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Abstract. In his paper, John Tolle enumerates the possible Banzhaf power distributions in a 4-player
weighted voting system [8]. Expanding on Tolle's ideas, we construct sets of winning coalitions in the n-
player system by organizing them into a rooted tree, utilizing the partially ordered lattices of weighted
coalitions. By counting the nodes of the tree, we enumerate all possible sets of winning coalitions and
all possible Banzhaf power distributions. We characterize these distributions by identifying the possible
denominators and the necessary conditions on the numerators.

1. Introduction

It's not the voting that's democracy; it's the counting.
Tom Stoppard, Jumpers

From the founding fathers' debates over what constitutes fair representation to discussions of the Electoral
College's e�ectiveness in recent presidential elections, the amount of power which individual voters and blocs
of voters should receive has held a prominent position in American political thought.

This debate has inspired collaboration between the political and mathematical sciences. As mathemati-
cians model voting systems, they often measure the concept of voting power as the potential of a player (a
voting party who must cast all of its votes for or against an issue) to cast the deciding vote. In 1954 Lloyd
Shapley and Martin Shubik [6] introduced the Shapley-Shubik power index, which considers all permutations
of the players and determines the unique player in each grouping which changes the outcome of the vote.
In the power distribution, a player's power is proportional to the number of permutations for which adding
that player to a group causes that group to meet the quota.

In voting systems where the order of voting is not a factor, the Banzhaf Power Index (BPI) provides
an alternative for measuring the power of a single player. In 1965, John C. Banzhaf III used the BPI to
show that his Long Island district had no power in the County Board even though it controlled votes in
proportion to its population [1]. Since then, the power index has been used to evaluate the distribution of
power in systems such as the Electoral College of the United States, in which it appears that the smallest
states control a disproportionate amount of power.

1.1. Weighted Voting Systems. A weighted voting system, [q; v1, v2, . . . , vn], is de�ned as a collection of
weighted players together with a quota, which is the total number of votes required to pass a motion. In a
weighted voting system (WVS), a player's weight refers to the number of votes allotted to that player and is
always a positive integer value. We denote a player by Pi and his weight by vi. Players are ordered according
to their weight, which means v1 ≥ v2 ≥ · · · ≥ vn. The quota must be an integer satisfying the following
criteria:

(1)
v1 + v2 + · · ·+ vn

2
< q ≤ v1 + v2 + · · ·+ vn.

A group of k players who vote as a bloc form a k-coalition. A coalition is ranked by the sum of the weights
of the players contained in the coalition, an idea which will be discussed at length in Section 5. For now
we need only consider the following de�nitions: the k-coalition C = {Pi1 . . . Pik

} is a winning coalition if
vc = vi1 + · · ·+ vik

≥ q and is losing if vi1 + · · ·+ vik
< q.

If a coalition C is winning, it must be true that vc ≥ q, which, together with (1) implies that CC, the
complement of C, is losing. For brevity's sake, we refer to this as the complement rule. Notice that the
converse is not true since the complement of a losing coalition is not necessarily winning. As evidence,
consider the 6-player system [13; 5, 4, 3, 3, 2, 1] in which neither {P1P2P3} nor its complement {P4P5P6} is
winning.
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We de�ne a supercoalition of a coalition C to be a coalition that contains C. The set of supercoalitions
of C is denoted S(C). If C is winning, it follows that so are all of its supercoalitions.

Another important characteristic of all weighted voting systems which we will consider is that for all
i, vi < q. That is, there are no one-player winning coalitions. This implies that no player is a dictator.
Furthermore, for all i

(2)
∑
j 6=i

vj ≥ q,

so all (n− 1)-coalitions are winning; i.e., no player has veto power.

1.2. The Banzhaf Power Index. Suppose the k-coalition {Pi1 . . . Pik
} is winning. We say that a member

of the coalition is a critical player if the coalition loses when that player is removed. So, in the 6-player
system [13; 5, 4, 3, 3, 2, 1], {P1P2P3P4} is a winning coalition where all players are critical.

A player's Banzhaf Power Index, denoted B(Pi), is the ratio of the number of instances in which Pi is
critical to the total number of critical instances. The Banzhaf power distribution, β, for an n-player weighted
voting system is the vector (B(P1), . . . , B(Pn)), the sum of whose components is one.

In order to calculate the Banzhaf power distribution of an n-player voting game, we �rst determine the
set of winning coalitions (WC) in that game. For example, the 5-player voting game

[16; 6, 6, 5, 5, 3]

generates the following set of winning coalitions and critical instances:

Winning Coalition Critical Players
{P1P2P3P4} none
{P1P2P3P5} P1, P2, P3

{P1P2P4P5} P1, P2, P4

{P1P3P4P5} P1, P3, P4

{P2P3P4P5} P2, P3, P4

{P1P2P3} P1, P2, P3

{P1P2P4} P1, P2, P4

{P1P3P4} P1, P3, P4

{P2P3P4} P2, P3, P4

Using this table, we �nd that P1, P2, P3 and P4 are each critical 6 times, and P5 is never critical. The
Banzhaf power distribution for this voting game is

β =
(

6
24

,
6
24

,
6
24

,
6
24

, 0
)

Throughout this paper, we leave the fractions of the Banzhaf power distribution in their unreduced form,
so that the denominator represents the total number of critical instances for that voting game.

1.3. An Alternative Approach. A voting game is traditionally described as a quota together with n
weighted players. Our discussion utilizes a second representation, which classi�es a voting game according to
the set of winning coalitions it generates. Two voting games with di�erent quotas and weights that generate
the same set of winning coalitions are equivalent because this set of winning coalitions determines the power
distribution of the voting game.

Example 1.1. Recall the set of winning coalitions generated by the 5-player voting game [16; 6, 6, 5, 5, 3].
Now consider the voting game [31; 15, 12, 10, 9, 3]. The reader can verify that these voting games generate
the same set of winning coalitions, and are therefore equivalent.

1.4. Motivation and Research Problem. Mathematicians such as Klinz and Woeginger [4] and Tannen-
baum [7] have studied the Banzhaf power distribution from a computational point of view. That is, given a
voting game, how can the corresponding power distribution be most e�ciently calculated? Tolle et al. have
enumerated the possible Banzhaf power distributions for the 3-, 4-, and 5-player systems [8], [3]. Techniques
outlined in these papers gave rise to our research, which focuses on enumerating and restricting possible
Banzhaf power distributions.

We �rst calculated all possible power distributions for the 6-player system (see Appendix) and in this
paper we generalize that method into an algorithm for counting possible Banzhaf power distributions in the
n-player system. In addition, we placed restrictions on the possible power distributions, using properties
that became evident as we developed the algorithm.
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In this paper we �rst describe our method for constructing sets of winning coalitions. By considering both
the critical instances of a system and of each player, this method allows us to place restrictions on possible
Banzhaf power distributions. We then use this same method, together with the known relationship between
the weighted coalitions, to develop an algorithm which enumerates all possible distributions.

2. Sets of Winning Coalitions

Before determining how many and which Banzhaf power distributions are possible in an n-player WVS,
it is necessary to re-examine what is meant by a set of winning coalitions. It seems natural to build a set of
winning coalitions by starting with the smallest-sized coalitions. For example, in a 6-player system, we may
choose a set of winning coalitions that contains zero 2-coalitions, four 3-coalitions, all of their supercoalitions,
and an additional 4-coalition. Of course, all 5-coalitions are winning since our voting systems have no veto
power. Let us illustrate the bottom-up construction of this set of winning coalitions:

{P1P2P3} ⇒ {P1P2P3P4}
⋃

{P1P2P3P4P5}
{P1P2P3P5} {P1P2P3P4P6}
{P1P2P3P6} {P1P2P3P5P6}

{P1P2P4} ⇒ {P1P2P4P5} {P1P2P4P5P6}
{P1P2P4P6} {P1P3P4P5P6}

{P1P3P4} ⇒ {P1P3P4P5} {P2P3P4P5P6}
{P1P3P4P6}

{P2P3P4} ⇒ {P2P3P4P5}
{P2P3P4P6}

+ {P1P2P5P6}

Alternatively, we could build the same set of winning coalitions from the top-down; that is, by starting
with the set of (n − 1)-coalitions (all of which are winning), and sequentially adding winning coalitions of
smaller order. One important fact is that for any coalition C, C ∈ WC only if S(C) ⊂ WC. In the above
example, since all 5-coalitions are contained in WC, all 4-coalitions could be added to WC; only 10 were.
Similarly, the subset of 3-coalitions whose supercoalitions of order 4 have all been added to WC could all
be added themselves; our set of winning coalitions includes 3 of them. This process can be generalized for
an n-player system by adding coalitions of smaller order until the desired set of winning coalitions has been
attained. For example, the above set of winning coalitions is constructed in the following manner:

{P1P2P3P4P5}
⋃

{P1P2P3P4}
{P1P2P3P4P6} {P1P2P3P5}
{P1P2P3P5P6} {P1P2P3P6} ↪→ {P1P2P3}
{P1P2P4P5P6} {P1P2P4P5}
{P1P3P4P5P6} {P1P2P4P6} ↪→ {P1P2P4}
{P2P3P4P5P6} {P1P3P4P5}

{P1P3P4P6} ↪→ {P1P3P4}
{P2P3P4P5}
{P2P3P4P6} ↪→ {P2P3P4}
{P1P2P5P6}

Notice that {P1P2P5} was not added to WC even though all of its supercoalitions are winning. This
represents a choice made when sets of winning coalitions are built. Including {P1P2P5} as a winning coalition
would result in a new set of winning coalitions with a new Banzhaf power distribution.

At this point it is worth noting that when k ≤ n/2, not all k-coalitions can be added to WC even if
all of their supercoalitions are already contained. To illustrate this, consider a 5-player system with a set
of winning coalitions containing all 4-coalitions and all 3-coalitions. Although all supercoalitions of {P1P2}
and {P3P4} are contained in WC, {P1P2} and {P3P4} cannot both win since {P3P4} is contained in the
complement of {P1P2}. We generalize this idea in the following theorem.

Theorem 2.1. In an n-player voting system, for k ≤ n
2 , the maximum number of winning k−coalitions is(

n−1
k−1

)
.

Proof. Recall that if a k−coalition is winning, then its (n − k)-player complement is losing. This implies
that two coalitions whose intersection is the empty set cannot both be winning.
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It follows that the maximum number of k−coalitions that can all be winning is equal to the number of
k−coalitions whose pairwise intersection is nonempty. Let M denote the maximal set of winning k−coalitions.
Then M = {C1, C2, . . . , Cm} such that ∀i, j ∈ {1, . . . ,m}, Ci ∩ Cj 6= ∅. According to the Erd®s-Ko-Rado

Theorem [5], m =
(
n−1
k−1

)
. Thus this is also the maximum number of winning k−coalitions when k ≤ n

2 .

When k > n/2, all k-coalitions can win without violating the complement rule. �

Summarized, this discussion of winning coalitions yield three facts that will become important. For every
coalition C ∈ WC,

(1) S(C) ⊂ WC,
(2) If vC∗ > vC , then C∗ ∈ WC, and
(3) CC /∈ WC.

Rule (2) will be expanded upon in Section 5.

2.1. Counting Critical Instances. Since the number of critical instances is equal to the denominator of
the unreduced Banzhaf Power Index, we would like to �nd a method for counting the number of critical
instances in a set of winning coalitions. We will �rst consider how the number of critical instances changes
as coalitions of smaller order are added to WC.

