
Pattern Avoidance in Ternary Trees

Nathan Gabriel, Katie Peske, Sam Tay

July 30, 2010

Abstract

This paper considers the enumeration of ternary trees (i.e. rooted trees in which each
vertex has 0 or 3 children) avoiding a contiguous ternary tree pattern. We begin by finding the
recurrence relations for several simple ternary trees; then, for more complex trees, we extend a
known algorithm for finding the generating function that counts n-leaf binary trees avoiding a
given pattern. After investigating bijections between these trees’ avoidance sequences and other
common combinatorial objects, we conclude by finding a bijective method to restructure specific
tree patterns that give the same generating function, and generalizing this process to a larger
class of ternary trees.

1 Introduction

In recent years, pattern avoidance has proven to be a useful language to describe connections be-
tween various combinatorial objects. The notion of one object avoiding another has been studied
in permutations, word, partitions, and graphs. In 2010, Rowland explored pattern avoidance in
binary trees (that is, rooted trees in which each vertex has 0 or 2 children) because of the natural
bijection between n-leaf binary trees and n-vertex trees. His study had two main objectives. First,
he developed an algorithm to find the generating function denoting the number of n-leaf binary
trees avoiding a given tree pattern; he adapted this to count the number of occurences of the given
pattern. Second, he determined equivalence classes for binary tree patterns, classifying two trees s
and t as equivalent if the same number of n-leaf binary trees avoid s as avoid t for n ≥ 1. He com-
pleted the classification for all binary trees with at most six leaves, using these classes to develop
replacement bijections between equivalent binary trees [1].

In this paper, we extend Rowland’s work by exploring pattern avoidance in ternary trees, i.e.
ordered rooted trees in which each vertex has 0 or 3 children. We follow a similar outline to work
done in binary trees. As a preface to our work, we define a new system of notation to represent
m-ary trees (that is, trees where each vertex has 0 or m children), which we use to discuss ternary
trees. We then find and explain the recurrence relations that count trees avoiding relatively simple
ternary tree patterns (those with at most seven leaves), where the nth term denotes the number of
n-leaf trees avoiding the given tree pattern. Next, we adapt Rowland’s algorithm to find the avoid-
ance generating function for ternary trees; this is followed with a discussion of a Maple package
written to produce the terms of the series representation of the generating function for any tree
taken as input. Finally, we put forth bijections for several pairs of equivalent tree patterns, and
begin generalizing this process to fit a wider class of equivalent trees. The first appendix contains
all the equivalence classes of ternary trees with at most nine leaves found using the Maple package;
the Maple package itself is given in Appendix Two.

1

1.1 Definitions

1.1.1 Avoidance

Following Rowland’s definitions of containment and avoidance, a ternary tree T contains a tree
pattern t if there is a contiguous, rooted, and ordered subtree of T that is a copy of t. Conversely,
it avoids the given pattern t if there is no such subtree of T that is a copy of t. For example,
consider

.

T contains the tree

t = ,

because this pattern occurs beginning at the center child of the root of T (see bolded subtree).
However, T avoids

s =

because no vertex in T has children extending from both its left and center children.

We define Avn(t) to be the set of n-leaf ternary trees that avoid the given t, and avn(t) =
|Avn(t) | . This notation will be used in both the recurrence relations and generating functions of
the following sections.

1.1.2 Intersections

An important operation in analyzing trees is the intersection. The intersection of two trees, denoted
by ∩, is the tree obtained by drawing one tree on top of the other, such that they have the same
root. For example,

∩ = .

While “union” is often used for similar operations, we call it “intersection” here because when
talking about trees with a certain pattern at the root, the set of trees with a tree pattern s at the
root intersected with the set of trees with another pattern t at the root is the set of trees with s∩ t
at the root.

The intersection will be used when converting trees to our numeric notation in section 3, as well
as when finding a tree’s generating function in section 5.

1.1.3 Generating Functions

One of the most useful tools in analyzing pattern avoidance in ternary trees is the generating
function, gft(x). The generating function encodes the number of n-leaf trees that avoid a pattern

2

t. In series form, we have

gft(x) =
∞∑
n=0

avnx
n,

where the coefficient avn of xn is the number of trees with n leaves avoiding t.

2 Ten Ternary Trees

Before we begin exploring avoidance in ternary trees, we first list all of the 3-, 5-, and 7-leaf trees.*
We will refer back to these by the assigned labels below.

t0 = t1 = t2 = t3 =

t4 = t5 = t6 = t7 =

t8 = t9 =

*Note: The same number of trees avoid the reflection of any given t as avoid t; therefore, to avoid redundancy,

we do not explicitly list the trees’ reflections.

3 List Notation and TSm

In order to discuss pattern avoidance in trees numerically in a clear and concise way, we present an
alternate notation for ternary trees. This notation is easily extends to m-ary trees (i.e. tree where
each vertex has 0 or m children). This system, which we will refer to as “list notation,” will be
especially useful when we consider bijections between sets of pattern-avoiding trees in section 6.

3.1 m-leaf Parents and Sets of Lists

At the foundation of list notation are m-leaf parents, which will be used as the basis for determining
a tree’s representation as a set of lists.

Definition 3.1. An m-leaf parent is an internal vertex, v, of an m-ary tree such that v has exactly
m children, all of which are leaves.

For example, t6 has one 3-leaf parent and t3 has two 3-leaf parents.

List notation represents an m-ary tree with a set of lists, where each list follows the path from
the root to one m-leaf parent. We construct such a set from the following Tree-Set Algorithm:

• Since we are dealing with ordered trees, label the children of each internal vertex of an m-ary
tree from left to right, 1 through m. (In ternary trees, then, a vertex’s left child is labeled 1,
its center child 2, and its right child 3.)

3

• Denote a path from the root of a tree to an m-leaf parent by an ordered list of numbers
[x1, ..., xk], where k is the length of the path from the root to the m-leaf parent, such that
xi ∈ Z and 1 ≤ xi ≤ m for 1 ≤ i ≤ k. The first number x1 in the list represents the child of
the root labeled x1; xi then refers to the child of the vertex given by xi−1 that is labeled xi.

As an example, let us look again look at t6 and t3. In t6, the only 3-leaf parent is reached by
a path beginning at the root, going it the root’s left child, then to this vertex’s center child; in list
notation, t6 is denoted by the set of the single list {[1, 2]}. For t3, we reach one of its 3-leaf parents
by going to the root’s left child, and the other by the root’s center child; this becomes a set of two
lists, {[1], [2]}.

Theorem 3.2. An ordered m-ary tree T is uniquely defined by the set of paths from its root to
each m-leaf parent. The single vertex tree is represented by an empty set, {}, and the 3-leaf tree
(t0) by a set containing the empty list, {[]}.

Example 3.3. According to Theorem 3.2,

is uniquely defined by {[1, 1], [1, 3], [2], [3, 2, 3]}.

To prove Theorem 3.2, we first state two lemmas.

Lemma 3.4. In a finite m-ary tree, every internal vertex is either an m-leaf parent or has a
descendant that is an m-leaf parent.

Proof. Assume the lemma is false for the sake of a contradiction. Let v0 be an internal vertex of
a finite m-ary tree such that neither it nor any of its descendants is an m-leaf parent. Since all
internal vertices of an m-ary tree have m children, and since v0 is not an m-leaf parent, at least
one of its children v1 must also have children of its own. Because v1 is an internal vertex, it must
for the same reason have a child v2 that is an internal vertex. Thus, we generate an infinite list
[v0, v1, v2, ...] of distinct vertices in our finite graph. This is a contradiction, proving the lemma to
be true.

Lemma 3.5. In a finite m-ary tree, T , every leaf is the child of an m-leaf parent or the child of a
vertex on a path to an m-leaf parent.

Proof. Given a specific leaf l0, there are two possible cases:
Case 1: l0 is the child of an m-leaf parent. The lemma is true trivially.
Case 2: l0 is not the child of an m-leaf parent. In this case, at least one of l0’s siblings, l1, must
have children. Then, by Lemma 3.4 l1 or one of its descendants is an m-leaf parent. Since the path
between two vertices is always unique in a tree, l0’s parent is on the path to this m-leaf parent.

