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Abstract

A technique for fitting n + 1 data points is cubic spline interpola-
tion; n cubic polynomials can be designed to fit any n +1 data points
and interpolate between them. Traditionally, we use the assumption
that the data points are independent of the cubic splines. We can
relax this assumption to yield self-referencing cubic splines, which in-
terpolate without complete knowledge of the location of the given
data points. We explore this method through their use in modeling
2D groundwater flow with a circular heterogeneity using the method
of analytic elements as a basis for the model.1

Self-Referencing Cubic Splines

A cubic spline interpolation involves fitting n + 1 data points in such
a way that the interpolating function is continuous and smooth. It is
well known that using an interpolating polynomial to fit all n+1 data

1This material is based upon work supported by the National Science Foundation under
Grant No. 0353870
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points at once leads to Runge’s phenomenon – higher-order interpo-
lating polynomials become less numerically stable. [1] One solution
to this problem is to use cubic splines. Cubic splines are piecewise
polynomials whose n parts are cubic functions restricted to the inter-
vals between data points. Let S(t) be a spline interpolating a set of
values {(ti, yi)}0≤i≤n, such that Si(t) = σi0 +σi1t+σi2t

2 +σi3t
3 where

ti < t < ti+1. To maintain continuity and smoothness, the following
conditions must be met:

Continuity: For 2 ≤ i ≤ n, Si−1(ti) = yi = Si(ti). Also S1(t1) = y1

and Sn(tn+1) = yn+1.

Smoothness: For 2 ≤ i ≤ n, S′
i−1(ti) = S′

i(ti) and S′′
i−1(ti) = S′′

i (ti).

The above conditions are linear in the coefficients of the cubic
polynomials, but where there are 4n unknown coefficients, there are
only 4n−2 equations. If we consider the spline as a model for a flexible
rod (as it was historically [1]) then one further condition is required:

Naturality: S′′
1 (t1) = S′′

n(tn+1) = 0.

One underlying assumption in cubic spline interpolation is that the
value of the data points is completely known. In certain contexts, such
as groundwater flow modeling, there can be a dependence between
the data points and the coefficients of the spline. To account for
this dependence, we work with a partial data set {(ti, ũi)}0≤i≤n and
an influence function, Fi(t, σi0, σi1, σi2, σi3). This is the effect due to
ith cubic polynomial on the point t. A spline which influences the
data point it is supposed to fit is named a self-referencing cubic spline
(SRCS). The revised continuity condition becomes

SRCS Continuity: For 2 ≤ i ≤ n:

Si(ti) = ũi +
∑

j

Fj(t, σj0, σj1, σj2, σj3) = Si+1(ti)

and

S1(t1) = ũ1 +
∑

j

Fj(t1, σj0, σj1, σj2, σj3)

Sn(tn+1) = ũn+1 +
∑

j

Fj(t1, σj0, σj1, σj2, σj3)
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In the context of groundwater flow, we will use self-referencing cu-
bic splines to model the strength of a flow element meant to approxi-
mate the change in potential due to a heterogeneity in the hydraulic
conductivity of the aquifer. Since the strength of such a flow fea-
ture influences the potential values over which the interpolation takes
place, self-referencing cubic splines are useful in modeling this feature.

Groundwater Flow

Groundwater flows through underground aquifers comprised of porous
material. The purpose of groundwater flow modeling is to predict the
flow of water within this aquifer due to flow features such as rivers,
lakes, and wells, along with the material properties of the aquifer. The
classical assumption made in most groundwater models was indepen-
dently formulated by Dupuit and Forchheimer [3]: the variation of
flow due to changes in depth is negligible. Therefore, we consider only
2D models.

Specifically, we wish to determine the potential field Φ : R2 →
R governing groundwater flow, from which other quantities can be
derived. For example, we can estimate the velocity field ~v : R2 → R2

using Darcy’s law [2]

~v =
−∇Φ

n
.

While the potential at a particular point is not directly observable,
we can relate it to the measurable hydraulic head φ by Φ = kHφ,
where k is hydraulic conductivity and H is the width of the aquifer.
Measuring hydraulic head involves drilling a monitor well into the
aquifer and observing the height at which the water comes to rest.
Because of this, it is not reasonable to assume a very large number
of potential measurements. Thus, other means of modeling potentials
are necessary.