Using our method of building WC from the top down, a k-coalition can be winning only if all of its
supercoalitions are already contained in WC. Adding a k-coalition to WC results in k additional critical
instances since no coalitions with fewer than k members are winning, implying that each member in the
k-coalition is critical. Now we examine the change in critical instances among the winning (k +1)-coalitions.
Exactly n − k coalitions of order k + 1 contain the new k-coalition. In each of these coalitions, one critical
instance is subtracted since there is one player who is not a member of the new winning k-coalition. Thus,
the net change in critical instances when a k-coalition is added to WC is k − (n− k).

The reader may be curious as to why we only examine the k- and (k + 1)-coalitions to determine the
change in critical instances. We propose the following:

Theorem 2.2. Adding a k-coalition to WC changes only the number of critical instances contained in
winning k-coalitions and winning (k + 1)-coalitions.

Proof. Consider the (k+2)-coalitions contained in WC. Critical players in these coalitions are those players
without whom the coalition becomes a losing (k + 1)-coalition. Notice that we have not added or removed
any (k+1)-coalitions from WC since a coalition is added to WC only if all of its supercoalitions are already
contained in WC. Thus we are never forced to add (k + 1)−, (k + 2)−, . . . , (n− 2)− coalitions to WC upon
adding a k-coalition. Since the set of winning (k+1)-coalitions remains the same, so do the critical instances
among the set of winning (k + 2)-coalitions. So we see that adding a k-coalition to WC changes only the
number of critical instances in the winning k-coalitions and in the winning (k +1)-coalitions containing that
k-coalition. �

We use this important result to systematically examine the total number of critical instances in a set of
winning coalitions by looking at the number of winning coalitions of each possible order. The same result
allows us to describe the way in which the total number of critical instances changes when k-coalitions are
added to the set of winning coalitions.

3. Preliminary Results

This method of constructing sets of winning coalitions and tracking the change in critical instances will
eventually allow us to algorithmically enumerate all possible Banzhaf power distributions on n players.
However, before developing the general algorithm, we generated all possible power distributions on 6 players
(See Appendix). In calculating these power distributions, several properties of weighted voting systems
became evident. Although the following theorems do not directly address our main research questions, they
do provide insight into important properties of weighted voting systems.

3.1. Accumulation of Power. Although one basic property of our WVS is that no player can have dic-
tatorial power (for all i ∈ {1, 2, . . . , n}, B(Pi) 6= 1), it is not trivial to examine how much power one player
can control. It has been shown that in the 4-player system, P1 can control up to 1

2 of the power, and in the

5-player system, P1 controls up to 7
11 of the total power. Our data reveals that in the 6-player system, P1

controls up to 3
4 of the total power. In an unpublished paper [3], Gay, Harris, and Tolle present the following

theorem and proof on the potential of one player to accumulate power. Let Mn represent the maximum
possible value of B(P1).
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Theorem 3.1.

lim
x→a

Mn = 1

Proof. Given n, consider the WVS [n− 1;n− 2, 1, 1, . . . , 1]. There are a total of 2n− 3 votes, and the quota
is greater than half this total. We note that P1 belongs to every winning coalition except

{P2P3 . . . Pn}

and moreover, P1 is critical in every winning coalition to which it belongs except the n-player coalition. We
now undertake to count these coalitions: There are n− 1 winning 2-coalitions; they are

{P1P2} , {P1P3} , . . . , {P1Pn} .

Noting that each of these contains P1 and one other player, we have
(
n−1

1

)
such coalitions.

The winning 3-coalitions number
(
n−1

2

)
, since each contains P1 and two other players. Similarly, each

winning 4-coalition contains P1 and three other players so that these number
(
n−1

3

)
. We continue in this

manner, �nally considering the (n− 1)-coalitions, which must all win; there are n of these, and P1 belongs
to n − 1 of them. Each contains P1 and n − 2 other players, so that we can describe the number of such
coalitions by

(
n−1
n−2

)
. So the total number of coalitions in which P1 is critical is

α =
n−2∑
k=1

(
n− 1

k

)
.

Now we must compute the total number of critical instances; for this, we simply determine how players
other than P1 may be critical. Choose Pi with i 6= 1, and note that {P1Pi} is a winning coalitions with both
players critical. So this contributes one critical instance for Pi. Next consider the coalition C = {P2P3 . . . Pn}.
This coalition wins, and Pi is critical, since C is the only winning coalition not containing P1. (So if Pi is
removed from C, the result is a losing coalition by virtue of P1 /∈ C − {Pi}.)

So far we have 2 critical instances for Pi. But there can be no more, because if 3 ≤ k ≤ n − 2, and Pi

belongs to a winning k-coalition, then P1 also belongs to this coalition, so removing Pi results in a (k − 1)-
coalition to which P1 also belongs, yielding another winning coalition. Hence Pi cannot be critical in the
k-coalition.

So P1 is critical in α instances, and each other player is critical in 2 instances. The total number of critical
instances is therefore α + 2(n− 1), so that

B(Pi) =
α

α + 2(n− 1)
.

We note that α is a polynomial in n, with degree greater than or equal to 2 whenever n ≥ 5. Since

lim
n→∞

2(n− 1)
α

= 0,

and since Mn ≥ B(P1), we obtain the result. �

Initially it would be natural to assume that P1 is more likely to control more power when there are
powerless players in the system. If adding more powerless players to the n-player system always increased
B(P1), then the maximal B(P1) in any system would be 1

3 , which is B(P1) in the 3-player system. We will
show in the following theorem that the maximal B(P1) in the (n+1)-player system with one powerless player
is the same as the maximal B(P1) in the n-player system.

Theorem 3.2. Given the voting game [q; v1, . . . , vn−k] with power distribution β, there exists a voting game
with k powerless players and power distribution β′ = (β, 01, . . . , 0k), for all k ∈ Z+.

Proof. Given the system V = [q; v1, . . . , vn−k] with power distribution β, the system aV = [aq; av1, . . . , avn−k]
where a > 0 also has power distribution β since for any winning coalition {Pi1 . . . Pij

} in V ,

vi1 + · · ·+ vij
≥ q ⇔ avi1 + · · ·+ avij

≥ aq

Similarly, a losing coalition of voters in V is also a losing coalition in aV .
Now consider the system V ′ = [(k+1)q; (k+1)v1, . . . , (k+1)vn−k, 11, . . . , 1k]. Let CL be a losing coalition

comprised of elements from {P1, . . . , Pn−k} with weight (k + 1)l for some l ∈ Z+ and l < q. Notice that

(k + 1)q − (k + 1)l = (k + 1)(q − l) > k
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and thus {CLPn−k+1 . . . Pn} is not a winning coalition. Similarly, if CW is a winning coalition comprised of
elements from {P1, . . . , Pn−k} with weight (k + 1)w for some w ∈ Z+ and w > q, then

(k + 1)w − (k + 1)q = (k + 1)(w − q) > k

and therefore Pip ∈ {Pn−k, . . . , Pn} is not critical in the winning coalition {CW Pn−k+1 . . . Pn}. Thus Pip is
never critical, which means that B(Pip

) = 0. Furthermore, we showed above that winning/losing coalitions
in V remain winning/losing coalitions in V ′. Thus V ′ has power distribution (β, 01, . . . , 0k). �

Because power distributions in the n-player system can be transferred to any larger sized system, we
already know many of the possible power distributions for a system of a given size. In particular, we know
that each uniform distribution in the n-player system corresponds to a distribution in the (n + 1)-player
system with all power uniformly distributed across the �rst n players. Next we examine the conditions
under which power is uniformly distributed among n-players.

3.2. Uniform Banzhaf Distributions.

Lemma 3.3. In an n-player WVS, if {Pi1Pi2 . . . Pik
} is a losing coalition, then {PjPi2 . . . Pik

} where j /∈
{i1, i2, . . . , ik} and j > i1 is also a losing coalition.

Proof. Let CL = {Pi1Pi2 . . . Pik
}. Denote the weight of CL by vi1 + vc where vc is the weight of CL − Pi1 .

Then vj + vc ≤ vi1 + vc. Therefore CL remains a losing coalition after Pi1 has been replaced by Pj . �

Lemma 3.4. In an n-player WVS, if {Pi1Pi2 . . . Pik
} is a winning coalition, then replacing Pij

by Pb for
some j ∈ {1, 2, . . . , k}, where b /∈ {i1, i2, . . . , ik} and b < ij, also yields a winning coalition.

Proof. Given that {Pi1Pi2 . . . Pik
} is a winning coalition in a voting game with quota q, vi1 +vi2 +· · ·+vik

≥ q.
It is easily observed that replacing vij

by vb where b < ij also yields a winning coalition. Therefore, the
coalition remains winning after any one of its members is replaced by a member of greater or equal weight. �

Together, these lemmata imply that Pi has at least as many critical instances as Pj where j > i. We will
use this fact to prove the following result about uniform Banzhaf power distributions:

Theorem 3.5. In an n-player voting system, the Banzhaf power distribution β is uniform if and only if
there exists an integer k such that all k-coalitions are winning, and for all j < k, all j-coalitions are losing.

Proof. First consider an n-player voting system in which all k-coalitions are winning and all j-coalitions,
j < k, are losing. Then there are

(
n
k

)
winning k-coalitions. Since none of the (k − 1)-coalitions are winning,

each k-coalition has k critical instances. Furthermore, each of the (k + 1)−, (k + 2)−, . . . , n−coalitions
contains zero critical instances because each is a supercoalition of a winning k-coalition.

Thus each player is critical in exactly the number of k-coalitions in which it appears, which is the same
as the number of (k − 1)-coalitions that can be formed with the remaining n − 1 players. This results in a
total of k ·

(
n
k

)
critical instances, where each Pi, i = 1, 2, . . . , n is critical

(
n−1
k−1

)
times. So for all i

B(Pi) =

(
n−1
k−1

)
k ·

(
n
k

)
Therefore β is uniformly distributed.

It remains to show that a uniform Banzhaf power distribution implies that there exists an integer k such
that all k-coalitions are winning, and for all j < k, all j-coalitions are losing. Let k be the smallest integer
for which there exists a winning k-coalition. Assume, to arrive at contradiction, that not all k-coalitions
are winning. Suppose CW = {Pi1 . . . Pik

} is the highest-weighted winning k-coalition. We know that Pi1 is
critical since there are no winning (k − 1)-coalitions. Now consider the k-coalition Cj1 = {Pj1Pi2 . . . Pik

}
where j1 /∈ {i1, . . . , ik} and j1 > i1.

By Lemmata 3.3 and 3.4, Pi1 has at least as many critical instances as Pj1 ; that is, C(Pi1) ≥ C(Pj1).
We return our attention to the k−coalition Cj1 . If Cj1 is losing, then it contains no critical instances

and C(Pj1) < C(Pi1), leading to a contradiction. If Cj1 is winning, then Pj1 is critical and we continue by
replacing Pi1 with Pj2 where j2 /∈ {i1, . . . , ik} and j2 > j1. Call the resulting coalition Cj2 . If Cj2 is losing,
then C(Pj2) < C(Pi1). If Cj2 is winning, then replace Pi1 with Pj3 and repeat.