4

We now define a Set-Tree Algorithm to reverse the process of creating a set of lists; that is, a
method to generate an m-ary tree from a set of lists:

1. Create an m-ary tree from each list by the following procedure:

(a) Create a root.

(b) Give the root m children, labeled left to right from 1 to m.

(c) For the list [x1, x2, ..., xk] give x1-st child of the root m children. Label these children 1
to m as before, repeating the process at each level where xi denotes giving m children
to the xi-th child of the vertex that was given children by xi−1.

2. Take the intersection of all graphs obtained from step one to find the final m-ary tree.

With this algorithm and the two lemmas, we can now prove Theorem 3.2.

Proof. First, we prove that this Set-Tree Algorithm is an inverse map to the Tree-Set Algorithm;
that is, given a set of lists produced by inputing a tree into the Tree-Set Algorithm, the Set-Tree
Algorithm returns the original tree.

The algorithm gives all of the vertices on each path from an m-leaf parent to the root and all
of those vertices’ children by construction. Thus, by our two lemmas, the algorithm produces all
of the internal vertices and leaves of the graph that our lists came from.

The algorithm does not give us a tree with extra vertices (i.e. vertices not in the original tree)
since all of the vertices created by the algorithm are internal vertices from a path between an m-leaf
parent and the root or the children of such vertices. By our lemmas, then, the algorithm preserves
the number of vertices in the original tree.

Furthermore, the ordering of our graph is preserved by nature of the algorithm. Therefore we get
the same tree from our set of lists as was originally used to obtain the set of lists.

3.2 TSm Notation

Definition 3.6. Let S be a set of lists whose elements are integers 1 through m, such that no list
is a prefix of another list in S. Namely, S is an arbitrary set of lists describing an m-ary tree.
We write TSm for the set of all such sets of lists S.

Theorem 3.7. Each S ∈ TSm describes a distinct m-ary tree.

Proof. By the Set-Tree Algorithm, we know that the set of lists S describes some m-ary tree.
Consider two distinct sets S1 and S2 of this form and some list L0 in S1 but not in S2. Since L0 is
not the prefix of another list it represents a path to an m-leaf parent v0 in the tree S1. Since L0 is
not in S2 then v0 is not an m-leaf parent in the tree given by S2.

Theorem 3.8. By applying our procedure for denoting an m-ary tree by a set of lists to all m-ary
trees we obtain all S ∈ TSm.

Proof. By the Tree-Set Algorithm for obtaining a set of lists from an m-ary tree, a list L1 denotes
a path to an m-leaf parent v1. If L1 is a prefix of another list L2, where L1 6= L2, then v1 is on
the path to some other m-leaf parent v2, and v1 would not be an m-leaf parent. Thus, we cannot
obtain a set of lists from our procedure such that one list is the prefix of another. By Theorem 3.2,

5

we now know that our procedure produces a distinct S ∈ TSm. Furthermore, by Theorem 3.7, each
S ∈ TSm produces a distinct m-ary tree. Therefore, by applying our procedure to each m-ary tree
we must obtain each S ∈ TSm.

3.3 Pattern Avoidance in TSm

In order to make this TSm notation useful for defining bijections between ternary trees, we must
identify exactly what pattern avoidance looks like using sets of lists.

Consider a set of lists {Li}li=1 that denotes an m-ary tree t. A tree T denoted by {Mh}ph=1

contains t if there exists {Mhi}li=1 where each Mhi begins with the same prefix (possibly the empty
prefix) as all other Mhi ’s, followed by exactly the ordered sequence of elements of Li; this may
or may not be then followed an additional sequence of numbers. This understanding of a tree T
containing t follows directly from our previous understanding of one tree containing another. The
prefix that we are concerned with is the path from the root of T to the root of the pattern contained
in T . If the prefix is not the same for each list in T , then the paths of t do not begin at the same
vertex in T ; thus, the pattern is not contained in T .

Example 3.9. The tree pattern ta = {[1, 3, 2, 3], [1, 2, 2, 3]}, is contained by

T1 = {[3, 2, 3,1,3,2,3], [1, 1, 3, 2, 2], [3, 2, 3,1,2,2,3, 1, 1, 2]}.

Notice that, after the prefix [3, 2, 3], the first and third lists of T1 have exactly the sequence of each
list of t.

However, T2 = {[3, 1, 3, 2, 3], [1, 2, 2, 3]} avoids t. Even though it contains each sequence of
numbers from the lists of t, T2’s lists do not begin with the same prefix before the sequences begin.

Furthermore, the notion of a pattern occuring at a certain level of a tree is easily translated to
list notation. If a pattern t occurs in a tree T where the lists denoting t are preceded by the prefix
p0, then p0 represents the path to the vertex v at which t is rooted. If v is at the i-th level of T ,
then p0 will be of length i − 1; the converse is also true. Thus when a pattern t occurs at the ith
level of a tree, the lists giving t all have a prefix of length i− 1.

4 Finding Pattern Avoidance Recurrences

In this section, we find recurrence relations for the number of trees avoiding each of the ten trees
labeled in section 2. For each tree, we discuss the structure of trees that avoid the given tree
pattern, how the recurrence and generating function can be found from this structure, and we list
any other equivalent tree patterns. As before, we let Avn(t) = {trees with n-leaves that avoid t},
and avn(t) = |Avn(t) | ; that is, avn(t) is the number of trees with n leaves that avoid t. (If T is
clear in the given context, we will simply write Avn and avn.)

4.1 Avoiding t1 and t2

t1 =

6

To find avn(t1), let us look at how an n-leaf tree T must be structured in order to avoid t1.

Consider any given internal vertex v of T . Its left child can have no descendants, thus it must be
a leaf. Its center child can have a subtree of any number of leaves k, where 1 ≤ k ≤ n − 2 (these
bounds ensure that v will still have three children). Finally, v’s right child can also have a subtree,
but because there are n total leaves, it is restricted to n−k−1 leaves. Thus, there are avk subtrees
beginning at v’s center child, and avn−k−1 possible subtrees at v’s right child that also avoid t1.
Taking the summation of these over the possible values of k gives the recurrence relation

avn =

n−2∑
k=1

avkavn−k−1.

Our initial conditions for this recurrence are av0 = 0, because there are no trees with 0 leaves;
av1 = 1, because there is one tree with one leaf, and it avoids any tree pattern with more than
one leaf; and av2 = 0, because there are no trees with 2 leaves. We can now solve for gft1(x) =∑∞

k=0 avkx
k as follows:

avn =

n−2∑
k=1

avkavn−k−1

avnx
n =

n−2∑
k=1

avkavn−k−1x
n

∞∑
n=3

avnx
n =

∞∑
n=3

n−2∑
k=1

avkavn−k−1x
n

gft1(x)− (av2)x
2 − (av1)x− (av0) = x

∞∑
n=3

n−2∑
k=1

avkx
kavn−k−1x

n−k−1

gft1(x)− (av1)x = x
∞∑
k=1

∞∑
n=k+2

avkx
kavn−k−1x

n−k−1

gft1(x)− (av1)x = x

∞∑
k=1

avkx
k ·

∞∑
n=k+2

avn−k−1x
n−k−1

gft1(x)− (av1)x = x(gft1 − av0)2

x(gft1(x))2 − gft1(x) + x = 0

gft1(x) =
1±
√

1− 4x2

2x

In order to get positive numbers for avn, we discard one of these solutions, leaving us with:

gft1(x) =
1−
√

1− 4x2

2x

7

The first few terms of this sequence are (for n ≥ 0):

0, 1, 0, 1, 0, 2, 0, 5, 0, 14, ...

Two things are worth noting about this avoidance sequence. First, the non-zero terms make
up the Catalan Sequence (OEIS A000108). Second, it is interpolated by zeros because there are no
ternary trees with an odd number of leaves. This second observation will be true for the avoidance
sequence of any ternary tree pattern.

t2 =

To look at trees avoiding t2, we only need to make one alteration; namely, that it is the center
child, instead of the leftmost child, of each vertex that cannot have any children. Therefore, we
find that

gft1(x) = gft2(x) =
1−
√

1− 4x2

2x
.