Provided we assume no rainfall or other significant change in water
volume within the aquifer, Darcy’s law and the Dupuit-Forchheimer
assumption imply that the potential field is harmonic, i.e., it is a
solution to Laplace’s equation

∇2Φ = 0

given the boundary conditions. One property of Laplace’s equation we
make frequent use of is the principle of superposition, which states that
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the sum of any two solutions to Laplace’s equation is itself a solution
to Laplace’s equation. This follows directly from the linearity of ∇2.
Many traditional techniques for modeling groundwater flow approxi-
mate solutions to Laplace’s equation on a grid using grid boundaries
and flow features as boundary conditions. For our purposes, however,
we use the analytic element method, which requires no grid and uses
only flow features as boundary conditions.

Most flow features can be broken up into combinations of simple
flow features: point sinks for wells, line sinks or sources for rivers, and
so forth. Using the principle of superposition, we may approximate
complex flow features by adding together the exact potential fields of
several simple flow features. Since the potential functions for simple
flow features may be calculated analytically, the method is called the
analytic element method. [2]

In particular, we are interested in modeling an aquifer heterogene-
ity. In such a heterogeneity, the hydraulic conductivity is different
than than that of the surrounding aquifer. Since hydraulic head is
directly observable, we must assume it is continuous. However, if k+

and k− are the hydraulic conductivities of the two materials, then the
potential has a jump discontinuity across the interface.

Third-Order Line Doublets

The simplest flow feature that models a jump in potential is the point
dipole. The potential of a point dipole is found by taking the limit of
a point sink and a point source as their strengths increase to infinity
and the distance between them decreases to zero. To model a jump
in potential along a line segment, we can integrate the potential of a
point dipole over the segment. The resulting flow feature is called a
line doublet. It can be shown that a point dipole has no net infiltration
or exfiltration [2]. Second-order line doublets are already used by
Haitjema’s program GFLOW to model heterogeneities.

It is known that the potential of a point dipole in 2D Cartesian
coordinates is

Φdp(r) =
−σ(ĉ · ~r)
2π‖~r‖2

where σ is the strength of the dipole and ĉ is a unit vector pointing in
the direction of the point source. From this we can write the potential
of a third-order line doublet as the integral
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Φd(~x) =
∫

line

−σ(λ)(ĉ · ~r)
2π‖~r‖2

dλ

where now σ is a cubic polynomial σ(λ) = σ0 +σ1λ+σ2λ
2 +σ3λ

3. To
evaluate this integral, we make use of the following diagram

! d!

"

!

||!||=0

r

||!||=L

t

c

Writing the above integral as four separate integrals and using the
projection ~t = ~η + ~τ , essentially four integrals must be solved (as
described in Appendix A) in terms of ‖~η‖, ‖~τ‖ and L:

I0 = arctan
(

L− ‖~τ‖
‖~η‖

)
+ arctan

(
‖~τ‖
‖~η‖

)
I1 =

1
2

ln
(
‖~τ‖2 + ‖~η‖2 + L2 − 2‖~τ‖L

‖~τ‖2 + ‖~η‖2

)
I2 =

L

‖~η‖
− I0

I3 =
1
2

(
L2 − 2L‖~τ‖

‖~η‖2

)
− I1

The potential due to each term in the strength distribution can
then be written as a linear combination of these terms.

Φ0(~x) = σ0I0

Φ1(~x) = σ1(‖~τ‖I0 + ‖~η‖I1)

Φ2(~x) = σ2(‖~τ‖2I0 + 2‖~τ‖‖~η‖I1 + ‖~η‖2I2)

Φ3(~x) = σ3(‖~τ‖3I0 + 3‖~τ‖2‖~η‖I1 + 3‖~τ‖‖~η‖2I2 + ‖~η‖3I3

Φd = Φ0 + Φ1 + Φ2 + Φ3
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In this derivation, we have made the tacit assumption that ~τ and ~λ
point in the same direction. Therefore, this solution is only accurate
on the half-plane where this condition holds. However, we can exploit
the symmetry about the axis ~τ = 1

2
~λ to obtain a solution for the full

plane.