Iterate the process by replacing Pi1 with each player of lesser weight until a resulting coalition is losing,
and thus there is a player with fewer critical instances than Pi1 . If all of the resulting coalitions are winning,
then repeat the process by replacing Pi2 with players of lesser weight. Again, repeat until either one resulting
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coalition is losing, in which case there is a player with fewer critical instances than Pi2 , or until all possible
players have replaced Pi2 and all of the resulting coalitions are still winning. In this case, begin again with
the winning k-coalition of next-highest weight.

If no losing coalition is found, then all k−coalitions are winning and we have reached a contradiction,
since we assumed that not all k−coalitions are winning. If a losing coalition is found, then there are at least
two players with distinct Banzhaf Power Indices and thus the power distribution is not uniform. �

Observe that in the 4-player system, the only possible value for k in this theorem is 3. In the 5-player
system, the possible values of k are 3 and 4, and in the 6-player system, k = 4 or k = 5. Having categorized
the sets of winning coalitions which generate the uniform Banzhaf power distribution, we explore the number
of ways in which power can be uniformly distributed among n players.

Corollary 3.6. In an n-player WVS, the uniform Banzhaf distribution is obtained in dn
2 − 1e cases.

Proof. By Theorem 3.5, the uniform Banzhaf distribution only occurs when there exists a smallest k such
that all k-coalitions are winning and for all j < k, all j-coalitions are losing. By the complement rule of
our weighted voting systems, for an integer k ≤ n

2 , not all k-coalitions can win. Together with the veto
condition, this implies that precisely those values of k such that n > k ≥ dn/2e yield the uniform Banzhaf
power distribution. There are dn

2 − 1e of these values. �

By Theorem 3.2 and Corollary 3.6, we limit the number of distinct power distributions on n players in
the following result.

Corollary 3.7. Let m denote the number of possible Banzhaf power distributions in a WVS on n-players
where n ≥ 5, and mD denote the number of distinct Banzhaf power distributions. Then

mD ≤ m− dn
2
− 2e − dn− 1

2
− 2e − . . .− d5

2
− 2e.

Proof. Using induction, consider the 5-player WVS as the base case. Gay, Harris, and Tolle have proven
that the 5-player system has m = 36 Banzhaf power distributions [3]. By Corollary 3.6, d 5

2 − 1e = 2 of these

distributions reduce to the uniform power distribution β = ( 1
5 , 1

5 , 1
5 , 1

5 , 1
5 ). The two cases yield d 5

2 − 1e − 1
distinct Banzhaf power distributions. Thus, the number of distinct Banzhaf power distributions in the
5-player system is 35 by inspection and

36− d5
2
− 1e − 1 = 36− (d5

2
− 1e − 1) = 36− d5

2
− 2e ≥ 35.

Let l denote the possible Banzhaf power distributions in a weighted voting system on (n− 1)-players and
lD denote the number of distinct Banzhaf power distributions. Then

lD ≤ l − dn− 1
2

− 2e − dn− 2
2

− 2e − . . .− d5
2
− 2e.

Now consider the m power distributions in the n-player weighted voting system. By Theorem 3.2, m = l+q,
where q ∈ Z+ is the number of cases unique to the n-player system. Thus, the number of distinct cases in
the n-player system is the sum of the number of distinct cases in the (n− 1)-player system and the number
of distinct cases unique to the n-player system: mD = lD + qD. By Corollary 3.6, we know there are dn

2 − 1e
such distributions. Thus,

qD = q − dn
2
− 1e+ 1

= (m− l)− dn
2
− 1e+ 1

and mD = lD + [(m− l)− dn
2 − 1e+ 1]. Thus, by our assumption,

mD ≤ l − dn− 1
2

− 2e − dn− 2
2

− 2e − . . .− d5
2
− 2e+ [(m− l)− dn

2
− 1e+ 1]

= m− dn
2
− 2e − dn− 1

2
− 2e − . . .− d5

2
− 2e.

�

The results presented in this section reinforce the connection between sets of winning coalitions and
Banzhaf power distributions. In the remainder of the paper, we directly address the problem of restricting
and enumerating the possible power distributions on n players.
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4. Restricting Possible Banzhaf Power Distributions

Every set of winning coalitions includes the n- and (n − 1)-coalitions. The set containing only these
coalitions yields a known Banzhaf power distribution. We are interested in exploring the way in which this
distribution changes as coalitions of smaller sizes are added to the set of winning coalitions. Our �rst result
answers this question.

Theorem 4.1. Let d denote the number of critical instances (i.e., the denominator of an unreduced Banzhaf
power distribution) in an n-player system.

(1) When k > n/2, d increases as k-coalitions are added to WC.
(2) When k < n/2, d decreases as k-coalitions are added to WC.
(3) When k = n/2, d stays constant as k-coalitions are added to WC.

Proof. Recall from Theorem 2.2 that the number of winning k−coalitions alone determines the number
of critical instances in winning k + 1-coalitions. Each k-coalition is contained in exactly n − k di�erent
(k + 1)-coalitions. Thus, each winning k-coalition adds k critical instances (one for each player contained
in the coalition) and eliminates n − k critical instances (one for each player not contained in the winning
k-coalition). We �nd that the net change in critical instances is k−(n−k), and so d increases when k > n/2,
decreases when k < n/2, and stays constant when k = n/2. �

To illustrate this result for k < n/2, consider the following example.

Example 4.2. Consider an 8-player system in which WC consists of all 7-, 6-, 5-, and 4-player coali-
tions. Now add {P1P2P3} to WC. Each of the three players is critical in this coalition. Now examine
the winning 4-coalitions. {P1P2P3} is contained in 5 4-coalitions: {P1P2P3P4} , {P1P2P3P5} , {P1P2P3P6} ,
{P1P2P3P7} , and {P1P2P3P4}. Each of these 4-coalitions loses one critical instance (P4, P5, P6, P7, and P8,
respectively), resulting in a net loss of 3− 5 = 2 critical instances.

Now we can describe the way in which the total number of critical instances changes as coalitions are
added to WC. Next we prove that sets of winning coalitions which are distinct but have the same structure
also have the same number of critical instances.

Theorem 4.3. In an n-player system, two sets of winning coalitions WC and WC′ with the same number
of winning j-coalitions for j ∈ {2, 3, · · · , n− 1} − {n/2} have the same number of critical instances.

Proof. Before proving this inductively, note that the number of n
2 -coalitions in WC and WC′ does not a�ect

the total number of critical instance since each coalition adds n
2 − (n − n

2 ) = 0 critical instances. Recall
that WC and WC′ contain the same n-coalition and the same n (n − 1)-coalitions. If neither set includes
any coalitions of smaller order, then the total number of critical instances in each is n(n − 1). As a base
case, suppose WC and WC′ each contain cn−2 (n − 2)-coalitions and no coalitions of smaller order. Each
(n− 2)-coalition is contained in 2 (n− 1)-coalitions, and therefore each results in a net change of (n− 2)− 2
critical instances. Therefore, WC and WC′ both contain cn−2(n− 4) critical instances.

Now assume that if WC and WC′ contain the same number of (n − 2)−, . . . , (n − k)-coalitions and no
coalitions of smaller order, then WC and WC′ contain the same number of critical instances. It remains to
show that this is true when WC and WC′ contain the same number of (n − 2)−, . . . , (n − k), (n − k − 1)-
coalitions and no coalitions of smaller order.

By Theorem 2.2, we need only consider the change in critical instances in WCn−k−1 and WCn−k.
Suppose WC and WC′ each contain cn−k−1 (n− k − 1)-coalitions and no coalitions of smaller order. Each
(n−k−1)-coalition is contained in k +1 (n−k)-coalitions, and therefore each (n−k−1)-coalition results in
a net change of n−k− 1− (k +1) = n− 2k− 2 critical instances. So, the change in critical instances in each
set of winning coalitions is the same, and thus the total number of critical instances remains the same. �

In addition, we can calculate this number of critical instances given a set of winning coalitions.

Corollary 4.4. A set of winning coalitions containing n (n− 1)-coalitions, c2 (n− 2)-coalitions, c3 (n− 3)-
coalitions, · · · , cn−2 2-coalitions contains

n(n− 1) + c2((n− 2)− (n− (n− 2))) + c3((n− 3)− (n− (n− 3))) + · · ·+ cn−2(2− (n− 2))

= n(n− 1) + c2(n− 4) + c3(n− 6) + · · ·+ cn−2(4− n)

critical instances.
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The preceding results allow us to determine the denominator of the Banzhaf power distribution correspond-
ing to a given set of winning coalitions. An equally powerful tool is the ability to bound this denominator
knowing only the number of players in a voting game, but not the corresponding set of winning coalitions.
We present this result in the next theorem.

Theorem 4.5. In an n-player system,(
n

n− 1

)
≤ d ≤

(
n

dn/2e

)
dn/2e

where d denotes the total number of critical instances (i.e., the denominator of the unreduced Banzhaf power
distribution) in a set of winning coalitions.

Proof. Since we assume that no player has veto power, all (n − 1)-coalitions are winning in the n-player
system. When WC is the set of all (n− 1)-coalitions, the total number of critical instances is

(
n

n−1

)
(n− 1).

Now we must show that this is the minimum number of critical instances for the system.
When n > 4, n− 2 > n/2, which means that the number of critical instances increases when an (n− 2)-

coalition is added to WC. By Theorem 4.1, the denominator increases whenever a coalition with more than
n/2 players is added to WC. We also saw that the denominator decreases when a coalition with fewer
than n/2 players is added to WC, which means we must prove that the denominator never drops below(

n
n−1

)
(n− 1).

Also by Theorem 4.1, adding a coalition or order less than n
2 to the set of winning coalitions decreases

the number of critical instances in a voting game. It would seem to follow that the voting game in which all
possible coalitions of order less than n

2 are winning produces the least number of critical instances. However,
we will show that the voting game in which only the (n − 1)-coalitions are winning has even fewer critical
instances.

Let us �rst consider the former case, i.e. suppose that all 2-coalitions are winning. The total number of
critical instances, then, is

(
n
2

)
(2). Expansion of the binomial coe�cient reveals that(

n
2

)
(2) = n(n− 1)

⇒
(

n
2

)
(2) =

(
n

n− 1

)
(n− 1).

By Theorem 2.1, a maximum of (n−1) 2-coalitions can be winning, and by Theorem 4.1, removing a 2-player
coalition from WC causes a net increase in critical instances. Therefore, the number of critical instances
when all possible 2-coalitions are winning is at least

(
n

n−1

)
(n − 1). So, when n > 4, the number of critical

instances in an n-system is smallest when the (n−1)-coalitions are the only winning coalitions. When n = 4,
the denominator of all possible Banzhaf power distributions is 12.

Now we seek to place an upper bound on the number of critical instances in an n-player system. From
Theorem 4.1, we know that adding winning coalitions of size greater than n

2 always increases the total number
of critical instances. It remains to show that the maximum number of critical instances is attained when all
coalitions of size dn

2 e are winning. Recall that adding winning coalitions of order less than n
2 decreases the

total number of critical instances. Thus the maximum denominator for an n-player system is(
n
dn

2 e

)
dn
2
e,

and occurs when all coalitions of order greater than n
2 are winning. �

In addition, our data supports the following conjecture.

Conjecture 4.6. In an n-player system, the possible denominators of Banzhaf power distributions increase
by 1 if n is odd, and by 2 if n is even.