4.2 Avoiding t3 and t4

t3 =

Next, we find the number of n-leaf trees that avoid t3 such that n ≥ 3. As before, we consider
any internal vertex v of a tree T that avoids t3.

There are two nonexclusive possibilties for which of v’s children have leaves. First, v’s leftmost
child has no children, but both its center and right children can. In the second case, v’s center
child has no children, but both its left and right children can. These two cases are equivalent to
avoiding t1 and t2, respectively. However, this double-counts one instance: that is, when both the
left and the center leaf of the t0 pattern have no children. There are exactly avn−2 trees counted
by both of the first two cases. Subtracting this from the recurrence relation, we are left with:

avn = 2

n−2∑
k=1

avkavn−k−1 − avn−2

Our initial conditions for this recurrence relation are again av0 = 0, av1 = 1, and av2 = 0. We can
now solve for gft3(x) =

∑∞
k=0 avkx

k as follows:

avn = 2
n−2∑
k=1

avkavn−k−1 − avn−2

8

avnx
n = 2

n−2∑
k=1

avkavn−k−1x
n − avn−2xn

∞∑
n=3

avnx
n = 2

∞∑
n=3

n−2∑
k=1

avkavn−k−1x
n −

∞∑
n=3

avn−2x
n

gft3(x)− (av2)x
2 − (av1)x− (av0) = 2x

∞∑
n=3

n−2∑
k=1

avkx
kavn−k−1x

n−k−1 − x2
∞∑
n=3

avn−2x
n−2

gft3(x)− x = 2x

∞∑
k=1

avkx
k
∞∑

n=k+2

avn−k−1x
n−k−1 − x2(gft3(x)− av0)

gft3(x)− x = 2x(gft3(x)− av0)2 − x2gft3(x)

2x(gft3(x))2 − (x2 + 1)gft3(x) + x = 0

After checking both solutions given by the quadratic equation, we find the generating function
to be:

gft3(x) =
x2 + 1−

√
x4 − 6x2 + 1

4x
,

which gives the Little Schroeder numbers, interpolated by zeros: 1,0,1,3,0,11,0,45,0,197,0,....
(OEIS A001003)

This is also the avoidance sequence for

t4 = .

As before, two cases exist for avoiding t4 (either the left and center or the right and center children
of v have descendants), as well as a term that needs to be subtracted to avoid double-counting
(when neither the left nor the right children of v have their own children). Thus, we have

gft3(x) = gft4(x) =
x2 + 1−

√
x4 − 6x2 + 1

4x
.

4.2.1 A Schroeder Bijection

In this subsection, we further examine the connection between trees avoiding t4 and the Little
Schroeder number. To do this, we look at one well-known combinatorial interpretation of the Little
Schroeder numbers: sn is the number of binary trees with n vertices and with each right edge
colored either red or blue (represented here as solid and dashed lines, respectively) [2]. To map
these structures to the ternary trees avoiding t4, we define the following bijection:

Begin by creating a list of numbers to represent each path from the root to one leaf of
the colored binary tree b. Each list will consist of numbers 1, 2, or 3: a solid right edge
is translated to a 1; any left edge, a 2; and a dashed right edge, a 3. Next, generate a
ternary tree by using the aforementioned Tree-Set Algorithm (see Section 3.1).

9

For example, the colored binary tree below is mapped first to a set of lists, which is then
translated to the shown ternary tree.

Let BR be the set of binary trees with n vertices and each right edge either solid or dashed,
and Bs(b) be the stated Schroeder bijection for mapping b ∈ BR to a ternary tree avoiding t4.

Claim 1. For each b ∈ BR, Bs(b) will always give a ternary tree avoiding t4.

Proof. In b, there are three options for each vertex’s children: a left child, a dashed edge leading to
a right child, or a solid edge leading to a right child. These can be combined in any way, except that
the vertex can never have both a dashed and a solid edge leading to its right child. Therefore, any
ternary tree pattern can be generated by our Schroeder bijection, except [1,3], which corresponds
to t4, ensuring that all trees generated by this bijection avoid t4.

Theorem 4.1. Bs(b) is a bijection, i.e. it is one-to-one and onto.

Proof. First we show that Bs(b) is one-to-one. Given two binary trees, b1 and b2 ∈ BR, if Bs(b1) = t
and Bs(b2) = t, then for each of t’s lists, there is a corresponding path of left, solid right, or dashed
right edges from the root of b1 to one of its leaves. Similarly, there is a corresponding path in b2,
and this path must be the same path as that in b1. This implies that b1 and b2 have the same set
of paths from the roots to each of their leaves. Therefore, b1 = b2.

In order to prove that Bs(b) is onto, we define B−1s (t) to map a ternary tree t that avoids t4 to
a binary tree b ∈ BR:

From each list L in t’s set of lists, draw a path from the root of b to a leaf in the following manner:
for a 1, draw a solid right edge; for a 2, draw a left edge; for a 3, draw a dashed right edge.

Now we show that the Schroeder bijection Bs(b) is onto. Let B−1s (t) = b. If t is a tree avoiding
t4, it does not have the pattern [1,3] in any of its lists. This implies that, in creating b, there will
never be a case where a vertex in b should have both a dashed right edge and a solid right edge.
Thus, b ∈ BR. Furthermore, because Bs(b) = t, that is Bs(B

−1
s (t)) = t, our Schroeder bijection is

onto.

As an example, look at s3 = 11. There are eleven 3-vertex colored binary trees, and eleven
5-leaf trees avoiding t4. Under the defined bijection Bs(b), each colored binary tree b is mapped

10

onto a tree avoiding t4 in the following way:

4.3 Avoiding t5 and t9

t5 =

To find the number of n-leaf trees that avoid t5, n ≥ 3, we consider two cases for any internal
vertex v of a tree T that avoids t5.

There are two possible structures that v’s children can follow. First, v’s left child has no children,
while the center and right can have a combination of k leaves and n− k − 1 leaves, 1 ≤ k ≤ n− 2.
The second case is when v’s left child has three children; to avoid t5, a left-vertex child cannot have
another consecutive left-vertex child. The four other vertices can have combinations of l, m, k, and
n− l−m− k− 1 children, 1 ≤ l,m, k ≤ n− 4. Therefore, avn(t5) is given by the sum of these two
cases:

avn =

n−2∑
k=1

avkavn−k−1 +

n−4∑
l=1

n−l−3∑
m=1

n−l−m−2∑
k=1

avlavmavkavn−l−m−k−1

11

t9 =

To find the recurrence relation for trees avoiding t9, we see that instead of avoiding two
consecutive left-children vertices, we avoid two consecutive middle-children vertices. Therefore,
avn(t5) = avn(t9) for n ≥ 1.

Clearly, it would be extremely difficult to solve this recurrence directly for the generating func-
tion gft5(x). For trees t6, t7, and t8, complex problems arise with overcounting and undercounting,
and we have not even been able to find their recurrence relations by hand. Instead, we adapt
the generating function algorithm invented by Rowland for trees avoiding binary tree patterns to
ternary tree patterns.

5 A Generating Function Algorithm

While finding a ternary tree’s avoidance generating function from its recurrence relation works well
when the trees are relatively small, the increasing complexity and intricacy soon make recurrence
relations very inefficient. For this reason, we developed an algorithm to find the generating function
gft(x) for any given tree t. First however, one clarification needs to be made. As mentioned in the
introduction, gft(x) represents in series form the number of n-leaf ternary trees that avoid t. In
this section, we omit the variable x to extend the generating function notation in a new direction.
Now, let gft(p) be the generating function whose series form denotes the number of n-leaf ternary
trees that (1) avoid t, and (2) contain the tree pattern p at their root. Therefore, the generating
function for all trees avoiding t is given by gft(), because all ternary trees begin with the single
vertex root. (For simplicity, though, we will usually abbreviate gft() = gft.)