Modeling Heterogeneities

With the third-order line doublet potential we can finally begin to
model a heterogeneity. For our purposes we will consider a circular
heterogeneity in which the hydraulic conductivity shifts from the ex-
ternal conductivity k to the internal conductivity k1. Our notation in
this respect follows the method used by [3] to model heterogeneities,
though his modeling does not explicitly use splines.

In modeling a heterogeneity we first discretize its boundary with a
set of control points, {(xi, yi)}0≤i≤n. In what follows we will assume
that the heterogeneity is closed, so that (x0, y0) = (xn, yn). At each
control point, we will calculate the potential Φ+

i due to all other flow
features. If we assume that the control point is infinitesimally close to
the exterior of the heterogeneity, again following Strack, then the jump
in potential due to the heterogeneity is ∆Φi = k̄Φ+

i , where k̄ = k+−k−
k+

.
In order to use a self-referencing cubic spline to interpolate the

expected potential jumps, we parameterize the boundary of the het-
erogeneity. We define the data points to be used in the self-referencing
interpolation as (ti,∆Φi) where

t0 = 0
ti+1 = ti + ‖(xi+1 − xi, yi+1 − yi)‖

One further modification to the cubic spline conditions is neces-
sary in order to model this situation. Since we have assumed that
the heterogeneity is closed, the boundary parametrization is periodic.
Therefore, it is reasonable to replace the naturality condition with a
condition reflecting the perodicity of the spline:

Periodicity: S′
1(t0) = S′

n(tn) and S′′
1 (t0) = S′′

n(tn).

The SRCS continuity, smoothness, and periodicity conditions ac-
count for 4n equations linear in the 4n coefficients of the cubic spline,
σij . Using these condtions, we may now sketch out the steps necessary
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to construct a model using third-order line doublets whose strength
distribution is a self-referencing cubic spline.

• Sum together the potentials of all flow features of known strength
into a “background” potential field, ΦB.

• Approximate the boundary of the heterogeneity with a closed
loop of n line doublets with endpoints {(xi, yi)}0≤i≤n where (xn, yn) =
(x0, y0). Parameterize this boundary so that ti maps to (xi, yi)
for 0 ≤ i ≤ n.

• Using ΦB, express the jump in potential ∆Φi due to the hetero-
geneity at each of the endpoints using the formula ∆Φi = k̄Φi

as above.

• Using ti and ∆Φi, solve the SRCS matrix equation.

• Use the resulting coefficients to determine the strength of each
line doublet, and add these potential fields to the background
potential field to model the total potential of the system.

Comparison with Exact Solutions

We implemented the algorithm described above in MATLAB 7.2,
along with utilities for calculating the potential field of several simple
flow features and displaying the combined total potential as a con-
tour plot. For comparison, we also implemented the exact solution for
a cylindrical heterogeneity with uniform flow along the x-axis, given
in [3]. We found the same qualitative behaviors in the SRCS solution
that appear in the exact solution. In the following contour plots, the
exact solution is given on the bottom.
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In this set, the external hydraulic conductivity is ten times the
internal conductivity.
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In this set, the internal hydraulic conductivity is ten times the
external conductivity.
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Conclusion and Future Research

Using self-referencing cubic splines as the strength distribution of a
chain of third-order line doublets allows us to model reasonably well
the qualitative effects of material heterogeneities within a groundwater
aquifer. This technique is not specialized to the theory of groundwater
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flow; any model governed by potential theory could make use of self-
referencing cubic splines.