We have now shown that, for an n-player system, the minimum number of critical instances is attained
when only the (n−1)-coalitions are winning and the maximum number of critical instances is attained when
all coalitions of order greater than n

2 are winning. Knowing these bounds signi�cantly reduces the number of
possible power distributions on n players. We further restrict these possibilities by considering each player's
Banzhaf Power Index, represented by the numerators of the Banzhaf power distribution.

Theorem 4.7. In any Banzhaf power distribution, all numerators have the same parity.



10 ALLISON B. CUTTLER, AUDREY L. DE GUIRE, AND SARA K. ROWELL

Proof. For every n, there exists a voting game on n players that results in a uniform Banzhaf power distribu-
tion. Speci�cally, the n-player voting game [n− 1; 1, 1, . . . , 1] results in a set of winning coalitions consisting
entirely of the (n − 1)-coalitions; there are n of these. The total number of critical instances is n(n − 1),
and each player is critical in exactly the number of (n − 1)-coalitions in which it appears. Thus, for all

i ∈ {1, 2, · · · , n}, B(Pi) = (n−1)
n(n−1) .

According to our representation of sets of winning coalitions, adding a winning k-coalition has two e�ects.
First, each player contained in the k-coalition gains one critical instance since no coalitions of smaller size
are winning. Second, one critical instance is subtracted for each (k + 1)-coalition containing the winning
k-coalition. Speci�cally, one critical instance is subtracted for each player not included in the winning k-
coalition. Thus adding a coalition to WC causes each player's power index to increase by one or decrease
by one. Since there is a voting game for which all players have the same power index, all numerators will
have the same parity in any Banzhaf power distribution. �

The preceding theorems place restrictions on which Banzhaf power distributions are possible for n players.
The characteristics of power distributions described above became evident even when calculating distributions
by hand. However, the method used in proving these theorems eventually led to the development of an
algorithm, which enumerates all possible sets of winning coalitions. The remainder of this paper will address
the other part of our other research question: In a WVS on n players, how many Banzhaf power distributions
are possible? In order to answer this question, we �rst introduce a structure which will allow us to illustrate
and organize the relationships between coalitions of a given size.

5. Using Inequality Lattices to Compare k-coalitions

5.1. De�ning the Inequality Lattices. The set of n players in a WVS constitutes a partially ordered set
of players ranked according to the weights of their votes: v1 ≥ v2 ≥ . . . ≥ vn. A partially ordered set is a set
in which x ≥ y is de�ned [2] such that the following properties are obeyed:

• Re�exive: For all x, x ≥ x;
• Antisymmetric: If x ≥ y and y ≥ x, then x = y;
• Transitive: If x ≥ y and y ≥ z, then x ≥ z.

Because players are ranked, coalitions of players are also ranked by the sum of the weights of their member
players. Each set of k-coalitions de�nes a partially ordered set that may be represented as an inequality
lattice.

Example 5.1. Consider the inequality lattice that relates the weights of the ten 2-coalitions in the WVS on
5 players. We de�ne this 2-dimensional structure as the 2-coalition inequality lattice for the 5-player WVS,
which illustrates the relationships between all 2-coalitions in the 5-player WVS.

(v1 + v2) ≥ (v1 + v3) ≥ (v1 + v4) ≥ (v1 + v5)
≥ ≥ ≥

(v2 + v3) ≥ (v2 + v4) ≥ (v2 + v5)
≥ ≥

(v3 + v4) ≥ (v3 + v5)
≥

(v4 + v5)

Notice that in the above lattice, not all of the relationships between the coalition weights are illustrated
expressly. For instance, {P1P2} ≥ {P4P5}, which is indirectly illustrated by several di�erent paths or chains
of the lattice. This is because inequality lattices show a binary relationship between two k-coalitions, C1

and C2, only when C1 covers C2. We say that C1 covers C2 if C1 > C2 and there is no coalition Cx such
that C1 ≥ Cx ≥ C2. The coalition which is not covered by any other k-coalition is the root, or maximally
weighted k-coalition, {P1, . . . , Pk}, of the lattice. Thus the root of the above lattice is {P1P2}.

The lattice representation of the relative weights of the k-coalitions is helpful because it simultaneously
illustrates all relationships between the weights of coalitions. The reader may verify that 1-coalitions form
a simple 1-dimensional chain. With larger coalitions it is necessary for the inequality lattices to spread into
the second dimension, such as in Example 5.1. Similarly, the 3-coalitions in the 5-player WVS necessitate a
three-dimensional lattice to represent a greater number of relationships. The 3-dimensional inequality lattice
for 3-coalitions in the 5-player WVS can also be represented graphically. Each coalition is represented by a
vertex and the binary relationship ≥ between two coalitions is represented as an edge. The graphic lattice is
read left to right, top to bottom, and front to back. Thus, (v1+v2+v3) ≥ (v1+v2+v4) ≥ . . . ≥ (v3+v4+v5).
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Example 5.2. Depicted below is the 3-coalition inequality lattice in the 5-player WVS, with each player
represented by its subscript:

123 124 125

134 135

234 235

145 245

345

Notice that {P1P2P3}, the coalition furthest to the front left, is the coalition of highest weight and
{P3P4P5}, the coalition furthest to the rear right, is the coalition of least weight. These elements of the
partially ordered set are maximal and minimal weighted coalitions, respectively. Notice that there are
multiple inequality chains which connect the maximal and minimal weighted coalitions.

Using this method, we can describe the relative ranks of all k-coalitions in an n-player WVS using �nite-
dimensional inequality lattices. We now relate this discussion of inequality lattices back to our earlier
discussion regarding the construction of sets of winning coalitions.

5.2. Sets of Winning Coalitions from Lattices. Recall the discussion in Section 2 of the rules governing
the addition of k-coalitions to sets of winning coalitions. A k-coalition C may only be added to the set if it
satis�es all of the following:

(1) S(C) ⊂ WC,
(2) If vC∗ > vC , then C∗ ∈ WC, and
(3) CC /∈ WC.

Before expanding upon rule (2) using inequality lattices, we present the following example.

Example 5.3. Suppose we wish to add {P1P3P5} to the set of winning 3-coalitions in a 5-player system.
To do so, we will use the 3-coalition inequality lattice on 5-players illustrated in Example 5.2.

We know that the two coalitions which cover {P1P3P5}, {P1P2P5} and {P1P3P4}, must already be
winning. It follows that {P1P2P4} must also already be winning because it covers both {P1P2P5} and
{P1P3P4}. Likewise, {P1P2P3} must be winning because it covers {P1P2P4}. In this example, {P1P2P3} is
the root.

This yields the following set of winning k-coalitions, with each player represented by its subscript:

124123 125

134 135

We call the subset of �ve 3-coalitions from Example 5.3 a rooted rectangular sublattice of the 3-coalition
inequality lattice on 5-players. A rooted rectangular k-coalition sublattice must always contain the maximal
k-coalition of the lattice, that is {P1P2 . . . Pk}. We call the sublattice rectangular because if the root and
an additional k-coalition are taken to be winning, then so must all coalitions contained in the s-dimensional
rectangle whose maximal diagonal has those two coalitions as endpoints. A set of winning k-coalitions must
form a rooted rectangular sublattice of the k-coalition lattice for n-players.

With this additional means of describing the relationships between coalitions of a given size, we are ready
to introduce a method which allows us to determine the possible sets of winning coalitions in an n-player
system.

6. Using Rooted Trees to Describe All Sets of Winning Coalitions

Inequality lattices allow us to individually construct all sets of winning coalitions in an n-player voting
system. This information can be organized into a rooted tree on which each possible set of winning coalitions
is described by a distinct path. The following algorithm describes a method for building this tree. When
implemented, it allows us to count the number of distinct sets of winning coalitions by counting the number
of leaves on the tree.
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6.1. To Build the Tree. The root of the tree is formed by the set of n- and (n− 1)-coalitions, all of which
are required to win in a WVS. All possible sets of winning (n − 2)-coalitions form the �rst generation of
children, followed by winning (n− 3)-coalitions. The �nal generation consists of sets of winning 2-coalitions.

To construct child nodes, we examine the inequality lattices discussed in Section 5. In order for a set of
k-coalitions to constitute a child node, the following criteria must be met for every coalition C in the set:

(1) Each element of S(C) must appear in an ancestral node;
(2) The set of winning coalitions in the node forms a rooted rectangular sublattice;
(3) No ancestor of C contains CC.

Example 6.1. Illustrated below is the rooted tree for the 5-player WVS, on which each player is represented
by its subscript.

123

123       124

123     124
125

12

12    13

123         124
134

123    124
125     134

123    124

134    234

123   124
125   134

135
123    124

125
134

234

12

123   124
125

134      234

12

123     124
125     134
135     145

12    13
14   15

12    13

12     13
14

12

123    124

125   134

135  145   234

123  124  125

134   135   234

235

12   13

12   13
14

123   124  125

134  135

234  235

12

123  124

125  134  135

145  234 235

245

123  124  125
134   135  145

234  235  245

345

       12345
1234    1235
1245  1345
     2345

12

12

12   1312

12     13

12

12    13

1412    13

12

Taking a moment to count the number of nodes on tree, the reader may see that there are only 35 nodes,
corresponding exactly to the number of power distributions on �ve players. Indeed, as we show with the
next theorem, the n-player tree depicts all possible sets of winning coalitions in the n-player system.

Theorem 6.2. There is a one-to-one correspondence between rooted paths on the tree and possible sets of
winning coalitions.

Proof. First we show that every path on the tree represents a set of winning coalitions. Recall the con-
ditions on building constructing the rooted tree: if a coalition appears in a kth-generation child, then its
supercoalitions must appear in ancestor nodes; the set of coalitions contained in a child must form a rooted
rectangular sublattice; and a coalition and its complement may not both appear along a rooted path. Notice
from the discussion in Section 5 that any set of coalitions meeting these requirements is also valid set of
winning coalitions. Therefore all rooted paths on the tree represent legitimate sets of winning coalitions.

To show that all sets of winning coalitions are represented on the tree, consider some set of winning
coalitions, WC, which is composed of subsets containing n-, (n− 1)-, . . ., or 2-coalitions.

First notice that the subsets containing the n- and (n − 1)-coalitions must appear in WC since these
subsets together correspond to the root node of the tree. If WC contains a subset of (n − 2)-coalitions,
then the elements of this subset must form a rooted rectangular sublattice. This subset corresponds to a
�rst-generation node.

Any additional subset of WC containing (n − k)-coalitions must form a rooted rectangular sublattice.
Additionally, all supercoalitions of each element in the subset must be contained in WC. Finally, the addition
of the subset must not force WC to violate the complement rule.

Thus, each subset of WC corresponds to a node along a rooted path of the tree, and every set of winning
coalitions appears as a rooted path. �
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Corollary 6.3. Because every rooted path on the tree represents a properly constructed set of winning
coalitions, the number of possible power distributions in the n-player system is the same as the number of
nodes on the rooted tree representing that system.

This corollary allows us to count the number of possible power distributions in the n-player system,
answering one of our research questions. Furthermore, our data suggests that distinct power distributions
correspond to distinct sets of winning coalitions, which we consider in the following section.

