 - 4x^2}}{2x}$$ The first few terms of this sequence are (for $n \ge 0$): $$0, 1, 0, 1, 0, 2, 0, 5, 0, 14, \dots$$ Two things are worth noting about this avoidance sequence. First, the non-zero terms make up the Catalan Sequence (OEIS A000108). Second, it is interpolated by zeros because there are no ternary trees with an odd number of leaves. This second observation will be true for the avoidance sequence of any ternary tree pattern. $$t_2 =$$ To look at trees avoiding t_2 , we only need to make one alteration; namely, that it is the center child, instead of the leftmost child, of each vertex that cannot have any children. Therefore, we find that $$gf_{t_1}(x) = gf_{t_2}(x) = \frac{1 - \sqrt{1 - 4x^2}}{2x}.$$ ## 4.2 Avoiding t_3 and t_4 Next, we find the number of n-leaf trees that avoid t_3 such that $n \geq 3$. As before, we consider any internal vertex v of a tree T that avoids t_3 . There are two nonexclusive possibilties for which of v's children have leaves. First, v's leftmost child has no children, but both its center and right children can. In the second case, v's center child has no children, but both its left and right children can. These two cases are equivalent to avoiding t_1 and t_2 , respectively. However, this double-counts one instance: that is, when both the left and the center leaf of the t_0 pattern have no children. There are exactly av_{n-2} trees counted by both of the first two cases. Subtracting this from the recurrence relation, we are left with: $$av_n = 2\sum_{k=1}^{n-2} av_k av_{n-k-1} - av_{n-2}$$ Our initial conditions for this recurrence relation are again $av_0 = 0$, $av_1 = 1$, and $av_2 = 0$. We can now solve for $gf_{t_3}(x) = \sum_{k=0}^{\infty} av_k x^k$ as follows: $$av_n = 2\sum_{k=1}^{n-2} av_k av_{n-k-1} - av_{n-2}$$ $$av_{n}x^{n} = 2\sum_{k=1}^{n-2} av_{k}av_{n-k-1}x^{n} - av_{n-2}x^{n}$$ $$\sum_{n=3}^{\infty} av_{n}x^{n} = 2\sum_{n=3}^{\infty} \sum_{k=1}^{n-2} av_{k}av_{n-k-1}x^{n} - \sum_{n=3}^{\infty} av_{n-2}x^{n}$$ $$gf_{t_{3}}(x) - (av_{2})x^{2} - (av_{1})x - (av_{0}) = 2x\sum_{n=3}^{\infty} \sum_{k=1}^{n-2} av_{k}x^{k}av_{n-k-1}x^{n-k-1} - x^{2}\sum_{n=3}^{\infty} av_{n-2}x^{n-2}$$ $$gf_{t_{3}}(x) - x = 2x\sum_{k=1}^{\infty} av_{k}x^{k}\sum_{n=k+2}^{\infty} av_{n-k-1}x^{n-k-1} - x^{2}(gf_{t_{3}}(x) - av_{0})$$ $$gf_{t_{3}}(x) - x = 2x(gf_{t_{3}}(x) - av_{0})^{2} - x^{2}gf_{t_{3}}(x)$$ $$2x(gf_{t_{3}}(x))^{2} - (x^{2} + 1)gf_{t_{3}}(x) + x = 0$$ After checking both solutions given by the quadratic equation, we find the generating function to be: $$gf_{t_3}(x) = \frac{x^2 + 1 - \sqrt{x^4 - 6x^2 +
1}}{4x},$$ which gives the Little Schroeder numbers, interpolated by zeros: 1,0,1,3,0,11,0,45,0,197,0,... (OEIS A001003) This is also the avoidance sequence for $$t_4 = \bigwedge$$ As before, two cases exist for avoiding t_4 (either the left and center or the right and center children of v have descendants), as well as a term that needs to be subtracted to avoid double-counting (when neither the left nor the right children of v have their own children). Thus, we have $$gf_{t_3}(x) = gf_{t_4}(x) = \frac{x^2 + 1 - \sqrt{x^4 - 6x^2 + 1}}{4x}.$$ ## 4.2.1 A Schroeder Bijection In this subsection, we further examine the connection between trees avoiding t_4 and the Little Schroeder number. To do this, we look at one well-known combinatorial interpretation of the Little Schroeder numbers: s_n is the number of binary trees with n vertices and with each right edge colored either red or blue (represented here as solid and dashed lines, respectively) [2]. To map these structures to the ternary trees avoiding t_4 , we define the following bijection: Begin by creating a list of numbers to represent each path from the root to one leaf of the colored binary tree b. Each list will consist of numbers 1, 2, or 3: a solid right edge is translated to a 1; any left edge, a 2; and a dashed right edge, a 3. Next, generate a ternary tree by using the aforementioned Tree-Set Algorithm (see Section 3.1). For example, the colored binary tree below is mapped first to a set of lists, which is then translated to the shown ternary tree. Let BR be the set of binary trees with n vertices and each right edge either solid or dashed, and $B_s(b)$ be the stated Schroeder bijection for mapping $b \in BR$ to a ternary tree avoiding t_4 . #### Claim 1. For each $b \in BR$, $B_s(b)$ will always give a ternary tree avoiding t_4 . *Proof.* In b, there are three options for each vertex's children: a left child, a dashed edge leading to a right child, or a solid edge leading to a right child. These can be combined in any way, except that the vertex can never have both a dashed and a solid edge leading to its right child. Therefore, any ternary tree pattern can be generated by our Schroeder bijection, except [1,3], which corresponds to t_4 , ensuring that all trees generated by this bijection avoid t_4 . ## **Theorem 4.1.** $B_s(b)$ is a bijection, i.e. it is one-to-one and onto. *Proof.* First we show that $B_s(b)$ is one-to-one. Given two binary trees, b_1 and $b_2 \in BR$, if $B_s(b_1) = t$ and $B_s(b_2) = t$, then for each of t's lists, there is a corresponding path of left, solid right, or dashed right edges from the root of b_1 to one of its leaves. Similarly, there is a corresponding path in b_2 , and this path must be the same path as that in b_1 . This implies that b_1 and b_2 have the same set of paths from the roots to each of their leaves. Therefore, $b_1 = b_2$. In order to prove that $B_s(b)$ is onto, we define $B_s^{-1}(t)$ to map a ternary tree t that avoids t_4 to a binary tree $b \in BR$: From each list L in t's set of lists, draw a path from the root of b to a leaf in the following manner: for a 1, draw a solid right edge; for a 2, draw a left edge; for a 3, draw a dashed right edge. Now we show that the Schroeder bijection $B_s(b)$ is onto. Let $B_s^{-1}(t) = b$. If t is a tree avoiding t_4 , it does not have the pattern [1,3] in any of its lists. This implies that, in creating b, there will never be a case where a vertex in b should have both a