The algorithm we use to find gft() is very similar to Rowland’s algorithm for binary trees
[1], but it accounts for an additional child at each internal vertex. The process defines a series
of generating functions using a recursive method. Initially, gft(), the generating function we are
interested in, is written in terms of another generating function. Then, for each new generating
function gft(p) introduced in the recursive step, we must deduce another recurrence for gft(p) in
terms of other generating functions. If t is a tree, we will use tl, tc, and tr to denote the left, center,
and right subtrees of t respectively. With this new notation, our algorithm to find gft() is as
follows:

1. gft() = x+ gft()

2. gft(p) = gft(pl) · gft(pc) · gft(pr)− gft(pl ∩ tl) · gft(pc ∩ tc) · gft(pr ∩ tr)

3. For each new variable introduced in the right hand side of the equation in step 2, deduce a
recurrence for gft(p) using step 2.

4. Solve the resulting system of equations for gft().

The first line of the algorithm defines gft() = x + gft(). This is because, unless t is the
single vertex, the generating function for trees with a single vertex at the root will always account

12

for the one tree with one leaf; from there, the rest of the trees avoiding t have a pattern at the
root, so x+ gft() constitutes the entire series of gft().

Next, we need to derive a recurrence for each unknown generating function, beginning with
gft(). To do this, we recognize that the generating function for trees with pattern p at
their root, gft(p), is made up of all of the possible combinations of the generating functions
of its children’s subtrees: gft(pl), gft(pc), and gft(pr). However, gft(pl), gft(pc), and gft(pr)
each account for the series of trees avoiding t individually, which overcounts when trees be-
gin with roots of the intersections pl ∩ tl, pc ∩ tc, and pr ∩ tr respectively. Therefore, we have
gft(p) = gft(pl) · gft(pc) · gft(pr)− gft(pl ∩ tl) · gft(pc ∩ tc) · gft(pr ∩ tr).

We must derive a recurrence for any new generating function that arises from applying step 2
of the algorithm to a different generating function, until we have a complete system of equations.
We then eliminate all unwanted variables until we have an equation consisting only of the variables
gft() and x. For very simple trees, we can usually solve directly for gft(); however, even with

the 7-leaf tree, t5 = , we get a quartic equation from this procedure. To avoid solving directly
for the whole function, we can substitute the kth order series representation

∑k
n=0 avnx

n for each
gft(), isolate the coefficients of each power of x, and set them each equal to zero. With these
equations, we can solve for each coefficient avn, 1 ≤ n ≤ k.

For example, we will show the process of finding the generating function for t5:

gft5(x) = gft5() = x+ gft5()

gft5() = (gft5())3 − gft5() · (gft5())2

gft5() = gft5() · (gft5())2 − gft5() · (gft5())2

Let a = gft5(), b = gft5(), and c = gft5(). Then,

a = x+ b

b = a3 − ca2

c = ba2 − ca2

Eliminating b and c gives the equation a− x− a4x− a2x = 0. Substituting, for example, the 25th

order series representation for a gives

25∑
n=0

avnx
n − x− (

25∑
n=0

avnx
n)4x− (

25∑
n=0

avnx
n)2x = 0.

Expanded, the first few powers of x have the following coefficients, which we set equal to zero:

x0 : −q0 = 0

x1 : q20 + 1− q1 + q40 = 0

x2 : 4 · q1 · q30 + 2 · q1 · q0 − q2 = 0

13

x3 : 6 · q21 · q20 + 4 · q2 · q30 + 2 · q2 · q0 + q21 − q3 = 0

x4 : 4 · q31 · q0 + 2 · q1 · q2 + 2 · q3 · q0 + 12 · q1 · q2 · q20 + 4 · q3 · q30 − q4 = 0

With all of the equations, we find the sequence avn, 1 ≤ n ≤ 25,

[0, 1, 0, 1, 0, 3, 0, 11, 0, 46, 0, 207, 0, 979, 0, 4797, 0, 24138, 0, 123998, 0, 647615, 0, 3428493, 0, 18356714]

5.1 Programming with Maple

To automate the algorithm for finding the generating function for ternary trees avoiding a certain
tree pattern, we program the procedure in Maple. To perform operations on trees (i.e. finding
left, center, and right subtrees), we represent them in a form consisting of lists of 1’s and 0’s.
A single vertex is denoted [1, 0]. If a vertex has three children, there will be lists Ll, Lc, and
Lr in the second, third, and fourth positions within its list, representing the subtrees of its left,

center, and right children, denoted [1, Ll, Lc, Lr, 0]. For example, t6 = is represented by
[1, [1, [1, 0], [1, [1, 0], [1, 0], [1, 0], 0], [1, 0], 0], [1, 0], [1, 0], 0]. Clearly, writing trees in this form gets
complicated quickly and can be very tedious. One of our programs in Maple converts trees from
the list notation of Section 3 to this [1, 0]-form.

5.1.1 Notation Conversion

The conversion from “list notation” to [1,0]-notation uses two procedures. The first procedure,
Listt(B), takes one list of 1’s, 2’s, and 3’s called B as an input. Notice this procedure will produce
trees that have precisely one m-leaf parent; that is, for any vertex in a tree produced by Listt(B),
at most one of its children will have three leaves. The base case states

if B=[] then return [1,[1,0],[1,0],[1,0],0]; end if;.

The list to be returned is then is then recursively defined with if statements concerning the first
integer of the input list:

if B[1]=1, then return [1,TS(B[2..nops(B)]),[1,0],[1,0],0]; end if;

if B[1]=2, then return [1,[1,0],TS(B[2..nops(B)]),[1,0],0]; end if;

if B[1]=3, then return [1,[1,0],[1,0],TS(B[2..nops(B)]),0]; end if;

The first integer determines if the root’s left, center, or right child has children. Then the program
recursively calls itself to determine the structure of the subtree whose root is that chosen vertex.
The procedure continues until it completes the length of the path to the 3-leaf parent, |B|.

The second procedure, Sett(A), takes one set called A as an input. Two base cases account for
our convention for the empty set and the set containing the empty list,

if A={} then return [1,0]; end if;

if A=[] then return [1,[1,0],[1,0],[1,0],0]; end if;

From here, we simply intersect the trees, as explained in the next section, given by each list produced
by the Listt(B) procedure.

14

5.1.2 Intersection

The intersection procedure, interstree(T1, T2), is essential for Listt(A) and the main avoidance
program (the algorithm adapted from Rowland). It is based on the fact that when aligning the
roots of two trees, the entire intersection can be found by combining the intersections of subtrees
with overlapping vertices. If one of the overlapping vertices has no children, we can simply return
the subtree given by the other tree, even if it is also a single vertex. Therefore, with two trees T1
and T2 (in [1,0]-form) as inputs, our base cases are

if T1=[1,0] then return T2; end if;

if T2=[1,0] then return T1; end if;

If a single vertex is not found, then there are still overlapping vertices descending from T1 and T2,
and we intersect them recursively. When neither of the above if statements are true, we know each
tree has three children:

return [1, interstree(T1[2], T2[2]), interstree(T1[3], T2[3]),

interstree(T1[4],T2[4]), 0]

The list positions [2,3,4] are the left, center, and right vertices’ subtrees respectively. Whenever an
overlapping vertex has no children, the other vertex’s subtree contributes to the overall intersection.

5.1.3 Avoidance Algorithm

The full avoidance program, Av(A,k), is dependent on the sets U , V , and E. U is the set of
variables for which the algorithm has already derived a recurrence (i.e., the gft(p) in line two of
the algorithm), V is the set of all of the variables found in the equations (i.e., gft(p), gft(pr),
gft(pr ∩ tr), etc., in line two of the algorithm), and E is the set of all equations in the algorithm.
Operations on trees are done through subscripts of the variable a, so that we can use specific gen-
erating functions as variables of algebraic equations when solving for gft(), which is denoted a[1,0].
First, the first and second lines of the algorithm are defined as z1 and z2, respectively. We then have
a loop that continues while V \U 6= {}, defining each unknown value from the set V \U , using the
avoidance algorithm described earlier. Each equation is assigned to names of zc, and the left-hand
side of these equations are each of the a variables that have been defined, with trees in the subscript.