7. Conjectures on Distinct Power Distributions

In this section we consider Banzhaf power distributions in their unreduced form. For example, we refer to

( 10
60 , 10

60 , 10
60 , 10

60 , 10
60 , 10

60 ) and ( 5
30 , 5

30 , 5
30 , 5

30 , 5
30 , 5

30 )

as distinct because they represent di�erent numbers of critical instances.
Let WC and WC′ represent distinct sets of winning coalitions with corresponding power distributions

β = (B(P1), . . . , B(Pn)) and β′ = (B′(P1), . . . , B′(Pn)). We let j denote the largest sized coalition for which
WCj 6= WC′

j where WCj and WC′
j represent the j-coalitions contained in WC and WC′, respectively.

Theorem 7.1. If |WCj| 6= |WC′
j| and WCm = WC′

m for all m 6= j, then β 6= β′.

Proof. Let |WCj| = A and WC′
j = B where A 6= B. The total number of critical instances in WC−WCj

is equal to the total number of critical instances in WC′−WC′
j; call this number N . Since each j-coalition

changes the number of critical instances in a set of winning coalitions by 2j − n, the number of critical
instances in WC is equal to N + A(2j − n), while the number of critical instances in WC′ is equal to
N + B(2j − n). Thus there exists at least one player Pi for whom B(Pi) 6= B′(Pi), which implies that
β 6= β′. �

Conjecture 7.2. Distinct sets of winning coalitions correspond to distinct unreduced Banzhaf power distri-
butions.

Thus far, the n-player rooted tree allows us to enumerate all possible distinct sets of winning coalitions.
A proof of Conjecture 7.2 would allow us to assign each of these sets a distinct power distribution, enabling
us to count the number of distinct Banzhaf power distributions on n players directly from the rooted tree.

8. Open Questions

In addition to Conjectures 4.6 and 7.2, we are left with several queries, which may warrant further research.
The theorems presented in Sections 3 and 4 place restrictions on the possible Banzhaf power distributions for
n players. While these signi�cantly limit the possible power distributions, we are not yet able to determine
the valididty of a given power distribution. A complete set of restrictions would allow us to determine
whether or not a power distribution represents a feasible voting game, answering a question initially posed
by John Tolle [8].

We have outlined a method for generating the rooted tree for the n-player system, on which each node
corresponds to a distinct set of winning coalitions and Banzhaf power distribution. However, as n increases,
the number of power distributions increases exponentially. Thus, listing all sets of winning coalitions becomes
computationally ine�cient as the size of the system increases. In light of this, it would be useful to develop
a closed-form formula which yields the same number of power distributions.

The rooted tree describes sets of winning coalitions in the n-player system, which in turn determine
Banzhaf power distributions. For practical purposes, it would be useful to create an algorithm which gener-
ates a voting game from a feasible set of winning coalitions. Furthermore, is it possible to determine the set
of winning coalitions that corresponds to a known power distribution?

References

[1] J.F. Banzhaf, Weighted Voting Doesn't Work: A Mathematical Analysis, Rutgers Law Review, 19 (1965), 317-343.
[2] Garrett Birkho�, Lattice Theory, AMS, Providence, 1961.
[3] Christopher Carter Gay, Jabari Harris, and John Tolle, Feasible Banzhaf Power Distributions for Five-Player Weighted

Voting Systems, Manuscript, 33 pages, 2004.
[4] B. Klinz and G.J. Woeginger, Faster Algorithms for Computing Power Indices in Weighted Voting Games, Mathematical

Social Sciences, 49 (2005), 111-116.
[5] J.H. van Lint and R.M. Wilson, A Course in Combinatorics, Cambridge University Press, Cambridge, 1992.
[6] L.S. Shapley and M. Shubik, A Method for Evaluating the Distribution of Power in a Committee System, American Political

Science Review, 48 (1954), 787-792.



14 ALLISON B. CUTTLER, AUDREY L. DE GUIRE, AND SARA K. ROWELL

[7] P. Tannenbaum, Power in Weighted Voting Systems, Mathematica Journal, 7.1 (1997), 58-63.
[8] J. Tolle, Power Distribution in Four-Player Weighted Voting System, Mathematics Magazine, 76.1 (2003), 33-39.

Appendix A. The Banzhaf Power Distributions of a 6-Player Weighted Voting System

We constructed the 6-player tree using the method outlined in our paper, thus generating all 446 sets of
winning coalitions for the WVS. This appendix details those cases. Each case is read horizontally, beginning
with the unique alphanumeric label of the form n2.n3.n4 appearing to the left of the entry, where each ni

indicates the number of i-coalitions in the set. Letters appearing to the right of the ni indicate that there
are multiple ways of including that number of i-coalitions in the set.

Example A.1. The label 1.4.9b means that this case is de�ned by 1 winning 2-coalition, 4 winning 3-
coalitions, and 9 winning 4-coalitions. However, b denotes that this is only one of the ways that 9 4-coalitions
may win given this particular set of winning 2- and 3-coalitions.

The label is followed by the corresponding set of winning coalitions and Banzhaf power distribution.

0.0.0 P1P2P3P4P5

P1P2P3P4P6

P1P2P3P5P6

P1P2P4P5P6

P1P3P4P5P6

P2P3P4P5P6

β = ( 5
30 , 5

30 , 5
30 , 5

30 , 5
30 , 5

30 )

0.0.1 P1P2P3P4 P1P2P3P4P5

P1P2P3P4P6

P1P2P3P5P6

P1P2P4P5P6

P1P3P4P5P6

P2P3P4P5P6

β = ( 6
32 , 6

32 , 6
32 , 6

32 , 4
32 , 4

32 )

0.0.2 P1P2P3P4 P1P2P3P4P5

P1P2P3P5 P1P2P3P4P6

P1P2P3P5P6

P1P2P4P5P6

P1P3P4P5P6

P2P3P4P5P6

β = ( 7
34 , 7

34 , 7
34 , 5

34 , 5
34 , 3

34 )

0.0.3a P1P2P3P4 P1P2P3P4P5

P1P2P3P5 P1P2P3P4P6

P1P2P3P6 P1P2P3P5P6

P1P2P4P5P6

P1P3P4P5P6

P2P3P4P5P6

β = ( 8
36 , 8

36 , 8
36 , 4

36 , 4
36 , 4

36 )

0.0.3b P1P2P3P4 P1P2P3P4P5

P1P2P3P5 P1P2P3P4P6

P1P2P4P5 P1P2P3P5P6

P1P2P4P5P6

P1P3P4P5P6

P2P3P4P5P6

β = ( 8
36 , 8

36 , 6
36 , 6

36 , 6
36 , 2

36 )

0.0.4a P1P2P3P4 P1P2P3P4P5

P1P2P3P5 P1P2P3P4P6

P1P2P3P6 P1P2P3P5P6

P1P2P4P5 P1P2P4P5P6

P1P3P4P5P6

P2P3P4P5P6

β = ( 9
38 , 9

38 , 7
38 , 5

38 , 5
38 , 3

38 )
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0.0.4b P1P2P3P4 P1P2P3P4P5

P1P2P3P5 P1P2P3P4P6

P1P2P4P5 P1P2P3P5P6

P1P3P4P5 P1P2P4P5P6

P1P3P4P5P6

P2P3P4P5P6

β = ( 9
38 , 7

38 , 7
38 , 7

38 , 7
38 , 1

38 )

0.0.5a P1P2P3P4 P1P2P3P4P5

P1P2P3P5 P1P2P3P4P6

P1P2P3P6 P1P2P3P5P6

P1P2P4P5 P1P2P4P5P6

P1P2P4P6 P1P3P4P5P6

P2P3P4P5P6

β = (10
40 , 10

40 , 6
40 , 6

40 , 4
40 , 4

40 )

0.0.5b P1P2P3P4 P1P2P3P4P5

P1P2P3P5 P1P2P3P4P6

P1P2P3P6 P1P2P3P5P6

P1P2P4P5 P1P2P4P5P6

P1P3P4P5 P1P3P4P5P6

P2P3P4P5P6

β = ( 10
40 , 8

40 , 8
40 , 6

40 , 6
40 , 2

40 )

0.0.5c P1P2P3P4 P1P2P3P4P5

P1P2P3P5 P1P2P3P4P6

P1P2P4P5 P1P2P3P5P6

P1P3P4P5 P1P2P4P5P6

P2P3P4P5 P1P3P4P5P6

P2P3P4P5P6

β = ( 8
40 , 8

40 , 8
40 , 8

40 , 8
40 , 0)

0.0.6a P1P2P3P4 P1P2P3P4P5

P1P2P3P5 P1P2P3P4P6

P1P2P3P6 P1P2P3P5P6

P1P2P4P5 P1P2P4P5P6

P1P2P4P6 P1P3P4P5P6

P1P3P4P5 P2P3P4P5P6

β = (11
42 , 9

42 , 7
42 , 7

42 , 5
42 , 3

42 )

0.0.6b P1P2P3P4 P1P2P3P4P5

P1P2P3P5 P1P2P3P4P6

P1P2P3P6 P1P2P3P5P6

P1P2P4P5 P1P2P4P5P6

P1P2P4P6 P1P3P4P5P6

P1P2P5P6 P2P3P4P5P6

β = ( 11
42 , 11

42 , 5
42 , 5

42 , 5
42 , 5

42 )

0.0.6c P1P2P3P4 P1P2P3P4P5

P1P2P3P5 P1P2P3P4P6

P1P2P3P6 P1P2P3P5P6

P1P2P4P5 P1P2P4P5P6

P1P3P4P5 P1P3P4P5P6

P2P3P4P5 P2P3P4P5P6

β = ( 9
42 , 9

42 , 9
42 , 7

42 , 7
42 , 1

42 )

0.0.7a P1P2P3P4 P1P2P3P4P5

P1P2P3P5 P1P2P3P4P6

P1P2P3P6 P1P2P3P5P6

P1P2P4P5 P1P2P4P5P6

P1P2P4P6 P1P3P4P5P6

P1P2P5P6 P2P3P4P5P6

P1P3P4P5

β = (12
44 , 10

44 , 6
44 , 6

44 , 6
44 , 4

44 )
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0.0.7b P1P2P3P4 P1P2P3P4P5

P1P2P3P5 P1P2P3P4P6

P1P2P3P6 P1P2P3P5P6

P1P2P4P5 P1P2P4P5P6

P1P2P4P6 P1P3P4P5P6

P1P3P4P5 P2P3P4P5P6

P1P3P4P6

β = ( 12
44 , 8

44 , 8
44 , 8

44 , 4
44 , 4

44 )

0.0.7c P1P2P3P4 P1P2P3P4P5

P1P2P3P5 P1P2P3P4P6

P1P2P3P6 P1P2P3P5P6

P1P2P4P5 P1P2P4P5P6

P1P2P4P6 P1P3P4P5P6

P1P3P4P5 P2P3P4P5P6

P2P3P4P5

β = ( 10
44 , 10

44 , 8
44 , 8

44 , 6
44 , 2

44 )

0.0.8a P1P2P3P4 P1P2P3P4P5

P1P2P3P5 P1P2P3P4P6

P1P2P3P6 P1P2P3P5P6

P1P2P4P5 P1P2P4P5P6

P1P2P4P6 P1P3P4P5P6

P1P2P5P6 P2P3P4P5P6

P1P3P4P5

P1P3P4P6

β = (13
46 , 9

46 , 7
46 , 7

46 , 5
46 , 5

46 )