As far as the general theory of SRCS is concerned, little is known.
While we considered the existence and uniqueness properties of SRCS,
we were unable to formulate reasonable limitations on influence func-
tions, as in our specific examples we could not even expect continuity.
Though we never encountered a singular SRCS matrix in our model,
there are some obvious choices of influence functions that yield sin-
gular matrices. Specifically, one can consider the full SRCS matrix
to be the sum of a normal cubic spline matrix and a matrix of influ-
ence functions. If the matrix of influence functions is chosen to be the
negation of the normal cubic spline matrix, the full SRCS matrix is
zero.
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The graph above summarizes the main result of our project. The
black curve represents a normal cubic spline interpolation with 500
data points. The series of pink curves represent the SRCS interpola-
tion with 10, 50, 100, 500, and 1000 data points, respectively. Finally,
the blue curve represents the strength distribution of the exact solu-
tion. We found that the SRCS spline with 500 endpoints more closely
approximated the exact solution than the usual cubic spline, and also
that increasing the number of data points reduced the error in the
approximation.
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When implementing the SRCS matrix equation for the strength
coefficients of the third-order line doublets, we neglected the influence
of a line doublet on itself, as the potential is discontinuous along the
line doublet. We found that the error between the SRCS and the
exact solution decreased as the number of points used to interpolate
in the model increased. Therefore, we suspect that a better result
would come from an algorithm that properly handled the effect of a
line doublet on itself, and that such an algorithm would yield more
accurate results with fewer line doublets.
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Appendix

Apendix A: Geometry of a 2D Line Doublet

The line doublet is an analytic flow element created by either bring-
ing a line source and a line sink of infinite strength infinitesimally close
(in a way analogous with the point dipole) or by integrating a point
dipole over a line. Since the latter route allows one to control the
strength distribution of the line doublet more explicitly, we choose it.
The above diagram details the geometry of the situation.

It is known that the potential of a 2D point dipole is

Φdp(r) =
−σ(ĉ · ~r)
2π‖~r‖2

So one expects that the potential of a line doublet be

Φd(~x) =
∫

line

−σ(ĉ · ~r)
2π‖~r‖2

ds

After parameterizing the line with λ ∈
[
0, L = ‖~L‖

]
, we can derive

the following relations from the diagram

‖~r‖2 = ‖~η‖2 + (λ− ‖~τ‖)2

ĉ · ~r = ĉ · ~η
(1)

Note: These relations only hold if ~τ = k~λ with k ≥ 0. If k < 0, then
we must redefine ‖~τ‖ appropiately as
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‖~τ‖ := −‖~τ‖

With this said, the derivations that follow can be considered to be
a two pass process: once with k > 0 such as in the above diagram,
and once with k < 0 as in the below diagram. Nicely, the derivations
are the same using the redefinition of ‖~τ‖.

Also, as we want the potential for a third-order line doublet, we
let the strength coefficient σ become cubic in the parameter λ, so that

σ(λ) = σ0 + σ1λ + σ2λ
2 + σ3λ

3

where σ0, σ1, σ2, and σ3 are real coefficients. We can then write the
potential as

Φd(~x) =
3∑

i=0

−σi

2π

∫ L

0

λi(ĉ · ~r)
‖~r‖2

dλ (2)

Applying the two relations (1) to (2), the potential can be rewritten
as

Φd(~x) =
3∑

i=0

−σi

2π

∫ L

0

λi(ĉ · ~η)
‖~η‖2 + (λ− ‖~τ‖)2

dλ (3)

Factoring out ‖~η‖2 from the bottom of (3), we may rewrite this as
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Φd(~x) =
−(ĉ · ~η)
2π‖~η‖2

3∑
i=0

σi

∫ L

0

λi dλ

1 +
(λ−‖~τ‖

‖~η‖
)2 (4)

The following substitution is the initial step in solving each Ii, and
for that reason we only apply it explicitly to I0

u =
(λ− ‖~τ‖)

‖~η‖
λ = ‖~η‖u + ‖~τ‖

dλ = ‖~η‖du

(5)

Φd(~x) =
−(ĉ · ~η)
2π‖~η‖2

3∑
i=0

σi

∫ L−‖~τ‖
‖~η‖

−‖~τ‖
‖~η‖

‖~η‖(u‖~η‖+ ‖~τ‖)i

1 + u2
du

=
−(ĉ · ~η)
2π‖~η‖

3∑
i=0

σi

∫ L−‖~τ‖
‖~η‖

−‖~τ‖
‖~η‖

(u‖~η‖+ ‖~τ‖)i

1 + u2
du

Define Φi with i = 0, 1, 2, and 3, as

Φi = σi
−(ĉ · ~η)
2π‖~η‖

∫ L−‖~τ‖
‖~η‖

−‖~τ‖
‖~η‖

(u‖~η‖+ ‖~τ‖)i

1 + u2
du (6)

The following is a list of integrals which are computed in Appendix A
to make the rest of our work easier.