When the loop is finished and all variables are defined, we eliminate the left-hand side of each
equation zc, 2 ≤ c ≤ |E|, finding an expression of a[1,0]’s and x’s set equal to zero. As mentioned
earlier, solving for the generating function directly from this expression gets very complicated;
instead, we substitute the series representation to the order of the input k,

∑k
n=0 qnx

n, for each
a[1,0]. We then isolate each coefficient of x, set each of them equal to zero, and simultaneously solve
for each qn. The program then outputs qn, 0 ≤ n ≤ k, which are the first k integers of the avoidance
sequence. To see more detail, refer to the second appendix which has the complete Maple code.

6 Bijections on Ternary Trees

Now that we have discussed two methods for enumerating pattern-avoiding trees, we look for
connections between specific sets of those trees. Recall that several of the ternary trees in this
paper have had the same pattern avoidance sequence as one or more other trees. That is, for some
distinct i, j, we found that gfti(x) = gftj (x). We will now give some explanation of why this is
the case. As Rowland did, we accomplish this through finding bijections, or “replacement rules,”
between the members of Avn(ti) and those of Avn(tj).

15

6.1 Bt1,t2(T)

Before we look at a bijection between t1 and t2, we define the notation for such bijections.
Bti,tj : TSm → TSm will denote a bijection between trees avoiding ti and trees avoiding tj . We
find such maps by analyzing the list notation for our pattern-avoiding trees.

t1 = t2 =

A tree avoids t1 if none of its left vertices have children, and avoids t2 if none of its center
vertices have children. In order to map a tree T avoiding t1 to a tree avoiding t2, we define our
bijection Bt1,t2(T) to “switch” the center subtree of every vertex with the left subtree of the same
vertex. In terms of list notation, a tree avoids t1 if it has no 1’s in its lists, and avoids t2 if it has
no 2’s in its lists. Thus, we define Bt1,t2(T) to replace every 1 in T ’s lists with 2, and every 2 with a 1.

Example 6.1.

is mapped to

The same example in list notation is Bt1,t2({[2, 3, 3], [3, 2]}) = {[1, 3, 3], [3, 1]}.

To prove that Bt1,t2(T) does send trees avoiding t1 to trees avoiding t2, we note that the trees
avoiding t1 are exactly the sets that do not contain any 1’s in any of the sets’ lists. Similarly, the
sets denoting trees avoiding t2 are exactly the sets that do not contain any 2’s in any of their lists.
Because of this, Bt1,t2(T) will map a set of lists containing no 1’s to a set of lists containing no 2’s.
This is equivalent to saying that Bt1,t2(T) does, in fact, send trees avoiding t1 to trees avoiding t2.

Theorem 6.2. Bt1,t2 is a bijection.

Proof. Consider T1, T2 ∈ TS3. If Bt1,t2(T1) = T3 ∈ TS3 and also Bt1,t2(T2) = T3, then for each list
L3 ∈ T3, there exists L1 ∈ T1, and L2 ∈ T2 that are both the same as L3 except with 1’s in L3

replaced with 2’s and 2’s with 1’s. So L1 = L2. Therefore Bt1,t2(T) is one-to-one.

Let B−1t1,t2(T) = Bt1,t2(T). We originally defined Bt1,t2(T) as a function on the set TS3, so,
though we later restricted our function to sets of lists that denote a tree avoiding t1, it is still
sensible to talk about Bt1,t2(T) in a more general way. If a tree avoids t2 it contains no 2’s in its
set of lists. By applying B−1t1,t2(T) to such a set of lists, we will obtain a set of lists containing no

1’s, thus avoiding t1. From this, we can see that B−1t1,t2(Bt1,t2(T)) = T . Therefore, Bt1,t2(T) is onto.

16

We also must be sure that Bt1,t2(T) preserves the number of leaves of a tree T ; that is, that the
number of leaves of T is equal to number of leaves of Bt1,t2(T). It is enough to show that for each
internal vertex v1 in T there is a unique internal vertex v2 in Bt1,t2(T) that has the same number
of leaves as v1. With list notation, there is a prefix p1 describing the path to v1 in T . If x is the
number of lists in T that have the prefix p1, then v1 has 3 − x children that are leaves. After the
bijection is completed, p1 is mapped to the prefix p2 of some list(s) in Bt1,t2(T). Since nothing else
is mapped to p2, we will have exactly x lists in Bt1,t2(T) with the prefix p2. Thus, p2 denotes a
path to an internal vertex v2 that will also have 3 − x leaves. Because this holds true for every
vertex v in T , the number of leaves is preserved by the bijection Bt1,t2(T).

6.2 Bt3,t4(T)

t3 = t4 =

For a tree T to avoid t3, no vertex v can have children descending from both its left and center
children; to avoid t4, no vertex can have children descending from both its left and right children.
Therefore, we define a bijection Bt3,t4(T) to switch the right and center subtrees of each vertex.
Using list notation, this is equivalent to defining Bt3,t4(T) to replace every 2 with a 3 and every 3
with a 2.

Example 6.3.

is mapped to

Using lists, Bt3,t4({[1, 2, 1], [1, 2, 3, 2], [3, 2, 2], [3, 3, 1]}) = {[1, 3, 1], [1, 3, 2, 3], [2, 2, 1], [2, 3, 3] }

To show that Bt3,t4(T) does send trees avoiding t3 to trees avoiding t4, we note that t3 is denoted
{[1], [2]} and t4 is denoted {[1], [3]}. A tree denoted by T = {Li}li=1 avoids t3 if are no two lists
L1, L2 such that both lists begin with the same prefix followed by a 1 in L1 and a 2 in L2. Thus,
after the mapping, Bt3,t4(T) is a set of lists with no two lists M1,M2 such that both begin with the
same prefix followed by a 1 in M1, and a 3 in M2. This is exactly the requirement for a set of lists
to denote a tree that avoids t4.

Theorem 6.4. Bt3,t4(T) is both one-to-one and onto.

Proof. Since this is another replacement rule, the proof that Bt3,t4(T) is a bijection is nearly
identical to that of Bt1,t2(T). Only a few slight differences have to be noted. First, in the proof
that Bt3,t4(T) is one-to-one, the lists L1 ∈ T1, and L2 ∈ T2 are both the same as L3 ∈ T3 except
with 3’s in L3 replaced with 2’s and 2’s with 3’s. Second, to prove that Bt3,t4(T) is onto, we let
B−1t3,t4(T) = Bt3,t4(T), and after applying the function B−1t3,t4(T) to such a tree, we get a set of lists
such that there are no two lists L1, L2 such that both lists begin with the same prefix followed by
a 1 in L1 and a 2 in L2. From this, it can be seen that B3,4(B3,4(T)) = T .

17

6.3 Bt5,t9(T)

t5 = t9 =

A tree avoids t5 if no two consecutive left vertices have children, and avoids t9 if no two con-
secutive center vertices have children. In list notation, then, a tree avoids t5 if it has no pairs of
consecutive 1’s in its lists, and it avoids t2 if it has no pairs of consecutive 2’s. Thus, we define
Bt5,t9(T) = Bt1,t2 . That is, for a tree T avoiding t5, Bt5,t9(T) replaces each 1 T ’s set of lists with
a 2, and each 2 with a 1. Because we originally defined Bt1,t2(T) on TS3 defining Bt5,t9(T) in this
way is reasonable.

Example 6.5.

is mapped to

In list notation, Bt5,t9([1, 3], [2, 2], [3, 2, 2]) = [2, 3], [1, 1], [3, 1, 1].

Again, we assert that Bt5,t9(T) does send trees avoiding t5 to trees avoiding t9. By the way we
defined it, the function Bt5,t9(T) will map a set of lists containing no pairs of consecutive 1’s to a
set of lists containing no pairs of consecutive 2’s by its replacing every 1 with a 2, and every 2 with
a 1. This is equivalent to sending trees avoiding t5 to trees avoiding t9.

Theorem 6.6. Bt5,t9(T) is both one-to-one and onto.

Proof. Once again, the proof that the replacement rule Bt5,t9(T) is a bijection is nearly identical
to that of Bt1,t2(T), with only one difference. In the proof that Bt5,t9(T) is onto, by applying
B−1t5,t9(T) = Bt5,t9(T) to a set of lists avoiding t9 (that is, containing no pairs of consecutive 2’s),
we obtain a set of lists containing no pairs of consecutive 1’s, thus avoiding t5.