0.0.8b P1P2P3P4 P1P2P3P4P5

P1P2P3P5 P1P2P3P4P6

P1P2P3P6 P1P2P3P5P6

P1P2P4P5 P1P2P4P5P6

P1P2P4P6 P1P3P4P5P6

P1P2P5P6 P2P3P4P5P6

P1P3P4P5

P2P3P4P5

β = ( 11
46 , 11

46 , 7
46 , 7

46 , 7
46 , 3

46 )

0.0.8c P1P2P3P4 P1P2P3P4P5

P1P2P3P5 P1P2P3P4P6

P1P2P3P6 P1P2P3P5P6

P1P2P4P5 P1P2P4P5P6

P1P2P4P6 P1P3P4P5P6

P1P3P4P5 P2P3P4P5P6

P1P3P4P6

P2P3P4P5

β = (11
46 , 9

46 , 9
46 , 9

46 , 5
46 , 3

46 )

0.0.9a P1P2P3P4 P1P2P3P4P5

P1P2P3P5 P1P2P3P4P6

P1P2P3P6 P1P2P3P5P6

P1P2P4P5 P1P2P4P5P6

P1P2P4P6 P1P3P4P5P6

P1P2P5P6 P2P3P4P5P6

P1P3P4P5

P1P3P4P6

P2P3P4P5

β = (12
48 , 10

48 , 8
48 , 8

48 , 6
48 , 4

48 )
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0.0.9b P1P2P3P4 P1P2P3P4P5

P1P2P3P5 P1P2P3P4P6

P1P2P3P6 P1P2P3P5P6

P1P2P4P5 P1P2P4P5P6

P1P2P4P6 P1P3P4P5P6

P1P2P5P6 P2P3P4P5P6

P1P3P4P5

P1P3P4P6

P1P3P5P6

β = ( 14
48 , 8

48 , 8
48 , 6

48 , 6
48 , 6

48 )

0.0.9c P1P2P3P4 P1P2P3P4P5

P1P2P3P5 P1P2P3P4P6

P1P2P3P6 P1P2P3P5P6

P1P2P4P5 P1P2P4P5P6

P1P2P4P6 P1P3P4P5P6

P1P3P4P5 P2P3P4P5P6

P1P3P4P6

P2P3P4P5

P2P3P4P6

β = (10
48 , 10

48 , 10
48 , 10

48 , 4
48 , 4

48 )

0.0.10a P1P2P3P4 P1P2P3P4P5

P1P2P3P5 P1P2P3P4P6

P1P2P3P6 P1P2P3P5P6

P1P2P4P5 P1P2P4P5P6

P1P2P4P6 P1P3P4P5P6

P1P2P5P6 P2P3P4P5P6

P1P3P4P5

P1P3P4P6

P2P3P4P5

P2P3P4P6

β = (11
50 , 11

50 , 9
50 , 9

50 , 5
50 , 5

50 )

0.0.10b P1P2P3P4 P1P2P3P4P5

P1P2P3P5 P1P2P3P4P6

P1P2P3P6 P1P2P3P5P6

P1P2P4P5 P1P2P4P5P6

P1P2P4P6 P1P3P4P5P6

P1P2P5P6 P2P3P4P5P6

P1P3P4P5

P1P3P4P6

P1P3P5P6

P2P3P4P5

β = (13
50 , 9

50 , 9
50 , 7

50 , 7
50 , 5

50 )

0.0.10c P1P2P3P4 P1P2P3P4P5

P1P2P3P5 P1P2P3P4P6

P1P2P3P6 P1P2P3P5P6

P1P2P4P5 P1P2P4P5P6

P1P2P4P6 P1P3P4P5P6

P1P2P5P6 P2P3P4P5P6

P1P3P4P5

P1P3P4P6

P1P3P5P6

P1P4P5P6

β = (15
50 , 7

50 , 7
50 , 7

50 , 7
50 , 7

50 )
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0.0.11a P1P2P3P4 P1P2P3P4P5

P1P2P3P5 P1P2P3P4P6

P1P2P3P6 P1P2P3P5P6

P1P2P4P5 P1P2P4P5P6

P1P2P4P6 P1P3P4P5P6

P1P2P5P6 P2P3P4P5P6

P1P3P4P5

P1P3P4P6

P1P3P5P6

P2P3P4P5

P2P3P4P6

β = ( 12
52 , 10

52 , 10
52 , 8

52 , 6
52 , 6

52 )

0.0.11b P1P2P3P4 P1P2P3P4P5

P1P2P3P5 P1P2P3P4P6

P1P2P3P6 P1P2P3P5P6

P1P2P4P5 P1P2P4P5P6

P1P2P4P6 P1P3P4P5P6

P1P2P5P6 P2P3P4P5P6

P1P3P4P5

P1P3P4P6

P1P3P5P6

P1P4P5P6

P2P3P4P5

β = (14
52 , 8

52 , 8
52 , 8

52 , 8
52 , 6

52 )

0.0.12a P1P2P3P4 P1P2P3P4P5

P1P2P3P5 P1P2P3P4P6

P1P2P3P6 P1P2P3P5P6

P1P2P4P5 P1P2P4P5P6

P1P2P4P6 P1P3P4P5P6

P1P2P5P6 P2P3P4P5P6

P1P3P4P5

P1P3P4P6

P1P3P5P6

P1P4P5P6

P2P3P4P5

P2P3P4P6

β = (13
54 , 9

54 , 9
54 , 9

54 , 7
54 , 7

54 )

0.0.12b P1P2P3P4 P1P2P3P4P5

P1P2P3P5 P1P2P3P4P6

P1P2P3P6 P1P2P3P5P6

P1P2P4P5 P1P2P4P5P6

P1P2P4P6 P1P3P4P5P6

P1P2P5P6 P2P3P4P5P6

P1P3P4P5

P1P3P4P6

P1P3P5P6

P2P3P4P5

P2P3P4P6

P2P3P5P6

β = (11
54 , 11

54 , 11
54 , 7

54 , 7
54 , 7

54 )
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0.0.13 P1P2P3P4 P1P2P3P4P5

P1P2P3P5 P1P2P3P4P6

P1P2P3P6 P1P2P3P5P6

P1P2P4P5 P1P2P4P5P6

P1P2P4P6 P1P3P4P5P6

P1P2P5P6 P2P3P4P5P6

P1P3P4P5

P1P3P4P6

P1P3P5P6

P1P4P5P6

P2P3P4P5

P2P3P4P6

P2P3P5P6

β = (12
56 , 10

56 , 10
56 , 8

56 , 8
56 , 8

56 )

0.0.14 P1P2P3P4 P1P2P3P4P5

P1P2P3P5 P1P2P3P4P6

P1P2P3P6 P1P2P3P5P6

P1P2P4P5 P1P2P4P5P6

P1P2P4P6 P1P3P4P5P6

P1P2P5P6 P2P3P4P5P6

P1P3P4P5

P1P3P4P6

P1P3P5P6

P1P4P5P6

P2P3P4P5

P2P3P4P6

P2P3P5P6

P2P4P5P6

β = (11
58 , 11

58 , 9
58 , 9

58 , 9
58 , 9

58 )

0.0.15 P1P2P3P4 P1P2P3P4P5

P1P2P3P5 P1P2P3P4P6

P1P2P3P6 P1P2P3P5P6

P1P2P4P5 P1P2P4P5P6

P1P2P4P6 P1P3P4P5P6

P1P2P5P6 P2P3P4P5P6

P1P3P4P5

P1P3P4P6

P1P3P5P6

P1P4P5P6

P2P3P4P5

P2P3P4P6

P2P3P5P6

P2P4P5P6

P3P4P5P6

β = (10
60 , 10

60 , 10
60 , 10

60 , 10
60 , 10

60 )

0.1.3 P1P2P3 P1P2P3P4 P1P2P3P4P5

P1P2P3P5 P1P2P3P4P6

P1P2P3P6 P1P2P3P5P6

P1P2P4P5P6

P1P3P4P5P6

P2P3P4P5P6

β = ( 9
36 , 9

36 , 9
36 , 9

36 , 3
36 , 3

36 )

0.1.4 P1P2P4P5 β = (10
38 , 10

38 , 8
38 , 4

38 , 4
38 , 2

38 )

0.1.5a P1P2P4P5

P1P2P4P6
β = (11

40 , 11
40 , 7

40 , 5
40 , 3

40 , 3
40 )



20 ALLISON B. CUTTLER, AUDREY L. DE GUIRE, AND SARA K. ROWELL

0.1.5b P1P2P4P5

P1P3P4P5
β = ( 11

40 , 9
40 , 9

40 , 5
40 , 5

40 , 1
40 )

0.1.6a P1P2P4P5

P1P2P4P6

P1P2P5P6

β = (12
42 , 12

42 , 6
42 , 4

42 , 4
42 , 4

42 )

0.1.6b P1P2P4P5

P1P3P4P5

P1P2P4P6

β = ( 12
42 , 10

42 , 8
42 , 6

42 , 4
42 , 2

42 )

0.1.6c P1P2P4P5

P1P3P4P5

P2P3P4P5

β = (10
42 , 10

42 , 10
42 , 6

42 , 6
42 , 0)

0.1.7a P1P2P4P5 P1P3P4P5

P1P2P4P6 P1P2P5P6
β = (13

44 , 11
44 , 7

44 , 5
44 , 5

44 , 3
44 )

0.1.7b P1P2P4P5 P1P3P4P5

P1P2P4P6 P1P3P4P6
β = (13

44 , 9
44 , 9

44 , 7
44 , 3

44 , 3
44 )

0.1.7c P1P2P4P5 P1P3P4P5

P1P2P4P6 P2P3P4P5
β = (11

44 , 11
44 , 9

44 , 7
44 , 5

44 , 1
44 )

0.1.8a P1P2P4P5 P1P3P4P5

P1P2P4P6 P1P3P4P6

P1P2P5P6

β = (14
46 , 10

46 , 8
46 , 6

46 , 4
46 , 4

46 )

0.1.8b P1P2P4P5 P1P3P4P5

P1P2P4P6 P2P3P4P5

P1P2P5P6

β = (12
46 , 12

46 , 8
46 , 6

46 , 6
46 , 2

46 )

0.1.8c P1P2P4P5 P1P3P4P5

P1P2P4P6 P1P3P4P6

P2P3P4P5

β = (12
46 , 10

46 , 10
46 , 8

46 , 4
46 , 2

46 )

0.1.9a P1P2P4P5 P1P3P4P5

P1P2P4P6 P1P3P4P6

P1P2P5P6 P1P3P5P6

β = (15
48 , 9

48 , 9
48 , 5

48 , 5
48 , 5

48 )

0.1.9b P1P2P4P5 P1P3P4P5

P1P2P4P6 P1P3P4P6

P1P2P5P6 P2P3P4P5

β = (13
48 , 11

48 , 9
48 , 7

48 , 5
48 , 3

48 )

0.1.9c P1P2P4P5 P1P3P4P5

P1P2P4P6 P1P3P4P6

P2P3P4P5 P2P3P4P6

β = (11
48 , 11

48 , 11
48 , 9

48 , 3
48 , 3

48 )

0.1.10a P1P2P4P5 P1P3P4P5

P1P2P4P6 P1P3P4P6

P1P2P5P6 P1P3P5P6

P1P4P5P6

β = (16
50 , 8

50 , 8
50 , 6

50 , 6
50 , 6

50 )