dashed right edge and a solid right edge. Thus, $b \in BR$. Furthermore, because $B_s(b) = t$, that is $B_s(B_s^{-1}(t)) = t$, our Schroeder bijection is onto. As an example, look at $s_3 = 11$. There are eleven 3-vertex colored binary trees, and eleven 5-leaf trees avoiding t_4 . Under the defined bijection $B_s(b)$, each colored binary tree b is mapped onto a tree avoiding t_4 in the following way: # 4.3 Avoiding t_5 and t_9 $$t_5 = 1$$ To find the number of n-leaf trees that avoid t_5 , $n \ge 3$, we consider two cases for any internal vertex v of a tree T that avoids t_5 . There are two possible structures that v's children can follow. First, v's left child has no children, while the center and right can have a combination of k leaves and n-k-1 leaves, $1 \le k \le n-2$. The second case is when v's left child has three children; to avoid t_5 , a left-vertex child cannot have another consecutive left-vertex child. The four other vertices can have combinations of l, m, k, and n-l-m-k-1 children, $1 \le l$, m, $k \le n-4$. Therefore, $av_n(t_5)$ is given by the sum of these two cases: $$av_n = \sum_{k=1}^{n-2} av_k av_{n-k-1} + \sum_{l=1}^{n-4} \sum_{m=1}^{n-l-3} \sum_{k=1}^{n-l-m-2} av_l av_m av_k av_{n-l-m-k-1}$$ To find the recurrence relation for trees avoiding t_9 , we see that instead of avoiding two consecutive left-children vertices, we avoid two consecutive middle-children vertices. Therefore, $av_n(t_5) = av_n(t_9)$ for $n \ge 1$. Clearly, it would be extremely difficult to solve this recurrence directly for the generating function $gf_{t_5}(x)$. For trees t_6 , t_7 , and t_8 , complex problems arise with overcounting and undercounting, and we have not even been able to find their recurrence relations by hand. Instead, we adapt the generating function algorithm invented by Rowland for trees avoiding binary tree patterns to ternary tree patterns. # 5 A Generating Function Algorithm While finding a ternary tree's avoidance generating function from its recurrence relation works well when the trees are relatively small, the increasing complexity and intricacy soon make recurrence relations very inefficient. For this reason, we developed an algorithm to find the generating function $gf_t(x)$ for any given tree t. First however, one clarification needs to be made. As mentioned in the introduction, $gf_t(x)$ represents in series form the number of n-leaf ternary trees that avoid t. In this section, we omit the variable x to extend the generating function notation in a new direction. Now, let $gf_t(p)$ be the generating function whose series form denotes the number of n-leaf ternary trees that (1) avoid t, and (2) contain the tree pattern p at their root. Therefore, the generating function for all trees avoiding t is given by $gf_t(\bullet)$, because all ternary trees begin with the single vertex root. (For simplicity, though, we will usually abbreviate $gf_t(\bullet) = gf_t$.) The algorithm we use to find $gf_t(\bullet)$ is very similar to Rowland's algorithm for binary trees [1], but it accounts for an additional child at each internal vertex. The process defines a series of generating functions using a recursive method. Initially, $gf_t(\bullet)$, the generating function we are interested in, is written in terms of another generating function. Then, for each new generating function $gf_t(p)$ introduced in the recursive step, we must deduce another recurrence for $gf_t(p)$ in terms of other generating functions. If t is a tree, we will use t_l , t_c , and t_r to denote the left, center, and right subtrees of t respectively. With this new notation, our algorithm to find $gf_t(\bullet)$ is as follows: - 1. $gf_t(\bullet) = x + gf_t(\land)$ - 2. $gf_t(p) = gf_t(p_l) \cdot gf_t(p_c) \cdot gf_t(p_r) gf_t(p_l \cap t_l) \cdot gf_t(p_c \cap t_c) \cdot gf_t(p_r \cap t_r)$ - 3. For each new variable introduced in the right hand side of the equation in step 2, deduce a recurrence for $gf_t(p)$ using step 2. - 4. Solve the resulting system of equations for $gf_t(\bullet)$. The first line of the algorithm defines $gf_t(\bullet) = x + gf_t(\frown)$. This is because, unless t is the single vertex, the generating function for trees with a single vertex at the root will always account for the one tree with one leaf; from there, the rest of the trees avoiding t have a \wedge pattern at the root, so $x + gf_t(\wedge)$ constitutes the entire series of $gf_t(\bullet)$. Next, we need to derive a recurrence for each unknown generating function, beginning with $gf_t(\ \)$. To do this, we recognize that the generating function for trees with pattern p at their root, $gf_t(p)$, is made up of all of the possible combinations of the generating functions of its children's subtrees: $gf_t(p_l)$, $gf_t(p_c)$, and $gf_t(p_r)$. However, $gf_t(p_l)$, $gf_t(p_c)$, and $gf_t(p_r)$ each account for the series of trees avoiding t individually, which overcounts when trees begin with roots of the intersections $p_l \cap t_l$, $p_c \cap t_c$, and $p_r \cap t_r$ respectively. Therefore, we have $gf_t(p) = gf_t(p_l) \cdot gf_t(p_c) \cdot gf_t(p_r) - gf_t(p_l \cap t_l) \cdot gf_t(p_c \cap t_c) \cdot gf_t(p_r \cap t_r)$. We must derive a recurrence for any new generating function that arises from applying step 2 of the algorithm to a different generating function, until we have a complete system of equations. We then eliminate all unwanted variables until we have an equation consisting only of the variables $gf_t(\bullet)$ and x. For very simple trees, we can usually solve directly for $gf_t(\bullet)$; however, even with the 7-leaf tree, $t_5 = 1$, we get a quartic equation from this procedure. To avoid solving directly for the whole function, we can substitute the k^{th} order series representation $\sum_{n=0}^{k} av_n x^n$ for each $gf_t(\bullet)$, isolate the coefficients of each power of x, and set them each equal to zero. With these equations, we can solve for each coefficient av_n , $1 \le n \le k$. For example, we will show the process of finding the generating function for t_5 : $$gf_{t_5}(x) = gf_{t_5}(\bullet) = x + gf_{t_5}()$$ $$gf_{t_5}() = (gf_{t_5}(\bullet))^3 - gf_{t_5}() \cdot (gf_{t_5}(\bullet))^2$$ $$gf_{t_5}() = gf_{t_5}() \cdot (gf_{t_5}(\bullet))^2 - gf_{t_5}() \cdot (gf_{t_5}(\bullet))^2$$ Let $a = gf_{t_5}()$, $b = gf_{t_5}()$, and $c = gf_{t_5}()$. Then, $$a = x + b$$ $$b = a^3 - ca^2$$