6.4 Bt6,t7

t6 = t7 =

Using list notation, a tree avoids t6 if none of its lists have a 1 followed by a 2; it avoids t7
if none of its lists have a 1 followed by a 3. Therefore, we define Bt6,t7(T) = Bt3,t4(T). That is,
Bt6,t7(T) replaces each 2 T ’s lists with a 3, and each 3 with a 2. (Because we originally defined
Bt3,t4(T) on TS3 defining Bt6,t7(T) in this way is reasonable.)

18

Example 6.7.

is mapped to

In list notation, Bt6,t7([1, 3, 1, 3], [3, 2, 1, 3], [3, 2, 3]) = [1, 2, 1, 2], [2, 3, 1, 2], [2, 3, 2].

We will first show that Bt6,t7(T) sends trees avoiding t6 to trees avoiding t7. The trees avoiding
t6 are exactly the sets of lists that do not contain the sequence [1,2] in any list. Similarily, trees
avoiding t7 are exactly the sets that do not contain the sequence [1,3] in any list. Thus, our function
will map a set of lists not containing the sequence [1,2] to a set of lists not containing the sequence
[1,3]. Because Bt6,t7(T) replaces every 2 with a 3, and every 3 with a 2, it achieves this goal, sending
trees avoiding t6 to trees avoiding t7.

Theorem 6.8. Bt6,t7 is both one-to-one and onto.

Proof. The proof that the replacement rule Bt6,t7(T) is a bijection is nearly identical to that of our
first three bijections. The proof of one-to-one is the same as that of Bt3,t4(T), and the proof of
onto differs only in that by applying B−1t6,t7(T) = Bt6,t7(T) to a set of lists that avoids t7 (that is,
not containing the sequence [1,2]), we will obtain a set of lists not containing the sequence [1,3],
thus avoiding t6.

6.5 Bt7,t8

t7 = t8 =

Using list notation, a tree avoids t7 if none of its lists have a 1 followed by a 3; it avoids t8 if
none of its lists have a 2 followed by a 1. Therefore, we define Bt7,t8(T) to replace every 1 with a
2, every 2 with a 3, and every 3 with a 1.

Example 6.9.

is mapped to

In list notation, Bt7,t8([1], [2, 1], [3, 2, 1, 3]) = [2], [3, 2], [1, 3, 2, 1].

19

We will first show that Bt7,t8(T) sends trees avoiding t7 to trees avoiding t8. The trees avoiding
t7 are exactly the sets of lists that do not contain the sequence [1,3] in any list. Similarily, trees
avoiding t8 are exactly the sets that do not contain the sequence [2,1] in any list. Thus, our function
will map a set of lists not containing the sequence [1,3] to a set of lists not containing the sequence
[2,1]. Because Bt7,t8(T) replaces every 1 with a 2, every 2 with a 3, and every 3 with a 1, it achieves
this goal, sending trees avoiding t7 to trees avoiding t8.

Theorem 6.10. Bt7,t8 is a bijection.

Proof. In proving that the replacement rule Bt6,t7(T) is a bijection, we again have a nearly identical
proof to that of the previous bijections. To prove that the bijection is one-to-one, however, we note
that L1 ∈ T1 L2 ∈ T2 are the same as L3 except with each 1, 2, and 3 in L3 replaced with a 3, 1,
and 2, respectively. Also, when we apply B−1t7,t8(T) = Bt7,t8(T) to a set of lists avoiding t7 (that is,
not containing the sequence [1,3] in any of its lists), we will obtain a set of lists not containing the
sequence [2,1], thus avoiding t8.

6.6 Bt3,t6

t3 = = {[1], [2]}

t6 = = {[1, 2]}

Consider the function Bt3,t6(T) defined by the following procedure applied each list L ∈ T :

1. If L contains no 1 followed by a 2, do nothing to L.

2. Otherwise, let L = [x1, ..., xk, 1, 2, y1, ..., yl] where the displayed [1, 2] is the first occurrence
of [1, 2]. We map L to the pair of lists [x1, ..., xk, 1], [x1, ..., xk, 2, y1, ..., yl]. So [x1, ..., xk, 1]
contains no occurrence of [1, 2].

3. Iterate step 2 for each new list created until we have produced L1, L2, ..., Lp, none of which
contain a 1 followed by a 2.

4. Throw away any Li that is a prefix of another one of the lists that we created.

Example 6.11. If T1 = {[1, 2, 3, 2, 3, 1, 1, 1, 2, 1]}, then our first iteration maps T1 to [1], [2, 3, 2, 3, 1, 1, 1, 2, 1].
Our second iteration gives [1], [2, 3, 2, 3, 1, 1, 1], [2, 3, 2, 3, 1, 1, 2, 1].
Our third iteration gives [1], [2, 3, 2, 3, 1, 1, 1], [2, 3, 2, 3, 1, 1], [2, 3, 2, 3, 1, 2, 1].
Our fourth iteration gives [1], [2, 3, 2, 3, 1, 1, 1], [2, 3, 2, 3, 1, 1], [2, 3, 2, 3, 1], [2, 3, 2, 3, 2, 1].
Since [2, 3, 2, 3, 1, 1], [2, 3, 2, 3, 1] are both prefixes of [2, 3, 2, 3, 1, 1, 1] we get rid of them. So we have

Bt3,t6(T1) = {[1], [2, 3, 2, 3, 1, 1, 1], [2, 3, 2, 3, 2, 1]}.

The following claim will be useful when we prove Bt3,t6 is a bijection later in this section.

Claim 2. Let p0 be a prefix of length k, and let x be the number of consecutive 1’s at the end of
p0 (so if p0 = [1, 2, 1, 3, 1, 1] then we would have x = 2). If Bt3,t6({L}) = {L1, ..., Lr} then we see
that some Li is of the form [p0, 1] and all of the other Lj’s are of the form [p1, 2, sj], where p1 is
the first k − x terms of p0.

20

proof We see this from step 2 in Bt3,t6(T) identifying the prefix before the first occurrence of t6
in L as occurring at the vertex given by p0. The next few iterations of step 2 send each subsequent
list, with [2, si] at its end, one level lower until we reach the vertex given by p1 and we have one
fewer occurrences of t6 than before. Since we discard the prefixes of [p0, 1] created in this process
and we know that this was the lowest level occurrence of t6 in L we have shown that our Lj ’s
excluding Li all have the prefix [p1, 2].

In order to prove that Bt3,t6 is a bijection, first construct an inverse function, B−1t3,t6(T), given
by the following process:

• At each level of the tree T consider all occurrences of t3; that is, lists of the form [p0, 1, s0], [p0, 2, s2],
where p0 denotes a common prefix in the two lists and s1, s2 are suffixes. Note that for each
occurrence of t3 it is possible for there to be multiple lists of the form [p0, 2, si].

• At the first level we replace each occurrence of t3 at the vertex given by the path p0 we replace
each [p0, 2, si] with [p0, 1, 2, si]. If there are multiple occurrences of t3 on the same level, then
applying step 2 to one occurrence of t3 does not affect the lists denoting any other occurrence
of t3. Therefore, the order with which we apply this step to each occurrence of t3 at the ith
level is irrelevant.

• Iterate step 2 at each consecutive level, beginning with the root.

• Discard any lists that are a prefix of another in T ’s set of lists.

Example 6.12. For T2 = {[1], [2, 3, 2, 3, 1, 1, 1], [2, 3, 2, 3, 2, 1]}, at the first level we have an occur-
rence of t3 given by [1] ∩ [2, 3, 2, 3, 1, 1, 1] and from [1] ∩ [2, 3, 2, 3, 2, 1]. So, from step 2, we replace
[2, 3, 2, 3, 1, 1, 1], [2, 3, 2, 3, 2, 1] with [1, 2, 3, 2, 3, 1, 1, 1], [1, 2, 3, 2, 3, 2, 1].

We now have the set {[1], [1, 2, 3, 2, 3, 1, 1, 1], [1, 2, 3, 2, 3, 2, 1]}; step 3 requires that we check the
next levels in order from lowest to highest and we see that t3 does not occur until the sixth level,
and is given by the lists [1, 2, 3, 2, 3,1, 1, 1], [1, 2, 3, 2, 3,2, 1]. Thus, we replace [1, 2, 3, 2, 3, 2, 1] with
[1, 2, 3, 2, 3,1, 2, 1].