I0 =
∫ L−‖~τ‖

‖~η‖

−‖~τ‖
‖~η‖

1
1 + u2

du = arctan
(

L− ‖~τ‖
‖~η‖

)
+ arctan

(
‖~τ‖
‖~η‖

)

I1 =
∫ L−‖~τ‖

‖~η‖

−‖~τ‖
‖~η‖

u

1 + u2
du =

1
2

ln
(
‖~t‖2 + L2 − 2‖~τ‖L

‖~t‖2

)

I2 =
∫ L−‖~τ‖

‖~η‖

−‖~τ‖
‖~η‖

u2

1 + u2
du =

L

‖~η‖
− I0

I3 =
∫ L−‖~τ‖

‖~η‖

−‖~τ‖
‖~η‖

u3

1 + u2
du =

1
2

(
L2 − 2L‖~τ‖

‖~η‖2

)
− I1

We then solve each integral separately and write the full potential
as a linear combination of σi and the integral terms, which we relabel
as Ii(~x).
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Solving Φ0

Φ0 = σ0
−(ĉ · ~η)
2π‖~η‖

∫ L−‖~τ‖
‖~η‖

−‖~τ‖
‖~η‖

1
1 + u2

du

= σ0
−(ĉ · ~η)
2π‖~η‖

I0

Solving Φ1

Φ1 = σ1
−(ĉ · ~η)
2π‖~η‖

∫ L−‖~τ‖
‖~η‖

−‖~τ‖
‖~η‖

‖~η‖u + ‖~τ‖
1 + u2

du

= σ1
−(ĉ · ~η)
2π‖~η‖

(∫ L−‖~τ‖
‖~η‖

−‖~τ‖
‖~η‖

‖~τ‖
1 + u2

du +
∫ L−‖~τ‖

‖~η‖

−‖~τ‖
‖~η‖

‖~η‖u
1 + u2

du

)

= σ1
−(ĉ · ~η)
2π‖~η‖

(‖~τ‖I0 + ‖~η‖I1)