$$c = ba^2 - ca^2$$ Eliminating b and c gives the equation $a - x - a^4x - a^2x = 0$. Substituting, for example, the 25^{th} order series representation for a gives $$\sum_{n=0}^{25} av_n x^n - x - (\sum_{n=0}^{25} av_n x^n)^4 x - (\sum_{n=0}^{25} av_n x^n)^2 x = 0.$$ Expanded, the first few powers of x have the following coefficients, which we set equal to zero: $$x^{0}: -q_{0} = 0$$ $$x^{1}: q_{0}^{2} + 1 - q_{1} + q_{0}^{4} = 0$$ $$x^{2}: 4 \cdot q_{1} \cdot q_{0}^{3} + 2 \cdot q_{1} \cdot q_{0} - q_{2} = 0$$ $$x^{3}: 6 \cdot q_{1}^{2} \cdot q_{0}^{2} + 4 \cdot q_{2} \cdot q_{0}^{3} + 2 \cdot q_{2} \cdot q_{0} + q_{1}^{2} - q_{3} = 0$$ $$x^{4}: 4 \cdot q_{1}^{3} \cdot q_{0} + 2 \cdot q_{1} \cdot q_{2} + 2 \cdot q_{3} \cdot q_{0} + 12 \cdot q_{1} \cdot q_{2} \cdot q_{0}^{2} + 4 \cdot q_{3} \cdot q_{0}^{3} - q_{4} = 0$$ With all of the equations, we find the sequence av_n , $1 \le n \le 25$, [0, 1, 0, 1, 0, 3, 0, 11, 0, 46, 0, 207, 0, 979, 0, 4797, 0, 24138, 0, 123998, 0, 647615, 0, 3428493, 0, 18356714] ## 5.1 Programming with Maple To automate the algorithm for finding the generating function for ternary trees avoiding a certain tree pattern, we program the procedure in Maple. To perform operations on trees (i.e. finding left, center, and right subtrees), we represent them in a form consisting of lists of 1's and 0's. A single vertex is denoted [1,0]. If a vertex has three children, there will be lists L_l , L_c , and L_r in the second, third, and fourth positions within its list, representing the subtrees of its left, center, and right children, denoted $[1, L_l, L_c, L_r, 0]$. For example, $t_6 = 1$ is represented by [1, [1, [1, 0], [1, 0], [1, 0], [1, 0], 0], [1, 0], [1, 0], 0]. Clearly, writing trees in this form gets complicated quickly and can be very tedious. One of our programs in Maple converts trees from the list notation of Section 3 to this [1, 0]-form. #### 5.1.1 Notation Conversion The conversion from "list notation" to [1,0]-notation uses two procedures. The first procedure, Listt(B), takes one list of 1's, 2's, and 3's called B as an input. Notice this procedure will produce trees that have precisely one m-leaf parent; that is, for any vertex in a tree produced by Listt(B), at most one of its children will have three leaves. The base case states ``` if B=[] then return [1,[1,0],[1,0],[1,0],0]; end if;. ``` The list to be returned is then is then recursively defined with if statements concerning the first integer of the input list: ``` if B[1]=1, then return [1,TS(B[2..nops(B)]),[1,0],[1,0],0]; end if; if B[1]=2, then return [1,[1,0],TS(B[2..nops(B)]),[1,0],0]; end if; if B[1]=3, then return [1,[1,0],[1,0],TS(B[2..nops(B)]),0]; end if; ``` The first integer determines if the root's left, center, or right child has children. Then the program recursively calls itself to determine the structure of the subtree whose root is that chosen vertex. The procedure continues until it completes the length of the path to the 3-leaf parent, |B|. The second procedure, Sett(A), takes one set called A as an input. Two base cases account for our convention for the empty set and the set containing the empty list, ``` if A={} then return [1,0]; end if; if A=[] then return [1,[1,0],[1,0],[1,0],0]; end if; ``` From here, we simply intersect the trees, as explained in the next section, given by each list produced by the Listt(B) procedure. #### 5.1.2 Intersection The intersection procedure, interstree (T1, T2), is essential for Listt(A) and the main avoidance program (the algorithm adapted from Rowland). It is based on the fact that when aligning the roots of two trees, the entire intersection can be found by combining the intersections of subtrees with overlapping vertices. If one of the overlapping vertices has no children, we can simply return the subtree given by the other tree, even if it is also a single vertex. Therefore, with two trees T1 and T2 (in [1,0]-form) as inputs, our base cases are ``` if T1=[1,0] then return T2; end if; if T2=[1,0] then return T1; end if; ``` If a single vertex is not found, then there are still overlapping vertices descending from T1 and T2, and we intersect them recursively. When neither of the above if statements are true, we know each tree has three children: The list positions [2,3,4] are the left, center, and right vertices' subtrees respectively. Whenever an overlapping vertex has no children, the other vertex's subtree contributes to the overall intersection. #### 5.1.3 Avoidance Algorithm The full avoidance program, Av(A,k), is dependent on the sets U, V, and E. U is the set of variables for which the algorithm has already derived a recurrence (i.e., the $gf_t(p)$ in line two of the algorithm), V is the set of all of the variables found in the equations (i.e., $gf_t(p)$, $gf_t(p_r)$, $gf_t(p_r \cap t_r)$, etc., in line two of the algorithm), and E is the set of all equations in the algorithm. Operations on trees are done through subscripts of the variable a, so that we can use specific generating functions as variables of algebraic equations when solving for $gf_t(\bullet)$, which is denoted $a_{[1,0]}$. First, the first and second lines of the algorithm are defined as z_1 and z_2 , respectively. We then have a loop that continues while $V \setminus U \neq \{\}$, defining each unknown value from the set $V \setminus U$, using the avoidance algorithm described earlier. Each equation is assigned to names of z_c , and the left-hand side of these equations are each of the a variables that have been defined, with trees in the subscript. When the loop is finished and all variables are defined, we eliminate the left-hand side of each equation z_c , $2 \le c \le |E|$, finding an expression of $a_{[1,0]}$'s and x's set