With the third iteration of step 2, we replace [1, 2, 3, 2, 3, 1, 2, 1] with [1, 2, 3, 2, 3,1, 1, 2, 1]. The
fourth iteration replaces [1, 2, 3, 2, 3, 1, 1, 2, 1] with [1, 2, 3, 2, 3,1, 1, 1, 2, 1], and we are left with the
set {[1], [1, 2, 3, 2, 3, 1, 1, 1], [1, 2, 3, 2, 3, 1, 1, 1, 2, 1]}. After applying step 4, we see that B−1t3,t6(T2) =
{[1, 2, 3, 2, 3, 1, 1, 1, 2, 1]}.

We note that B−1t3,t6(T2) = T1 as expected from example 6.11.

We now begin our proof that Bt3,t6(T) is bijection. It is easy to see that Bt3,t6(T) does in
fact map from trees avoiding t3 to trees avoiding t6. Bt3,t6(T) is defined on trees avoiding t3 and
it eliminates all occurrences of t6. Likewise we see that B−1t3,t6(T) is defined on trees avoiding t6
and eliminates all occurrences of t3. So B−1t3,t6(T) does in fact map from trees avoiding t6 to trees

avoiding t3. Now we must show that B−1t3,t6(Bt3,t6(T)) = T . First let us examine Bt3,t6(T). We see
that each occurrence of t6 is replaced with an occurrence of t3. Furthermore we are given that no t3
occurs in a tree in the domain of Bt3,t6(T). We claim that the only way for t3 to occur in Bt3,t6(T),
where T is an arbitrary tree avoiding t3, is for our t3 in Bt3,t6(T) to be produced by an occurrence
of t6. This is easy to see, since we know that there are no copies of t3 in T before our mapping,
and Bt3,t6 either sends a list to itself or “splits” a list into two lists wherever a t6 occurs. Consider
a list L ∈ T . By claim 2 we know that Bt3,t6({L}) = {L1, ..., Lr} where some Li (say L1) is of the

21

form [p0, 1] and all other Lj ’s are of the form [p1, 2, sj]. If x is the number of consecutive 1’s at the
end of p0 then we see that with x+ 1 iterations of step 2 of B−1t3,t6(T) we map our Lj ’s to lists of the
form [p0, 1, 2, sj] and L1 is discarded for being a prefix of the others. This was a valid step since
we know that there ccould not be any occurrences of t3 in {L1, ..., Lr} that were not produced by
a t6 when Bt3,t6(T) was applied to T . This same reasoning applies to each occurrence of t6 in T .
Thus we see that B−1t3,t6(Bt3,t6(T)) = T . This concludes our proof that Bt3,t6(T) is a bijection.

Claim 3. Bt3,t6(T) preserves the numbers of leaves of T .

Proof. Step 2 in our bijection is the only step that changes the structure of T . Consider an arbitrary
occurrence of t6 whose root is the vertex given by the prefix p0 in T such that there is no occurrence
of t6 in p0. Then step 2 in our bijection will map all lists with the prefix [p0, 1, 2] to the list [p0, 1]
and lists with the prefix [p0, 2]. As a result of no longer having any lists with the prefix [p0, 1, 2],
we see that the vertex given by the path [p0, 1] has one more leaf in Bt3,t6(T) than it did in T
(namely its second child is a leaf, but was not a leaf in T). However we also see that the vertex
given by the path p0 has one less child that is a leaf as a result of having lists with [p0, 2] as a prefix.
There could not have already been a list in T with [p0, 2] as a prefix since this wcould entail having
an occurrence of t3 at the vertex given by the path p0. Having The list [p0, 1] does not add to or
subtract from the number of leaves we have since it is a prefix of the list it replaces and thus creates
no new vertices. With each iteration of step 2 on an occurrence of t6 this same reasoning holds. So
we see that the number of leaves in Bt3,t6(T) is the same as the number of leaves in T .

6.7 General Approaches to Bijections

In this section, we take what we have found from the previous six bijections, and begin generalizing
this to a bijection between any two equivalent tree patterns. We state a bijection between certain
tree patterns that (1) have the same avoidance generating function and (2) have only one m-leaf
parent. To determine when this generalization applies to two distinct tree patterns, we first define
a super-pattern. We conclude with a conjecture about further generalizations of such bijections.

6.7.1 Super Patterns

Definition 6.13. Consider a list L whose entires are members of {1, 2, ...,m} (and thus represents
an m-ary tree). A super pattern P of L is a list with elements of the set {αi}mi=1, when there exists
a function f(αi) assigning each αi to a distinct integer 1 through m such that when f(αi) is applied
to each element of P we obtain L. Also, if P is a super-pattern of L, we say that L is a pattern of
the form P .

Example 6.14. If P = [α1, α1, α2, α1, α3], then L1 = [1, 1, 2, 1, 3], L2 = [2, 2, 3, 2, 1] and L3 =
[1, 1, 3, 1, 2] are all patterns of the form P .

6.7.2 Bijections for Single List Patterns

Theorem 6.15. Let P be a list of arbitrary length whose elements are elements of {αi}mi=1. Also,
let lists L1, L2 be patterns of the form P , where L1 is given by a function replacing each αi with
xαi, each a distinct integer 1 through 3, and L2 is given by a function replacing each αi with yαi,
each a distinct integer 1 through 3. There exists a bijection, BL1,L2(T), mapping the set of trees
avoiding {L1} to the set of trees avoiding {L2}, defined as the function mapping each xαi to yαi in
each list in T .

22

Example 6.16. Consider two patterns L1 = [1, 1, 2, 1, 3], L2 = [2, 2, 3, 2, 1] of the form P =
[α1, α1, α2, α1, α3]. There exists a bijection BL1,L2(T) mapping the set trees avoiding {L1} to the
set of trees avoiding {L2}. BL1,L2(T) is given by the performing the following mapping in each list
of T :

1→ 2

2→ 3

3→ 1

To show that BL1,L2(T) maps trees avoiding {L1} to trees avoiding {L2}, let T be a tree denoted
by a set of lists that avoids {L1}. By definition, T contains no list in which L1 occurs. Thus, when
we apply the bijection described, we have BL1,L2(T) to be a set of lists in which no list contains
any instance of P2, since P2 is P1 with each xαi replaced with yαi . This, of course, means that
BL1,L2(T) denotes a tree that avoids the pattern {P2}.

Theorem 6.17. The general bijection BL1,L2(T) is one-to-one, onto, and preserves the number of
leaves of T .

Proof. First we show that BL1,L2(T) is one-to-one. Note that it is important for the function that
maps each αi to xαi to map all αi’s, regardless of whether or not an αi actually occurs in the
super-pattern P ; the same is true for functions mapping αi’s to yαi ’s.
Given T1, T2 ∈ TS3. If BL1,L2(T1) = T3 ∈ TS3 and also BL1,L2(T2) = T3, then for each list M3 ∈ T3
there exists lists M1 in T1 and M2 in T2 that are the same as M3 except with each yαi in M3

replaced with xαi . The note at the beginning of this proof is relevant here because, if BL1,L2 did
not map every number in T1 and T2, it may not have been clear whether some number in T3 came
from mapping BL1,L2(T) or was already in the original list. Because this is not the case, we have
M1 = M2. Therefore, BL1,L2(T) is one-to-one.

Now we show that BL1,L2(T) is onto. To do this, we define an inverse function of BL1,L2(T),
denoted by B−1L1,L2

(T), to be the function that maps each yαi to xαi . It is clear that B−1L1,L2
(T) is

defined on the sets of lists avoiding {L2}. We also see that it follows that B−1L1,L2
(BL1,L2(T)) = T .