Solving Φ2

Φ2 = σ2
−(ĉ · ~η)
2π‖~η‖

∫ L−‖~τ‖
‖~η‖

−‖~τ‖
‖~η‖

(‖~η‖u + ‖~τ‖)2

1 + u2
du

= σ2
−(ĉ · ~η)
2π‖~η‖

∫ L−‖~τ‖
‖~η‖

−‖~τ‖
‖~η‖

(‖~τ‖2 + 2‖~τ‖‖~η‖u + ‖~η‖2u2)
1 + u2

du

= σ2
−(ĉ · ~η)
2π‖~η‖

(
‖~τ‖2I0 + 2‖~τ‖‖~η‖I1 + ‖~η‖2I2

)
Solving Φ3

Φ3 = σ3
−(ĉ · ~η)
2π‖~η‖

∫ L−‖~τ‖
‖~η‖

−‖~τ‖
‖~η‖

(‖~η‖u + ‖~τ‖)3

1 + u2
du

= σ3
−(ĉ · ~η)
2π‖~η‖

∫ L−‖~τ‖
‖~η‖

−‖~τ‖
‖~η‖

‖~τ‖3 + 3‖~τ‖2‖~η‖u + 3‖~τ‖‖~η‖2u2 + ‖~η‖3u3

1 + u2
du

= σ3
−(ĉ · ~η)
2π‖~η‖

(
‖~τ‖3I0 + 3‖~τ‖2‖~η‖I1 + 3‖~τ‖‖~η‖2I2 + ‖~η‖3I3

)
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Result

Finally, we can state the full potential due to the line doublet as

Φd(~x) =
3∑

i=0

Φi. (7)
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Appendix AA

I0 =
∫ L−‖~τ‖

‖~η‖

−‖~τ‖
‖~η‖

1
1 + u2

du

= arctan
(

L− ‖~τ‖
‖~η‖

)
− arctan

(
−‖~τ‖
‖~η‖

)
= arctan

(
L− ‖~τ‖
‖~η‖

)
+ arctan

(
‖~τ‖
‖~η‖

)
I1 =

∫ L−‖~τ‖
‖~η‖

−‖~τ‖
‖~η‖

u

1 + u2
du

=
1
2

ln(u2 + 1)
∣∣∣∣

L−‖~τ‖
‖~η‖

−‖~τ‖
‖~η‖

=
1
2

ln

(
1 +

(
L− ‖~τ‖
‖~η‖

)2
)
− ln

(
1 +

(
‖~τ‖
‖~η‖

)2
)

=
1
2

ln
(
‖~η‖2 + L2 + ‖~τ‖2 − 2‖~τ‖L

‖~η‖2

)
− ln

(
‖~η‖2 + ‖~τ‖2

‖~η‖

2
)

=
1
2

ln
(
(‖~η‖2 + ‖~τ‖2) + L2 − 2‖~τ‖L

)
− ln

(
‖~η‖2 + ‖~τ‖2

)
=

1
2

ln
(
‖~t‖2 + L2 − 2‖~τ‖L

)
− ln(‖~t‖2)

=
1
2

ln
(
‖~t‖2 + L2 − 2‖~τ‖L

‖~t‖2

)

I2 =
∫ L−‖~τ‖

‖~η‖

−‖~τ‖
‖~η‖

u2

1 + u2
du

=
∫ L−‖~τ‖

‖~η‖

−‖~τ‖
‖~η‖

1− 1
1 + u2

du

=
L− ‖~τ‖
‖~η‖

− −‖~τ‖
‖~η‖

− I0

=
L

‖~η‖
− I0
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I3 =
∫ L−‖~τ‖

‖~η‖

−‖~τ‖
‖~η‖

u3

1 + u2
du

=
∫ L−‖~τ‖

‖~η‖

−‖~τ‖
‖~η‖

u2 − u

1 + u2
du

=
1
2

(
L2 − 2L‖~τ‖

‖~η‖2

)
− I1

Appendix B: Cubic Spline Matrix Implementa-
tion

When we take a closer look at the mechanics used for solving this
problem, we find there is a slightly shorter path to the solution which
is still routed in the foundation of cubic splines. This method begins
with decomposing a normal cubic spline coefficient matrix into two
pieces. For this example we shall assume even spacing across the x-
axis of the data points being used for interpolation. Solving a typical
spline problem, we must solve the matrix equation

A~x = ~b

Now we will decompose A into two pieces, L and T , both having the
same size as A, and regroup these pieces

~b = A~x

= DT~x

= D(T~x)

= D~t

D is a regular cubic spline matrix which interpolates on the data
normally, but it has the change that every spline ranges from x = 0 to

18



x = L. Here is a D matrix set up to interpolate on four data points.

D =



1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
1 L L2 L3 0 0 0 0 0 0 0 0
0 0 0 0 1 L L2 L3 0 0 0 0
0 0 0 0 0 0 0 0 1 L L2 L3

0 1 0 0 0 −1 −2L −3L2 0 0 0 0
0 0 0 0 0 1 0 0 0 −1 −2L −3L2

0 0 2 0 0 0 −2 −6L 0 0 0 0
0 0 0 0 0 0 2 0 0 0 −2 −6L
0 0 2 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 2 6L


T is an upper triangular matrix with 1’s on the diagonal which was
derived from shifting a polynomial piece of a spline interpolation alter
its range from [xi, xi+1] to [0, L = xi+1 − xi].

The next step is to combine this decomposition technique with the
influence function matrix B that contains all the information about
how the line doublets will affect each other. For a small example where
we use three data points to approximate a circle. Since we have ne-
glected the influence of any line doublet connected to a control point,
there is only one line doublet affecting each control point. Conve-
niently, since the distances are all the same, the flow functions are the
same save for the strength coefficients.