equal to zero. As mentioned earlier, solving for the generating function directly from this expression gets very complicated; instead, we substitute the series representation to the order of the input k, $\sum_{n=0}^{k} q_n x^n$, for each $a_{[1,0]}$. We then isolate each coefficient of x, set each of them equal to zero, and simultaneously solve for each q_n . The program then outputs q_n , $0 \le n \le k$, which are the first k integers of the avoidance sequence. To see more detail, refer to the second appendix which has the complete Maple code. # 6 Bijections on Ternary Trees Now that we have discussed two methods for enumerating pattern-avoiding trees, we look for connections between specific sets of those trees. Recall that several of the ternary trees in this paper have had the same pattern avoidance sequence as one or more other trees. That is, for some distinct i, j, we found that $gf_{t_i}(x) = gf_{t_j}(x)$. We will now give some explanation of why this is the case. As Rowland did, we accomplish this through finding bijections, or "replacement rules," between the members of $Av_n(t_i)$ and those of $Av_n(t_j)$. # **6.1** $B_{t_1,t_2}(T)$ Before we look at a bijection between t_1 and t_2 , we define the notation for such bijections. $B_{t_i,t_j}: TS_m \to TS_m$ will denote a bijection between trees avoiding t_i and trees avoiding t_j . We find such maps by analyzing the list notation for our pattern-avoiding trees. $$t_1 = \bigwedge$$ $t_2 = \bigwedge$ A tree avoids t_1 if none of its left vertices have children, and avoids t_2 if none of its center vertices have children. In order to map a tree T avoiding t_1 to a tree avoiding t_2 , we define our bijection $B_{t_1,t_2}(T)$ to "switch" the center subtree of every vertex with the left subtree of the same vertex. In terms of list notation, a tree avoids t_1 if it has no 1's in its lists, and avoids t_2 if it has no 2's in its lists. Thus, we define $B_{t_1,t_2}(T)$ to replace every 1 in T's lists with 2, and every 2 with a 1. ### Example 6.1. The same example in list notation is $B_{t_1,t_2}(\{[2,3,3],[3,2]\}) = \{[1,3,3],[3,1]\}.$ To prove that $B_{t_1,t_2}(T)$ does send trees avoiding t_1 to trees avoiding t_2 , we note that the trees avoiding t_1 are exactly the sets that do not contain any 1's in any of the sets' lists. Similarly, the sets denoting trees avoiding t_2 are exactly the sets that do not contain any 2's in any of their lists. Because of this, $B_{t_1,t_2}(T)$ will map a set of lists containing no 1's to a set of lists containing no 2's. This is equivalent to saying that $B_{t_1,t_2}(T)$ does, in fact, send trees avoiding t_1 to trees avoiding t_2 . ## **Theorem 6.2.** B_{t_1,t_2} is a bijection. *Proof.* Consider $T_1, T_2 \in TS_3$. If $B_{t_1,t_2}(T_1) = T_3 \in TS_3$ and also $B_{t_1,t_2}(T_2) = T_3$, then for each list $L_3 \in T_3$, there exists $L_1 \in T_1$, and $L_2 \in T_2$ that are both the same as L_3 except with 1's in L_3 replaced with 2's and 2's with 1's. So $L_1 = L_2$. Therefore $B_{t_1,t_2}(T)$ is one-to-one. Let $B_{t_1,t_2}^{-1}(T) = B_{t_1,t_2}(T)$. We originally defined $B_{t_1,t_2}(T)$ as a function on the set TS_3 , so, though we later restricted our function to sets of lists that denote a tree avoiding t_1 , it is still sensible to talk about $B_{t_1,t_2}(T)$ in a more general way. If a tree avoids t_2 it contains no 2's in its set of lists. By applying $B_{t_1,t_2}^{-1}(T)$ to such a set of lists, we will obtain a set of lists containing no 1's, thus avoiding t_1 . From this, we can see that $B_{t_1,t_2}^{-1}(B_{t_1,t_2}(T)) = T$. Therefore, $B_{t_1,t_2}(T)$ is onto. We also must be sure that $B_{t_1,t_2}(T)$ preserves the number of leaves of a tree T; that is, that the number of leaves of T is equal to number of leaves of $B_{t_1,t_2}(T)$. It is enough to show that for each internal vertex v_1 in T there is a unique internal vertex v_2 in $B_{t_1,t_2}(T)$ that has the same number of leaves as v_1 . With list notation, there is a prefix p_1 describing the path to v_1 in T. If x is the number of lists in T that have the prefix p_1 , then v_1 has 3-x children that
are leaves. After the bijection is completed, p_1 is mapped to the prefix p_2 of some list(s) in $B_{t_1,t_2}(T)$. Since nothing else is mapped to p_2 , we will have exactly x lists in $B_{t_1,t_2}(T)$ with the prefix p_2 . Thus, p_2 denotes a path to an internal vertex v_2 that will also have 3-x leaves. Because this holds true for every vertex v in T, the number of leaves is preserved by the bijection $B_{t_1,t_2}(T)$. ## **6.2** $B_{t_3,t_4}(T)$ For a tree T to avoid t_3 , no vertex v can have children descending from both its left and center children; to avoid t_4 , no vertex can have children descending from both its left and right children. Therefore, we define a bijection $B_{t_3,t_4}(T)$ to switch the right and center subtrees of each vertex. Using list notation, this is equivalent to defining $B_{t_3,t_4}(T)$ to replace every 2 with a 3 and every 3 with a 2. ### Example 6.3. is mapped to Using lists, $B_{t_3,t_4}(\{[1,2,1],[1,2,3,2],[3,2,2],[3,3,1]\}) = \{[1,3,1],[1,3,2,3],[2,2,1],[2,3,3]\}$ To show that $B_{t_3,t_4}(T)$ does send trees avoiding t_3 to trees avoiding t_4 , we note that t_3 is denoted $\{[1],[2]\}$ and t_4 is denoted $\{[1],[3]\}$. A tree denoted by $T = \{L_i\}_{i=1}^l$ avoids t_3 if are no two lists L_1, L_2 such that both lists begin with the same prefix followed by a 1 in L_1 and a 2 in L_2 . Thus, after the mapping, $B_{t_3,t_4}(T)$ is a set of lists with no two lists M_1, M_2 such that both begin with the same prefix followed by a 1 in M_1 , and a 3 in M_2 . This is exactly the requirement for a set of lists to denote a tree that avoids t_4 . ## **Theorem 6.4.