Therefore, BL1,L2(T) is onto.
Finally, we show that BL1,L2(T) preserves the number of leaves of T . It is enough to show that

for each internal vertex v1 in a given tree T there is a unique internal vertex v2 in BL1,L2(T) that
has the same number of leaves as v1. Using list notation, there is a prefix p1 describing the path to
v1 in T . Let x be the number of lists in T that have the prefix p1 followed by at least one additional
number. Then v1 has 3− x children that are leaves. Under the bijection BL1,L2(T), p1 is mapped
to the prefix p2 of some list(s) given by our bijection. Because BL1,L2(T) is one-to-one, nothing
else is mapped to p2, giving exactly x lists in BL1,L2(T) with the prefix p2 followed by at least one
number. Thus p2 denotes a path to an internal vertex v2 that will also have 3−x leaves since there
are x lists that have the prefix p2. This holds true for every vertex of T , proving that the number
of leaves remains the same.

7 Conclusion

Throughout this paper, we have investigated ternary trees, extending previous work in pattern
avoidance. We began by finding the recurrence relations and generating functions by hand for

23

several simple ternary tree patterns. To make finding trees’ avoidance sequences easier, however,
we developed an algorithm, based on Rowland’s algorithm for binary trees, to find the generating
function for trees avoiding any given tree pattern. After exploring these sequences and their con-
nections to other combinatorial objects, such as the Little Schroeder numbers, we classified the tree
patterns, grouping together those with the same avoidance sequence. From here, we were able to
find bijections between the sets of trees avoiding two equivalent tree patterns, ti and tj ; these allow
us to transform any tree avoiding ti into one that avoids tj . By stating several bijections between
specific pairs of tree patterns, we then generalized this to any two tree patterns of the same form
(i.e. with the same super-pattern).

To extend our generalization, we state the following conjecture:
[INSERT CONJECTURE ON “CUTTING” SUPER-PATTERNS]
Areas for further research include:

1. Finding more relationships between pattern-avoiding ternary trees and other combinatorial
objects:

• Class 5 - Catalan Numbers, OEIS A000108

• Class 7.1 - Little Schroeder Numbers, OEIS A001003

• Class 7.2 - Number of modes of connections of 2n points, OEIS A006605

2. Demonstrating the partitioning of all ternary tree patterns based on equivalence classes (that
is, tree patterns with the same avoidance sequence).

3. Adapting and studying the ternary tree generating function algorithm, such that it counts
the number of occurences of a given tree pattern.

8 Appendix 1 - Table of Equivalence Classes

This appendix lists ternary trees with at most nine leaves, classifying them by their avoidance
generating function and sequence. Listed at the beginning of each class is the first 20 terms
(including zeros) of their avoidance sequence, or, where the Maple package could not produce
the terms, an expression of a’s and x’s, where a = gft(x). For brevity, left-right reflections
are omitted.

Class 5

gft(x) =
1−
√

1− 4x2

2x

−a+ x+ a2x = 0

[0, 1, 0, 1, 0, 2, 0, 5, 0, 14, 0, 42, 0, 132, 0, 429, 0, 1430, 0, 4862, ...]

24

Class 7.1

gft(x) =
(x2 + 1)−

√
(x2 + 1)2 − 8x2

4x

−a+ x+ 2a2x− ax2 = 0

[0, 1, 0, 1, 0, 3, 0, 11, 0, 45, 0, 197, 0, 903, 0, 4279, 0, 20793, 0, 103049, ...]

Class 7.2
a− x− a4x− a2x = 0

[0, 1, 0, 1, 0, 3, 0, 11, 0, 46, 0, 207, 0, 979, 0, 4797, 0, 24138, 0, 123998, ...]

Class 9.1
−a+ x+ a2x+ a6x+ a4x = 0

[0, 1, 0, 1, 0, 3, 0, 12, 0, 54, 0, 262, 0, 1337, 0, 7072, 0, 38426, 0, 213197, 0...]

Class 9.2
±(a3x2 + ax2 − 2a2x− x− a4x+ a) = 0

[0, 1, 0, 1, 0, 3, 0, 12, 0, 54, 0, 261, 0, 1324, 0, 6954, 0, 37493, 0, 206316, 0, ...]

Class 9.3
±(a− x− 3a2x+ 3ax2 − x3) = 0

[0, 1, 0, 1, 0, 3, 0, 12, 0, 54, 0, 261, 0, 1323, 0, 6939, 0, 37341, 0, 205011, 0, ...]

25

9 Appendix 2 - Maple Code

9.1 Maple Programs

In this appendix, we give the Maple code for the intersection operation and generating function
algorithm described in section 5.

> interstree := proc (T1::list, T2::list)

option remember;

if T1 = [1, 0] then return T2

else if T2 = [1, 0] then return T1

end if end if;

return [1, interstree(T1[2], T2[2]), interstree(T1[3], T2[3]), interstree(T1[4],

T2[4]), 0]

end proc;

> Listt := proc (B::list)

local a, c, V;

option remember;

if B = [] then return [1, [1, 0], [1, 0], [1, 0], 0] end if;

if B[1] = 1 then return [1, Listt(B[2 .. nops(B)]), [1, 0], [1, 0], 0] end if;

if B[1] = 2 then return [1, [1, 0], Listt(B[2 .. nops(B)]), [1, 0], 0] end if;

if B[1] = 3 then return [1, [1, 0], [1, 0], Listt(B[2 .. nops(B)]), 0] end if

end proc;

> Sett := proc (A::set)

local c, k, t, F;

option remember;

if A = {} then return [1, 0] end if;

if A = {[]} then return [1, [1, 0], [1, 0], [1, 0], 0] end if;

F := Listt(A[1]);

for k from 2 to nops(A) do

F := interstree(F, Listt(A[k]))

end do

end proc;

> Av := proc (T::list, k::posint)

local a, x, c, p, B, S, t, i, m, n, g, U, V, L, Y, E, z;

option remember;

26

E := {}; U := {}; V := {};
z[0] := a[1, 0] = x+a[1, [1, 0], [1, 0], [1, 0], 0];

z[1] := a[1, [1, 0], [1, 0], [1, 0], 0] = a[1, 0]*a[1, 0]*a[1, 0]-a[op(interstree([1,

0], T[2]))]*a[op(interstree([1, 0], T[3]))]*a[op(interstree([1, 0], T[4]))];

U := U union {a[1, 0], a[1, [1, 0], [1, 0], [1, 0], 0]};
V := V union {a[op(interstree([1, 0], T[2]))], a[op(interstree([1, 0], T[3]))],

a[op(interstree([1, 0], T[4]))], a[1, 0], a[1, [1, 0], [1, 0], [1, 0], 0]};
E := E union {z[0], z[1]};
c := 2;

while V minus U 6= {} do

B := V minus U;

for i to nops(V minus U) do

z[c] := B[i] = a[op(op(2, B[i]))]*a[op(op(3, B[i]))]*a[op(op(4, B[i]))]-a[op(interstree(op(2,

B[i]), T[2]))]*a[op(interstree(op(3, B[i]), T[3]))]*a[op(interstree(op(4, B[i]),

T[4]))];

U := U union {B[i]});
V := V union {a[op(op(2, B[i]))], a[op(op(3, B[i]))], a[op(op(4, B[i]))], a[op(interstree(op(2,

B[i]), T[2]))], a[op(interstree(op(3, B[i]), T[3]))], a[op(interstree(op(4, B[i]),

T[4]))]});
E := E union {z[c]});
c := c+1

end do;

end do;

m := nops(E);

g := eliminate(E, {seq(lhs[i](E[i]), i = 2 .. m)});
L := op(g[2]);

L := subs(a[1, 0] = sum(q[n]*xn̂, n = 0 .. k), L);

Y := expand(L);

for i from 0 to degree(Y,x) do

p[i] := coeff(Y, x, i)

end do;

S := solve({seq(p[t] = 0, t = 0 .. k)}, {seq(q[t], t = 0 .. k)});
subs(S, [seq(q[t], t = 0 .. k)])

end proc;

References

[1] Rowland, Eric S. “Pattern Avoidance in Binary Trees,” Journal of Combinatorial Theory,
Series A 117 (2010) 741-758.

[2] Stanley, Richard P. Enumerative Combinatorics, New York: Cambridge University Press,
1999.

[3] On-Line Encyclopedia of Integer Sequences. Published electronically, http://oeis.org,
2010.

27