0.1.10b P1P2P4P5 P1P3P4P5

P1P2P4P6 P1P3P4P6

P1P2P5P6 P1P3P5P6

P2P3P4P5

β = ( 14
50 , 10

50 , 10
50 , 6

50 , 6
50 , 4

50 )
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0.1.10c P1P2P4P5 P1P3P4P5

P1P2P4P6 P1P3P4P6

P1P2P5P6 P2P3P4P5

P2P3P4P6

β = (12
50 , 12

50 , 10
50 , 8

50 , 4
50 , 4

50 )

0.1.11a P1P2P4P5 P1P3P4P5

P1P2P4P6 P1P3P4P6

P1P2P5P6 P1P3P5P6

P1P4P5P6 P2P3P4P5

β = (15
52 , 9

52 , 9
52 , 7

52 , 7
52 , 5

52 )

0.1.11b P1P2P4P5 P1P3P4P5

P1P2P4P6 P1P3P4P6

P1P2P5P6 P1P3P5P6

P2P3P4P5 P2P3P4P6

β = ( 13
52 , 11

52 , 11
52 , 7

52 , 5
52 , 5

52 )

0.1.12a P1P2P4P5 P1P3P4P5 P1P4P5P6

P1P2P4P6 P1P3P4P6 P2P3P4P5

P1P2P5P6 P1P3P5P6 P2P3P4P6

β = (14
54 , 10

54 , 10
54 , 8

54 , 6
54 , 6

54 )

0.1.12b P1P2P4P5 P1P3P4P5 P2P3P4P5

P1P2P4P6 P1P3P4P6 P2P3P4P6

P1P2P5P6 P1P3P5P6 P2P3P5P6

β = ( 12
54 , 12

54 , 12
54 , 6

54 , 6
54 , 6

54 )

0.1.13 P1P2P4P5 P1P3P4P5 P2P3P4P5

P1P2P4P6 P1P3P4P6 P2P3P4P6

P1P2P5P6 P1P3P5P6 P2P3P5P6

P1P4P5P6

β = ( 13
56 , 11

56 , 11
56 , 7

56 , 7
56 , 7

56 )

0.1.14 P1P2P4P5 P1P3P4P5 P2P3P4P5

P1P2P4P6 P1P3P4P6 P2P3P4P6

P1P2P5P6 P1P3P5P6 P2P3P5P6

P1P4P5P6 P2P4P5P6

β = ( 12
58 , 12

58 , 10
58 , 8

58 , 8
58 , 8

58 )

0.1.15 P1P2P4P5 P1P3P4P5 P2P3P4P5

P1P2P4P6 P1P3P4P6 P2P3P4P6

P1P2P5P6 P1P3P5P6 P2P3P5P6

P1P4P5P6 P2P4P5P6 P3P4P5P6

β = ( 11
60 , 11

60 , 11
60 , 9

60 , 9
60 , 9

60 )

0.2.5 P1P2P3 P1P2P3P4 P1P2P3P4P5

P1P2P4 P1P2P3P5 P1P2P3P4P6

P1P2P3P6 P1P2P3P5P6

P1P2P4P5 P1P2P4P5P6

P1P2P4P6 P1P3P4P5P6

P2P3P4P5P6

β = (12
40 , 12

40 , 6
40 , 6

40 , 2
40 , 2

40 )

0.2.6a P1P3P4P5 β = (13
42 , 11

42 , 7
42 , 7

42 , 3
42 , 1

42 )

0.2.6b P1P2P5P6 β = ( 13
42 , 13

42 , 5
42 , 5

42 , 3
42 , 3

42 )

0.2.7a P1P3P4P6

P1P3P5P6
β = (14

44 , 10
44 , 8

44 , 8
44 , 2

44 , 2
44 )

0.2.7b P1P3P4P5

P2P3P4P5
β = ( 12

44 , 12
44 , 8

44 , 8
44 , 4

44 , 0)

0.2.7c P1P2P5P6

P1P3P4P5
β = ( 14

44 , 12
44 , 6

44 , 6
44 , 4

44 , 2
44 )
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0.2.8a P1P3P4P6

P2P3P4P5

P1P3P5P6

β = (13
46 , 11

49 , 9
46 , 9

46 , 3
46 , 1

46 )

0.2.8b P1P2P5P6

P1P3P4P5

P1P3P4P6

β = ( 15
46 , 11

46 , 7
46 , 7

46 , 3
46 , 3

46 )

0.2.8c P1P2P5P6

P1P3P4P5

P2P3P4P5

β = (13
46 , 13

46 , 7
46 , 7

46 , 5
46 , 1

46 )

0.2.9a P1P3P4P6 P2P3P4P5

P1P3P5P6 P2P3P4P6
β = (12

48 , 12
48 , 10

48 , 10
48 , 2

48 , 2
48 )

0.2.9b P1P2P5P6 P1P3P4P5

P1P3P4P6 P1P3P5P6
β = (16

48 , 10
48 , 8

48 , 6
48 , 4

48 , 4
48 )

0.2.9c P1P2P5P6 P1P3P4P6

P1P3P4P5 P2P3P4P5
β = (14

48 , 12
48 , 8

48 , 8
48 , 4

48 , 2
48 )

0.2.10a P1P2P5P6 P2P3P4P5

P1P3P4P5 P2P3P4P6

P1P3P4P6

β = (13
50 , 13

50 , 9
50 , 9

50 , 3
50 , 3

50 )

0.2.10b P1P2P5P6 P1P3P5P6

P1P3P4P5 P2P3P4P5

P1P3P4P6

β = ( 15
50 , 11

50 , 9
50 , 7

50 , 5
50 , 3

50 )

0.2.10c P1P2P5P6 P1P3P5P6

P1P3P4P5 P1P4P5P6

P1P3P4P6

β = (17
50 , 9

50 , 7
50 , 7

50 , 5
50 , 5

50 )

0.2.11a P1P2P5P6 P1P3P5P6

P1P3P4P5 P2P3P4P5

P1P3P4P6 P2P3P4P6

β = (14
52 , 12

52 , 10
52 , 8

52 , 4
52 , 4

52 )

0.2.11b P1P2P5P6 P1P3P5P6

P1P3P4P5 P1P4P5P6

P1P3P4P6 P2P3P4P5

β = ( 16
52 , 10

52 , 8
52 , 8

52 , 6
52 , 4

52 )

0.2.12a P1P2P5P6 P2P3P4P5

P1P3P4P5 P2P3P4P6

P1P3P4P6 P2P3P5P6

P1P3P5P6

β = (13
54 , 13

54 , 11
54 , 7

54 , 5
54 , 5

54 )

0.2.12b P1P2P5P6 P1P4P5P6

P1P3P4P5 P2P3P4P5

P1P3P4P6 P2P3P4P6

P1P3P5P6

β = ( 15
54 , 11

54 , 9
54 , 9

54 , 5
54 , 5

54 )

0.2.13 P1P2P5P6 P1P4P5P6

P1P3P4P5 P2P3P4P5

P1P3P4P6 P2P3P4P6

P1P3P5P6 P2P3P5P6

β = (14
56 , 12

56 , 10
56 , 8

56 , 6
56 , 6

56 )
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0.2.14 P1P2P5P6 P2P3P4P5

P1P3P4P5 P2P3P4P6

P1P3P4P6 P2P3P5P6

P1P3P5P6 P2P4P5P6

P1P4P5P6

β = (13
58 , 13

58 , 9
58 , 9

58 , 7
58 , 7

58 )

0.2.15 P1P2P5P6 P2P3P4P5

P1P3P4P5 P2P3P4P6

P1P3P4P6 P2P3P5P6

P1P3P5P6 P2P4P5P6

P1P4P5P6 P3P4P5P6

β = (12
60 , 12

60 , 10
60 , 10

60 , 8
60 , 8

60 )

0.3a.6 P1P2P3 P1P2P3P4 P1P2P3P4P5

P1P2P4 P1P2P3P5 P1P2P3P4P6

P1P2P5 P1P2P3P6 P1P2P3P5P6

P1P2P4P5 P1P2P4P5P6

P1P2P4P6 P1P3P4P5P6

P1P2P5P6 P2P3P4P5P6

β = ( 14
42 , 14

42 , 4
42 , 4

42 , 4
42 , 2

42 )

0.3a.7 P1P3P4P5 β = (15
44 , 13

44 , 5
44 , 5

44 , 5
44 , 1

44 )

0.3a.8a P1P3P4P5

P1P3P4P6
β = (16

46 , 12
46 , 6

46 , 6
46 , 4

46 , 2
46 )

0.3a.8b P1P3P4P5

P2P3P4P5
β = ( 14

46 , 14
46 , 6

46 , 6
46 , 6

46 , 0)

0.3a.8c P1P3P4P5

P1P3P4P6
β = ( 14

46 , 10
46 , 10

46 , 10
46 , 2

46 , 0)

0.3a.9a P1P3P4P5

P2P3P4P5

P1P3P4P6

β = (15
48 , 13

48 , 7
48 , 7

48 , 5
48 , 1

48 )

0.3a.9b P1P3P4P5

P1P3P4P6

P1P3P5P6

β = ( 17
48 , 11

48 , 7
48 , 5

48 , 5
48 , 3

48 )

0.3a.10a P1P3P4P5 P2P3P4P5

P1P3P4P6 P2P3P4P6
β = (14

50 , 14
50 , 8

50 , 8
50 , 4

50 , 2
50 )

0.3a.10b P1P3P4P5 P1P3P5P6

P1P3P4P6 P2P3P4P5
β = (16

50 , 12
50 , 8

50 , 6
50 , 6

50 , 2
50 )

0.3a.10c P1P3P4P5 P1P3P5P6

P1P3P4P6 P1P4P5P6
β = ( 18

50 , 10
50 , 6

50 , 6
50 , 6

50 , 4
50 )

0.3a.11a P1P3P4P5 P2P3P4P5

P1P3P4P6 P2P3P4P6

P1P3P5P6

β = (15
52 , 13

52 , 9
52 , 7

52 , 5
52 , 3

52 )

0.3a.11b P1P3P4P5 P1P4P5P6

P1P3P4P6 P2P3P4P5

P1P3P5P6

β = (17
52 , 11

52 , 7
52 , 7

52 , 7
52 , 3

52 )

0.3a.12a P1P3P4P5 P2P3P4P5

P1P3P4P6 P2P3P4P6

P1P3P5P6 P2P3P5P6

β = (14
54 , 14

54 , 10
54 , 6

54 , 6
54 , 4

54 )
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0.3a.12b P1P3P4P5 P1P4P5P6

P1P3P4P6 P2P3P4P5

P1P3P5P6 P2P3P4P6

β = ( 16
54 , 12

54 , 8
54 , 8

54 , 6
54 , 4

54 )

0.3a.13 P1P3P4P5 P2P3P4P5

P1P3P4P6 P2P3P4P6

P1P3P5P6 P2P3P5P6

P1P4P5P6

β = (15
56 , 13

56 , 9
56 , 7

56 , 7
56 , 5

56 )

0.3a.14 P1P3P4P5 P2P3P4P5

P1P3P4P6 P2P3P4P6

P1P3P5P6 P2P3P5P6

P1P4P5P6 P2P4P5P6

β = (14
58 , 14

58 , 8
58 , 8

58 , 8
58 , 6

58 )