** $B_{t_3,t_4}(T)$ is both one-to-one and onto. Proof. Since this is another replacement rule, the proof that $B_{t_3,t_4}(T)$ is a bijection is nearly identical to that of $B_{t_1,t_2}(T)$. Only a few slight differences have to be noted. First, in the proof that $B_{t_3,t_4}(T)$ is one-to-one, the lists $L_1 \in T_1$, and $L_2 \in T_2$ are both the same as $L_3 \in T_3$ except with 3's in L_3 replaced with 2's and 2's with 3's. Second, to prove that $B_{t_3,t_4}(T)$ is onto, we let $B_{t_3,t_4}^{-1}(T) = B_{t_3,t_4}(T)$, and after applying the function $B_{t_3,t_4}^{-1}(T)$ to such a tree, we get a set of lists such that there are no two lists L_1, L_2 such that both lists begin with the same prefix followed by a 1 in L_1 and a 2 in L_2 . From this, it can be seen that $B_{3,4}(B_{3,4}(T)) = T$. # **6.3** $B_{t_5,t_9}(T)$ A tree avoids t_5 if no two consecutive left vertices have children, and avoids t_9 if no two consecutive center vertices have children. In list notation, then, a tree avoids t_5 if it has no pairs of consecutive 1's in its lists, and it avoids t_2 if it has no pairs of consecutive 2's. Thus, we define $B_{t_5,t_9}(T) = B_{t_1,t_2}$. That is, for a tree T avoiding t_5 , $B_{t_5,t_9}(T)$ replaces each 1 T's set of lists with a 2, and each 2 with a 1. Because we originally defined $B_{t_1,t_2}(T)$ on TS_3 defining $B_{t_5,t_9}(T)$ in this way is reasonable. ## Example 6.5. In list notation, $B_{t_5,t_9}([1,3],[2,2],[3,2,2]) = [2,3],[1,1],[3,1,1].$ Again, we assert that $B_{t_5,t_9}(T)$ does send trees avoiding t_5 to trees avoiding t_9 . By the way we defined it, the function $B_{t_5,t_9}(T)$ will map a set of lists containing no pairs of consecutive 1's to a set of lists containing no pairs of consecutive 2's by its replacing every 1 with a 2, and every 2 with a 1. This is equivalent to sending trees avoiding t_5 to trees avoiding t_9 . # **Theorem 6.6.** $B_{t_5,t_9}(T)$ is both one-to-one and onto. *Proof.* Once again, the proof that the replacement rule $B_{t_5,t_9}(T)$ is a bijection is nearly identical to that of $B_{t_1,t_2}(T)$, with only one difference. In the proof that $B_{t_5,t_9}(T)$ is onto, by applying $B_{t_5,t_9}^{-1}(T) = B_{t_5,t_9}(T)$ to a set of lists avoiding t_9 (that is, containing no pairs of consecutive 2's), we obtain a set of lists containing no pairs of consecutive 1's, thus avoiding t_5 . ## **6.4** B_{t_6,t_7} Using list notation, a tree avoids t_6 if none of its lists have a 1 followed by a 2; it avoids t_7 if none of its lists have a 1 followed by a 3. Therefore, we define $B_{t_6,t_7}(T) = B_{t_3,t_4}(T)$. That is, $B_{t_6,t_7}(T)$ replaces each 2 T's lists with a 3, and each 3 with a 2. (Because we originally defined $B_{t_3,t_4}(T)$ on TS_3 defining $B_{t_6,t_7}(T)$ in this way is reasonable.) #### Example 6.7. $\label{eq:interpolation} \textit{In list notation}, \ B_{t_6,t_7}([1,3,1,3],[3,2,1,3],[3,2,3]) = [1,2,1,2],[2,3,1,2],[2,3,2].$ We will first show that $B_{t_6,t_7}(T)$ sends trees avoiding t_6 to trees avoiding t_7 . The trees avoiding t_6 are exactly the sets of lists that do not contain the sequence [1,2] in any list. Similarly, trees avoiding t_7 are exactly the sets that do not contain the sequence [1,3] in any list. Thus, our function will map a set of lists not containing the sequence [1,2] to a set of lists not containing the sequence [1,3]. Because $B_{t_6,t_7}(T)$ replaces every 2 with a 3, and every 3 with a 2, it achieves this goal, sending trees avoiding t_6 to trees avoiding t_7 . # **Theorem 6.8.** B_{t_6,t_7} is both one-to-one and onto. *Proof.* The proof that the replacement rule $B_{t_6,t_7}(T)$ is a bijection is nearly identical to that of our first three bijections. The proof of one-to-one is the same as that of $B_{t_3,t_4}(T)$, and the proof of onto differs only in that by applying $B_{t_6,t_7}^{-1}(T) = B_{t_6,t_7}(T)$ to a set of lists that avoids t_7 (that is, not containing the sequence [1,2]), we will obtain a set of lists not containing the sequence [1,3], thus avoiding t_6 . # **6.5** B_{t_7,t_8} Using list notation, a tree avoids t_7 if none of its lists have a 1 followed by a 3; it avoids t_8 if none of its lists have a 2 followed by a 1. Therefore, we define $B_{t_7,t_8}(T)$ to replace every 1 with a 2, every 2 with a 3, and every 3 with a 1. #### Example 6.9. In list notation, $B_{t_7,t_8}([1],[2,1],[3,2,1,3]) = [2],[3,2],[1,3,2,1].$ We will first show that $B_{t_7,t_8}(T)$ sends trees avoiding t_7 to trees avoiding t_8 . The trees avoiding t_7 are exactly the sets of lists that do not contain the sequence [1,3] in any list. Similarly, trees avoiding t_8 are exactly the sets that do not contain the sequence [2,1] in any list. Thus, our function will map a set of lists not containing the sequence [1,3] to a set of lists not containing the sequence [2,1]. Because $B_{t_7,t_8}(T)$ replaces every 1 with a 2, every 2 with a 3, and every 3 with a 1, it achieves this goal, sending trees avoiding t_7 to trees avoiding t_8 . ## Theorem 6.10. B_{t_7,t_8} is a bijection. *Proof.* In proving that the replacement rule $B_{t_6,t_7}(T)$ is a bijection, we again have a nearly identical proof to that of the previous bijections. To prove that the bijection is one-to-one, however, we note that $L_1 \in T_1$ $L_2 \in T_2$ are the same as L_3 except with each 1, 2, and 3 in L_3 replaced with a 3, 1, and 2, respectively. Also, when we apply $B_{t_7,t_8}^{-1}(T) = B_{t_7,t_8}(T)$ to a set of lists avoiding t_7 (that is, not containing the sequence [1,3] in any of its lists), we will obtain a set of lists not containing the sequence [2,1], thus avoiding t_8 . **6.6** B_{t_3,t_6} Consider the function $B_{t_3,t_6}(T)$ defined by the following procedure applied each list $L \in T$: - 1. If L contains no 1 followed by a 2, do nothing to L. - 2. Otherwise, let $L = [x_1, ..., x_k, 1, 2, y_1, ..., y_l]$ where the displayed [1, 2] is the first occurrence of [1, 2]. We map L to the pair of lists $[x_1, ..., x_k, 1], [x_1, ..., x_k, 2, y_1, ..., y_l]$. So $[x_1, ..., x_k, 1]$ contains no occurrence of [1, 2]. - 3. Iterate step 2 for each new list created until we have produced $L_1, L_2, ..., L_p$, none of which contain a 1 followed by a 2. - 4. Throw away any L_i that is a prefix of another one of the lists that we created. **Example 6.11.