B =



0 0 0 0 0 0 0 0 F1 FL FL2 FL3

F1 FL 0 0 0 0 0 0 0 0
0 0 0 0 F1 FL FL2 FL3 0 0 0 0
0 0 0 0 0 0 0 0 F1 FL FL2 FL3

F1 FL FL2 FL3 0 0 0 0 0 0 0 0
0 0 0 0 F1 FL FL2 FL3 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0


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Since this information is given with the notion that each line doublet
ranges from t = 0 to t = L, we must also multiply this matrix by the
shifting matrix T . Combining this with the work above, we have

A~x = ~b + BT~x

DT~x−BT~x = ~b

(D −B)(T~x) = ~b

(D −B)(~t) = ~b

Solving the matrix equation produces the information to plot the line
doublets with strength distributions ranging from t = 0 to t = L.
If we would like to connect the polynomials to produce a strength
distribution graph (as you would typically see for a regular cubic spline
interpolation), we must only multiply our vector of coeffiencits by T−1,
that is T−1~t = ~x.

Appendix BB: Shifting Matrix T

When interpolating with cubic splines, we form a sequence of cubic
polynomials that connect the the various knots or control points which
are at ti with i = 1, 2, ..., n. Let these polynomials be denoted as Ŝi(t).
These polynomials have all the “nice” features of continuity, smooth-
ness with first and second derivatives, and periodicity. Each interval
[ti, ti+1] has a corresponding spline Ŝi which we want to map to the
contour plot appropriately. If we choose Si(t) to be the cubic polyno-
mial that describes the strength distribution across the line doublet
corresponding to the interval [ti, ti+1], then since the line doublets
start at t = 0, we should see

Si(t) = Ŝi(t + ti).

This satisfies the property that we should see Si(0) = Ŝi(ti). If we
already have completed the cubic spline interpolation, then we know
the values of the coefficients for each Ŝi(t) and for the control points ti.
Let Si(t) = σi0+σi1t+σi2t

2+σi3t
3 and Ŝi(t) = σ̂i0+σ̂i1t+σ̂i2t

2+σ̂i3t
3.

Si(t) = Ŝi(t + ti)

= σ̂i0 + σ̂i1(t + ti) + σ̂i2(t + ti)2 + σ̂i3(t + ti)3

= σ̂i0 + σ̂i1t + σ̂i1ti + σ̂i2t
2 + 2σ̂i2tti + σ̂i2t

2
i + σ̂i3t

3 + 3σ̂i3t
2ti + 3σ̂i3tt

2
i + σ̂i3t

3
i

=
(

σ̂i0 + σ̂i1ti + σ̂i2t
2
i + σ̂i3t

3
i

)
+ t

(
σ̂i1 + 2σ̂i2ti + 3σ̂i3t

2
i

)
+ t2

(
σ̂i2 + 3σ̂i3ti

)
+ t3

(
σ̂i3

)
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To wrap this information up, from the above relation on Si(t) and
Ŝi(t) we can infer that

σi0

σi1

σi2

σi3

 =


1 ti t2i t3i
0 1 2ti 3t2i
0 0 1 3ti
0 0 0 1




σ̂i0

σ̂i1

σ̂i2

σ̂i3


or more simply we let ~σ = [σi0 σi1 σi2 σi3]t and ~̂σ = [σ̂i0 σ̂i1 σ̂i2 σ̂i3]t.
Then

~σ = T (ti)~̂σ

where T (ti) is called the shifting matrix block for the point ti. The
shifting matrix T is a square matrix of size 4n with n shifting matrix
blocks on the diagonal. For example, a shifting matrix for n = 3 would
look like

T =



1 t1 t21 t31 0 0 0 0 0 0 0 0
0 1 2t1 3t21 0 0 0 0 0 0 0 0
0 0 1 3t1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 t3 t23 t33 0 0 0 0
0 0 0 0 0 1 2t3 3t23 0 0 0 0
0 0 0 0 0 0 1 3t2 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 t3 t23 t33
0 0 0 0 0 0 0 0 0 1 2t3 3t23
0 0 0 0 0 0 0 0 0 0 1 3t3
0 0 0 0 0 0 0 0 0 0 0 1


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