** If $T_1 = \{[1, 2, 3, 2, 3, 1, 1, 1, 2, 1]\}$, then our first iteration maps T_1 to [1], [2, 3, 2, 3, 1, 1, 1, 2, 1]. Our second iteration gives [1], [2, 3, 2, 3, 1, 1, 1], [2, 3, 2, 3, 1, 1, 2, 1]. Our third iteration gives [1], [2, 3, 2, 3, 1, 1, 1], [2, 3, 2, 3, 1, 1], [2, 3, 2, 3, 1, 2, 1]. Our fourth iteration gives [1], [2, 3, 2, 3, 1, 1, 1], [2, 3, 2, 3, 1, 1], [2, 3, 2, 3, 1], [2, 3, 2, 3, 2, 1]. Since [2, 3, 2, 3, 1, 1], [2, 3, 2, 3, 1] are both prefixes of [2, 3, 2, 3, 1, 1, 1] we get rid of them. So we have $$B_{t_3,t_6}(T_1) = \{[1], [2,3,2,3,1,1,1], [2,3,2,3,2,1]\}.$$ The following claim will be useful when we prove B_{t_3,t_6} is a bijection later in this section. Claim 2. Let p_0 be a prefix of length k, and let x be the number of consecutive 1's at the end of p_0 (so if $p_0 = [1, 2, 1, 3, 1, 1]$ then we would have x = 2). If $B_{t_3,t_6}(\{L\}) = \{L_1, ..., L_r\}$ then we see that some L_i is of the form $[p_0, 1]$ and all of the other L_j 's are of the form $[p_1, 2, s_j]$, where p_1 is the first k - x terms of p_0 . proof We see this from step 2 in $B_{t_3,t_6}(T)$ identifying the prefix before the first occurrence of t_6 in L as occurring at the vertex given by p_0 . The next few iterations of step 2 send each subsequent list, with $[2, s_i]$ at its end, one level lower until we reach the vertex given by p_1 and we have one fewer occurrences of t_6 than before. Since we discard the prefixes of $[p_0, 1]$ created in this process and we know that this was the lowest level occurrence of t_6 in L we have shown that our L_j 's excluding L_i all have the prefix $[p_1, 2]$. In order to prove that B_{t_3,t_6} is a bijection, first construct an inverse function, $B_{t_3,t_6}^{-1}(T)$, given by the following process: - At each level of the tree T consider all occurrences of t_3 ; that is, lists of the form $[p_0, 1, s_0], [p_0, 2,
s_2],$ where p_0 denotes a common prefix in the two lists and s_1, s_2 are suffixes. Note that for each occurrence of t_3 it is possible for there to be multiple lists of the form $[p_0, 2, s_i]$. - At the first level we replace each occurrence of t_3 at the vertex given by the path p_0 we replace each $[p_0, 2, s_i]$ with $[p_0, 1, 2, s_i]$. If there are multiple occurrences of t_3 on the same level, then applying step 2 to one occurrence of t_3 does not affect the lists denoting any other occurrence of t_3 . Therefore, the order with which we apply this step to each occurrence of t_3 at the *i*th level is irrelevant. - Iterate step 2 at each consecutive level, beginning with the root. - Discard any lists that are a prefix of another in T's set of lists. **Example 6.12.** For $T_2 = \{[1], [2, 3, 2, 3, 1, 1, 1], [2, 3, 2, 3, 2, 1]\}$, at the first level we have an occurrence of t_3 given by $[1] \cap [2, 3, 2, 3, 1, 1, 1]$ and from $[1] \cap [2, 3, 2, 3, 2, 1]$. So, from step 2, we replace [2, 3, 2, 3, 1, 1, 1], [2, 3, 2, 3, 2, 1] with [1, 2, 3, 2, 3, 1, 1, 1], [1, 2, 3, 2, 3, 2, 1]. We now have the set $\{[1], [1,2,3,2,3,1,1,1], [1,2,3,2,3,2,1]\}$; step 3 requires that we check the next levels in order from lowest to highest and we see that t_3 does not occur until the sixth level, and is given by the lists [1,2,3,2,3,1,1,1], [1,2,3,2,3,2,1]. Thus, we replace [1,2,3,2,3,2,1] with [1,2,3,2,3,1,2,1]. With the third iteration of step 2, we replace [1,2,3,2,3,1,2,1] with [1,2,3,2,3,1,1,2,1]. The fourth iteration replaces [1,2,3,2,3,1,1,2,1] with [1,2,3,2,3,1,1,1,2,1], and we are left with the set $\{[1],[1,2,3,2,3,1,1,1],[1,2,3,2,3,1,1,1,2,1]\}$. After applying step 4, we see that $B_{t_3,t_6}^{-1}(T_2) = \{[1,2,3,2,3,1,1,1,2,1]\}$. We note that $B_{t_3,t_6}^{-1}(T_2) = T_1$ as expected from example 6.11. We now begin our proof that $B_{t_3,t_6}(T)$ is bijection. It is easy to see that $B_{t_3,t_6}(T)$ does in fact map from trees avoiding t_3 to trees avoiding t_6 . $B_{t_3,t_6}(T)$ is defined on trees avoiding t_3 and it eliminates all occurrences of t_6 . Likewise we see that $B_{t_3,t_6}^{-1}(T)$ is defined on trees avoiding t_6 and eliminates all occurrences of t_3 . So $B_{t_3,t_6}^{-1}(T)$ does in fact map from trees avoiding t_6 to trees avoiding t_3 . Now we must show that $B_{t_3,t_6}^{-1}(B_{t_3,t_6}(T)) = T$. First let us examine $B_{t_3,t_6}(T)$. We see that each occurrence of t_6 is replaced with an occurrence of t_3 . Furthermore we are given that no t_3 occurs in a tree in the domain of $B_{t_3,t_6}(T)$. We claim that the only way for t_3 to occur in $B_{t_3,t_6}(T)$, where T is an arbitrary tree avoiding t_3 , is for our t_3 in $B_{t_3,t_6}(T)$ to be produced by an occurrence of t_6 . This is easy to see, since we know that there are no copies of t_3 in T before our mapping, and B_{t_3,t_6} either sends a list to itself or "splits" a list into two lists wherever a t_6 occurs. Consider a list $L \in T$. By claim 2 we know that $B_{t_3,t_6}(\{L\}) = \{L_1, ..., L_r\}$ where some L_i (say L_1) is of the form $[p_0, 1]$ and all other L_j 's are of the form $[p_1, 2, s_j]$. If x is the number of consecutive 1's at the end of p_0 then we see that with x+1 iterations of step 2 of $B_{t_3,t_6}^{-1}(T)$ we map our L_j 's to lists of the form $[p_0, 1, 2, s_j]$ and L_1 is discarded for being a prefix of the others. This was a valid step since we know that there could not be any occurrences of t_3 in $\{L_1, ..., L_r\}$ that were not produced by a t_6 when $B_{t_3,t_6}(T)$ was applied to T. This same reasoning applies to each occurrence of t_6 in T. Thus we see that $B_{t_3,t_6}^{-1}(B_{t_3,t_6}(T)) = T$. This concludes our proof that $B_{t_3,t_6}(T)$ is a bijection. ### Claim 3. $B_{t_3,t_6}(T)$ preserves the numbers of leaves of T. Proof. Step 2 in our bijection is the only step that changes the structure of T. Consider an arbitrary occurrence of t_6 whose root is the vertex given by the prefix p_0 in T such that there is no occurrence of t_6 in p_0 . Then step 2 in our bijection will map all lists with the prefix $[p_0, 1, 2]$ to the list $[p_0, 1]$ and lists with the prefix $[p_0, 2]$. As a result of no longer having any lists with the prefix $[p_0, 1, 2]$, we see that the vertex given by the path $[p_0, 1]$ has one more leaf in $B_{t_3,t_6}(T)$ than it did in T (namely its second child is a leaf, but was not a leaf in T). However we also see that the vertex given by the path p_0 has one less child that is a leaf as a result of having lists with $[p_0, 2]$ as a prefix. There could not have already been a list in T with $[p_0, 2]$ as a prefix since this would entail having an occurrence of t_3 at the vertex given by the path p_0 . Having The list $[p_0, 1]$ does not add to or subtract from the number of leaves we have since it is a prefix of the list it replaces and thus creates no new vertices. With each iteration of step 2 on an occurrence of t_6 this same reasoning holds. So we see that the number of leaves in $B_{t_3,t_6}(T)$ is the same as the number of leaves in T. ## 6.7 General Approaches to Bijections In this section, we take what we have found from the previous six bijections, and begin generalizing this to a bijection between any two equivalent tree patterns. We state a bijection between certain tree patterns that (1) have the same avoidance generating function and (2) have only one m-leaf parent. To determine when this generalization applies to two distinct tree patterns, we first define a super-pattern. We conclude with a conjecture about further generalizations of such bijections. ## 6.7.1 Super Patterns **Definition 6.13.** Consider a list L whose entires are members of $\{1, 2, ..., m\}$ (and thus represents an m-ary tree). A super pattern P of L is a list with elements of the set $\{\alpha_i\}_{i=1}^m$, when there exists a function $f(\alpha_i)$ assigning each α_i to a distinct integer 1 through m such that when $f(\alpha_i)$ is applied to each element of P we obtain L. Also, if P is a super-pattern of L, we say that L is a pattern of the form P. **Example 6.14.** If $P = [\alpha_1, \alpha_1, \alpha_2, \alpha_1, \alpha_3]$, then $L_1 = [1, 1, 2, 1, 3]$, $L_2 = [2, 2, 3, 2, 1]$ and $L_3 = [1, 1, 3, 1, 2]$ are all patterns of the form P. #### 6.7.2 Bijections for Single List Patterns **Theorem 6.15.** Let P be a list of arbitrary length whose elements are elements of $\{\alpha_i\}_{i=1}^m$. Also, let lists L_1 , L_2 be patterns of the form P, where L_1 is given by a function replacing each α_i with x_{α_i} , each a distinct integer 1 through 3, and L_2 is given by a function replacing each α_i with y_{α_i} , each a distinct integer 1 through 3. There exists a bijection, $B_{L_1,L_2}(T)$, mapping the set of trees avoiding $\{L_1\}$ to the set of trees avoiding $\{L_2\}$, defined as the function mapping each x_{α_i} to y_{α_i} in each list in T. **Example 6.16.** Consider two patterns $L_1 = [1, 1, 2, 1, 3]$, $L_2 = [2, 2, 3, 2, 1]$ of the form $P = [\alpha_1, \alpha_1, \alpha_2, \alpha_1, \alpha_3]$. There exists a bijection $B_{L_1,L_2}(T)$ mapping the set trees avoiding $\{L_1\}$ to the set of trees avoiding $\{L_2\}$. $B_{L_1,L_2}(T)$ is given by the performing the following mapping in each list of T: $$1 \rightarrow 2$$ $2 \rightarrow 3$ $3 \rightarrow 1$ To show that $B_{L_1,L_2}(T)$ maps trees avoiding $\{L_1\}$ to trees avoiding $\{L_2\}$, let T be a tree denoted by a set of lists that avoids $\{L_1\}$. By definition, T contains no list in which L_1 occurs. Thus, when we apply the bijection described, we have $B_{L_1,L_2}(T)$ to be a set of lists in which no list contains any instance of P_2 , since P_2 is P_1 with each x_{α_i} replaced with y_{α_i} . This, of course, means that $B_{L_1,L_2}(T)$ denotes a tree that avoids the pattern $\{P_2\}$. **Theorem 6.17.** The general bijection $B_{L_1,L_2}(T)$ is one-to-one, onto, and preserves the number of leaves of T. *Proof.* First we show that $B_{L_1,L_2}(T)$ is one-to-one. Note that it is important for the function that maps each α_i to x_{α_i} to map all α_i 's, regardless of whether or not an α_i actually occurs in the super-pattern P; the same is true for functions mapping α_i 's to y_{α_i} 's. Given $T_1, T_2 \in TS_3$. If $B_{L_1,L_2}(T_1) = T_3 \in TS_3$ and also $B_{L_1,L_2}(T_2) = T_3$, then for each list $M_3 \in T_3$ there exists lists M_1 in T_1 and M_2 in T_2 that are the same as M_3 except with each y_{α_i} in M_3 replaced with x_{α_i} . The note at the beginning of this proof is relevant here because, if B_{L_1,L_2} did not map every number in T_1 and T_2 , it may not have been clear whether some number in T_3 came from mapping $B_{L_1,L_2}(T)$ or was already in the original list. Because this is not the case, we have $M_1 = M_2$. Therefore, $B_{L_1,L_2}(T)$ is one-to-one. Now we show that $B_{L_1,L_2}(T)$ is onto. To do this, we define an inverse function of $B_{L_1,L_2}(T)$, denoted by $B_{L_1,L_2}^{-1}(T)$, to be the function that maps each y_{α_i} to x_{α_i} . It is clear that $B_{L_1,L_2}^{-1}(T)$ is defined on the sets of lists avoiding $\{L_2\}$. We also see that it follows that $B_{L_1,L_2}^{-1}(B_{L_1,L_2}(T)) = T$. Therefore, $B_{L_1,L_2}(T)$ is onto. Finally, we show that $B_{L_1,L_2}(T)$ preserves the number of leaves of T. It is enough to show that for each internal vertex v_1 in a given tree T there is a unique internal vertex v_2 in $B_{L_1,L_2}(T)$ that has the same number of leaves as v_1 . Using list notation, there is a prefix p_1 describing the path to v_1 in T. Let x be the number of lists in T that have the prefix p_1 followed by at least one additional number. Then v_1 has 3-x children that
are leaves. Under the bijection $B_{L_1,L_2}(T)$, p_1 is mapped to the prefix p_2 of some list(s) given by our bijection. Because $B_{L_1,L_2}(T)$ is one-to-one, nothing else is mapped to p_2 , giving exactly x lists in $B_{L_1,L_2}(T)$ with the prefix p_2 followed by at least one number. Thus p_2 denotes a path to an internal vertex v_2 that will also have 3-x leaves since there are x lists that have the prefix p_2 . This holds true for every vertex of T, proving that the number of leaves remains the same. ### 7 Conclusion Throughout this paper, we have investigated ternary trees, extending previous work in pattern avoidance. We began by finding the recurrence relations and generating functions by hand for several simple ternary tree patterns. To make finding trees' avoidance sequences easier, however, we developed an algorithm, based on Rowland's algorithm for binary trees, to find the generating function for trees avoiding any given tree pattern. After exploring these sequences and their connections to other combinatorial objects, such as the Little Schroeder numbers, we classified the tree patterns, grouping together those with the same avoidance sequence. From here, we were able to find bijections between the sets of trees avoiding two equivalent tree patterns, t_i and t_j ; these allow us to transform any tree avoiding t_i into one that avoids t_j . By stating several bijections between specific pairs of tree patterns, we then generalized this to any two tree patterns of the same form (i.e. with the same super-pattern). To extend our generalization, we state the following conjecture: [INSERT CONJECTURE ON "CUTTING" SUPER-PATTERNS] Areas for further research include: - 1. Finding more relationships between pattern-avoiding ternary trees and other combinatorial objects: - Class 5 Catalan Numbers, OEIS A000108 - Class 7.1 Little Schroeder Numbers, OEIS A001003 - Class 7.2 Number of modes of connections of 2n points, OEIS A006605 - 2. Demonstrating the partitioning of all ternary tree patterns based on equivalence classes (that is, tree patterns with the same avoidance sequence). - 3. Adapting and studying the ternary tree generating function algorithm, such that it counts the number of occurences of a given tree pattern. # 8 Appendix 1 - Table of Equivalence Classes This appendix lists ternary trees with at most nine leaves, classifying them by their avoidance generating function and sequence. Listed at the beginning of each class is the first 20 terms (including zeros) of their avoidance sequence, or, where the Maple package could not produce the terms, an expression of a's and x's, where $a = gf_t(x)$. For brevity, left-right reflections are omitted. Class 5 $$gf_t(x) = \frac{1 - \sqrt{1 - 4x^2}}{2x}$$ $$-a + x + a^2x = 0$$ $[0, 1, 0, 1, 0, 2, 0, 5, 0, 14, 0, 42, 0, 132, 0, 429, 0, 1430, 0, 4862, \dots]$ ## Class 7.1 $$gf_t(x) = \frac{(x^2+1) - \sqrt{(x^2+1)^2 - 8x^2}}{4x}$$ $$-a + x + 2a^2x - ax^2 = 0$$ $[0, 1, 0, 1, 0, 3, 0, 11, 0, 45, 0, 197, 0, 903, 0, 4279, 0, 20793, 0, 103049, \dots]$ #### Class 7.2 $$a - x - a^4x - a^2x = 0$$ $[0, 1, 0, 1, 0, 3, 0, 11, 0, 46, 0, 207, 0, 979, 0, 4797, 0, 24138, 0, 123998, \dots]$ #### Class 9.1 $$-a + x + a^2x + a^6x + a^4x = 0$$ [0, 1, 0, 1, 0, 3, 0, 12, 0, 54, 0, 262, 0, 1337, 0, 7072, 0, 38426, 0, 213197, 0...] #### Class 9.2 $$\pm (a^3x^2 + ax^2 - 2a^2x - x - a^4x + a) = 0$$ $[0, 1, 0, 1, 0, 3, 0, 12, 0, 54, 0, 261, 0, 1324, 0, 6954, 0, 37493, 0, 206316, 0, \dots]$ #### Class 9.3 $$\pm(a - x - 3a^2x + 3ax^2 - x^3) = 0$$ $[0, 1, 0, 1, 0, 3, 0, 12, 0, 54, 0, 261, 0, 1323, 0, 6939, 0, 37341, 0, 205011, 0, \dots]$ # 9 Appendix 2 - Maple Code ### 9.1 Maple Programs In this appendix, we give the Maple code for the intersection operation and generating function algorithm described in section 5. ``` > interstree := proc (T1::list, T2::list) option remember; if T1 = [1, 0] then return T2 else if T2 = [1, 0] then return T1 end if end if; return [1, interstree(T1[2], T2[2]), interstree(T1[3], T2[3]), interstree(T1[4], T2[4]), 0] end proc; > Listt := proc (B::list) local a, c, V; option remember; if B = [] then return [1, [1, 0], [1, 0], [1, 0], 0] end if; if B[1] = 1 then return [1, Listt(B[2 .. nops(B)]), [1, 0], [1, 0], 0] end if; if B[1] = 2 then return [1, [1, 0], Listt(B[2 .. nops(B)]), [1, 0], 0] end if; if B[1] = 3 then return [1, [1, 0], [1, 0], Listt(B[2 .. nops(B)]), 0] end if end proc; > Sett := proc (A::set) local c, k, t, F; option remember; if A = {} then return [1, 0] end if; if A = \{[]\} then return [1, [1, 0], [1, 0], [1, 0], 0] end if; F := Listt(A[1]); for k from 2 to nops(A) do F := interstree(F, Listt(A[k])) end do end proc; > Av := proc (T::list, k::posint) local a, x, c, p, B, S, t, i, m, n, g, U, V, L, Y, E, z; option remember; ``` ``` E := \{\}; U := \{\}; V := \{\}; z[0] := a[1, 0] = x+a[1, [1, 0], [1, 0], [1, 0], 0]; z[1] := a[1, [1, 0], [1, 0], [1, 0], 0] = a[1, 0]*a[1, 0]*a[1, 0]-a[op(interstree([1, 0]))] 0], T[2]))]*a[op(interstree([1, 0], T[3]))]*a[op(interstree([1, 0], T[4]))]; U := U \text{ union } \{a[1, 0], a[1, [1, 0], [1, 0], [1, 0], 0]\}; V := V \text{ union } \{a[op(interstree([1, 0], T[2]))], a[op(interstree([1, 0], T[3]))], a[op(interstree([1, 0], T[3]))]\} a[op(interstree([1, 0], T[4]))], a[1, 0], a[1, [1, 0], [1, 0], [1, 0], 0]}; E := E \text{ union } \{z[0], z[1]\}; c := 2; while V minus U \neq \{\} do B := V minus U; for i to nops(V minus U) do z[c] := B[i] = a[op(op(2, B[i]))]*a[op(op(3, B[i]))]*a[op(op(4, B[i]))]-a[op(interstree(op(3, B[i]))]*a[op(op(4, B[i]))]*a[op(interstree(op(3, B[i]))]*a[op(op(4, B[i]))]*a[op(interstree(op(3, B[i])))]*a[op(op(4, B[i]))]*a[op(interstree(op(3, B[i])))]*a[op(interstree(op(3, B[i] B[i]), T[2]))]*a[op(interstree(op(3, B[i]), T[3]))]*a[op(interstree(op(4, T[4]))]; U := U \text{ union } \{B[i]\}); V := V \text{ union } \{a[op(op(2, B[i]))], a[op(op(3, B[i]))], a[op(op(4, B[i]))], a[op(interstree)]\} B[i]), T[2]))], a[op(interstree(op(3, B[i]), T[3]))], a[op(interstree(op(4, B[i]), T[4]))]}); E := E \text{ union } \{z[c]\}); c := c+1 end do; end do; m := nops(E); g := eliminate(E, {seq(lhs[i](E[i]), i = 2 .. m)}); L := op(g[2]); L := subs(a[1, 0] = sum(q[n]*x\hat{n}, n = 0 .. k), L); Y := expand(L); for i from 0 to degree(Y,x) do p[i] := coeff(Y, x, i) end do; S := solve({seq(p[t] = 0, t = 0 .. k)}, {seq(q[t], t = 0 .. k)}); subs(S, [seq(q[t], t = 0 .. k)]) end proc; ``` ## References - [1] Rowland, Eric S. "Pattern Avoidance in Binary Trees," *Journal of Combinatorial Theory*, Series A **117** (2010) 741-758. - [2] Stanley, Richard P. *Enumerative Combinatorics*, New York: Cambridge University Press, 1999. - [3] On-Line Encyclopedia of Integer Sequences. Published electronically, http://oeis.org, 2010.