0.3a.15 P1P3P4P5 P2P3P4P6

P1P3P4P6 P2P3P5P6

P1P3P5P6 P2P4P5P6

P1P4P5P6 P3P4P5P6

P2P3P4P5

β = (13
60 , 13

60 , 9
60 , 9

60 , 9
60 , 7

60 )

0.3b.7 P1P2P3 P1P2P3P4 P1P2P3P4P5

P1P2P4 P1P2P3P5 P1P2P3P4P6

P1P3P4 P1P2P3P6 P1P2P3P5P6

P1P2P4P5 P1P2P4P5P6

P1P2P4P6 P1P3P4P5P6

P1P3P4P5 P2P3P4P5P6

P1P3P4P6

β = (15
44 , 9

44 , 9
44 , 9

44 , 1
44 , 1

44 )

0.3b.8 P1P2P5P6 β = ( 16
46 , 10

46 , 8
46 , 8

46 , 2
46 , 2

46 )

0.3b.9a P1P2P5P6

P1P3P5P6
β = ( 17

48 , 9
48 , 9

48 , 7
48 , 3

48 , 3
48 )

0.3b.9b P1P2P5P6

P2P3P4P5
β = (15

48 , 11
48 , 9

48 , 9
48 , 3

48 , 1
48 )

0.3b.9c P2P3P4P5

P2P3P4P6
β = (13

48 , 11
48 , 11

48 , 11
48 , 1

48 , 1
48 )

0.3b.10a P1P2P5P6

P1P3P5P6

P1P4P5P6

β = (18
50 , 8

50 , 8
50 , 8

50 , 4
50 , 4

50 )

0.3b.10b P1P2P5P6

P2P3P4P5

P2P3P4P6

β = ( 14
50 , 12

50 , 10
50 , 10

50 , 2
50 , 2

50 )

0.3b.10c P1P2P5P6

P2P3P4P5

P1P3P5P6

β = (16
50 , 10

50 , 10
50 , 8

50 , 4
50 , 2

50 )

0.3b.11a P1P2P5P6

P1P3P5P6

P2P3P4P5

P2P3P4P6

β = (15
52 , 11

52 , 11
52 , 9

52 , 3
52 , 3

52 )

0.3b.11b P1P2P5P6

P2P3P4P5

P1P3P5P6

P1P4P5P6

β = ( 17
52 , 9

52 , 9
52 , 9

52 , 5
52 , 3

52 )
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0.3b.12a P1P2P5P6 P2P3P4P5

P1P3P5P6 P2P3P4P6

P1P4P5P6

β = ( 16
54 , 10

54 , 10
54 , 10

54 , 4
54 , 4

54 )

0.3b.12b P1P2P5P6 P2P3P4P5

P2P3P4P5 P2P3P5P6

P2P3P4P6

β = (16
54 , 12

54 , 8
54 , 8

54 , 6
54 , 4

54 )

0.3b.13 P1P2P5P6 P2P3P4P5

P1P3P5P6 P2P3P4P6

P1P4P5P6 P2P3P5P6

β = ( 15
56 , 11

56 , 11
56 , 9

56 , 5
56 , 5

56 )

0.3b.14 P1P2P5P6 P2P3P4P5

P1P3P5P6 P2P3P4P6

P1P4P5P6 P2P3P5P6

P2P4P5P6

β = ( 14
58 , 12

58 , 10
58 , 10

58 , 6
58 , 6

58 )

0.3b.15 P1P2P5P6 P2P3P4P5

P1P3P5P6 P2P3P4P6

P1P4P5P6 P2P3P5P6

P2P4P5P6 P3P4P5P6

β = ( 13
60 , 11

60 , 11
60 , 11

60 , 7
60 , 7

60 )

0.4a.6 P1P2P3 P1P2P3P4 P1P2P3P4P5

P1P2P4 P1P2P3P5 P1P2P3P4P6

P1P2P5 P1P2P3P6 P1P2P3P5P6

P1P2P6 P1P2P4P5 P1P2P4P5P6

P1P2P4P6 P1P3P4P5P6

P1P2P5P6 P2P3P4P5P6

β = (15
42 , 15

42 , 3
42 , 3

42 , 3
42 , 3

42 )

0.4a.7 P1P3P4P5 β = (16
44 , 14

44 , 4
44 , 4

44 , 4
44 , 2

44 )

0.4a.8a P1P3P4P5

P1P3P4P6
β = (17

46 , 13
46 , 5

46 , 5
46 , 3

46 , 3
46 )

0.4a.8b P1P3P4P5

P2P3P4P5
β = ( 15

46 , 15
46 , 5

46 , 5
46 , 5

46 , 1
46 )

0.4a.9a P1P3P4P5

P1P3P4P6

P2P3P4P5

β = (16
48 , 14

48 , 6
48 , 6

48 , 4
48 , 2

48 )

0.4a.9b P1P3P4P5

P1P3P4P6

P1P3P5P6

β = ( 18
48 , 12

48 , 6
48 , 4

48 , 4
48 , 4

48 )

0.4a.10a P1P3P4P5 P2P3P4P5

P1P3P4P6 P2P3P4P6
β = (15

50 , 15
50 , 7

50 , 7
50 , 3

50 , 3
50 )

0.4a.10b P1P3P4P5 P1P3P5P6

P1P3P4P6 P2P3P4P5
β = (17

50 , 13
50 , 7

50 , 5
50 , 5

50 , 3
50 )

0.4a.10c P1P3P4P5 P1P3P5P6

P1P3P4P6 P1P4P5P6
β = ( 19

50 , 11
50 , 5

50 , 5
50 , 5

50 , 5
50 )

0.4a.11a P1P3P4P5 P2P3P4P5

P1P3P4P6 P2P3P4P6

P1P3P5P6

β = (16
52 , 14

52 , 8
52 , 6

52 , 4
52 , 4

52 )
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0.4a.11b P1P3P4P5 P1P4P5P6

P1P3P4P6 P2P3P4P5

P1P3P5P6

β = ( 18
52 , 12

52 , 6
52 , 6

52 , 6
52 , 4

52 )

0.4a.12a P1P3P4P5 P2P3P4P5

P1P3P4P6 P2P3P4P6

P1P3P5P6 P2P3P5P6

β = (15
54 , 15

54 , 9
54 , 5

54 , 5
54 , 5

54 )

0.4a.12b P1P3P4P5 P1P4P5P6

P1P3P4P6 P2P3P4P5

P1P3P5P6 P2P3P4P6

β = ( 17
54 , 13

54 , 7
54 , 7

54 , 5
54 , 5

54 )

0.4a.13 P1P3P4P5 P2P3P4P5

P1P3P4P6 P2P3P4P6

P1P3P5P6 P2P3P5P6

P1P4P5P6

β = (16
56 , 14

56 , 8
56 , 6

56 , 6
56 , 6

56 )

0.4a.14 P1P3P4P5 P2P3P4P5

P1P3P4P6 P2P3P4P6

P1P3P5P6 P2P3P5P6

P1P4P5P6 P2P4P5P6

β = (15
58 , 15

58 , 7
58 , 7

58 , 7
58 , 7

58 )

0.4a.15 P1P3P4P5 P2P3P4P6

P1P3P4P6 P2P3P5P6

P1P3P5P6 P2P4P5P6

P1P4P5P6 P3P4P5P6

P2P3P4P5

β = (14
60 , 14

60 , 8
60 , 8

60 , 8
60 , 8

60 )

0.4b.8 P1P2P3 P1P2P3P4 P1P2P3P4P5

P1P2P4 P1P2P3P5 P1P2P3P4P6

P1P2P5 P1P2P3P6 P1P2P3P5P6

P1P3P4 P1P2P4P5 P1P2P4P5P6

P1P2P4P6 P1P3P4P5P6

P1P2P5P6 P2P3P4P5P6

P1P3P4P5

P1P3P4P6

β = (17
46 , 11

46 , 7
46 , 7

46 , 3
46 , 1

46 )

0.4b.9a P1P3P5P6 β = (18
48 , 10

48 , 8
48 , 6

48 , 4
48 , 2

48 )

0.4b.9b P2P3P4P5 β = (16
48 , 12

48 , 8
48 , 8

48 , 4
48 , 0)

0.4b.10a P1P3P5P6

P1P4P5P6
β = (19

50 , 9
50 , 7

50 , 7
50 , 5

50 , 3
50 )

0.4b.10b P2P3P4P5

P2P3P4P6
β = ( 15

50 , 13
50 , 9

50 , 9
50 , 3

50 , 1
50 )

0.4b.10c P1P3P5P6

P2P3P4P5
β = (17

50 , 11
50 , 9

50 , 7
50 , 5

50 , 1
50 )

0.4b.11a P1P3P5P6

P2P3P4P5

P1P4P5P6

β = (18
52 , 10

52 , 8
52 , 8

52 , 6
52 , 2

52 )

0.4b.11b P1P3P5P6

P2P3P4P5

P2P3P4P6

β = ( 16
52 , 12

52 , 10
52 , 8

52 , 4
52 , 2

52 )

0.4b.12a P1P3P5P6 P2P3P4P5

P1P4P5P6 P2P3P4P6
β = ( 17

54 , 11
54 , 9

54 , 9
54 , 5

54 , 3
54 )
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0.4b.12b P1P3P5P6 P2P3P4P6

P2P3P4P5 P2P3P5P6
β = (15

54 , 13
54 , 11

54 , 7
54 , 5

54 , 3
54 )

0.4b.13 P1P3P5P6 P2P3P4P6

P1P4P5P6 P2P3P5P6

P2P3P4P5

β = ( 16
56 , 12

56 , 10
56 , 8

56 , 6
56 , 4

56 )

0.4b.14 P1P3P5P6 P2P3P4P6

P1P4P5P6 P2P3P5P6

P2P3P4P5 P2P4P5P6

β = ( 15
58 , 13

58 , 9
58 , 9

58 , 7
58 , 5

58 )

0.4b.15 P1P3P5P6 P2P3P4P6

P1P4P5P6 P2P4P5P6

P2P3P5P6 P3P4P5P6

P2P3P4P5

β = ( 14
60 , 12

60 , 10
60 , 10

60 , 8
60 , 6

60 )

0.4c.9 P1P2P3 P1P2P3P4 P1P2P3P4P5

P1P2P4 P1P2P3P5 P1P2P3P4P6

P1P3P4 P1P2P3P6 P1P2P3P5P6

P2P3P4 P1P2P4P5 P1P2P4P5P6

P1P2P4P6 P1P3P4P5P6

P1P3P4P5 P2P3P4P5P6

P1P3P4P6

P2P3P4P5

P2P3P4P6

β = (12
48 , 12

48 , 12
48 , 12

48 , 0, 0)

0.4c.10 P1P2P5P6 β = ( 13
50 , 13

50 , 11
50 , 11

50 , 1
50 , 1

50 )

0.4c.11 P1P2P5P6

P1P3P5P6
β = ( 14

52 , 12
52 , 12

52 , 10
52 , 2

52 , 2
52 )

0.4c.12a P1P2P5P6

P1P3P5P6

P1P4P5P6

β = (15
54 , 11

54 , 11
54 , 11

54 , 3
54 , 3

54 )

0.4c.12b P1P2P5P6

P1P3P5P6

P2P3P5P6

β = (13
54 , 13

54 , 13
54 , 9

54 , 3
54 , 3

54 )

0.4c.13 P1P2P5P6 P1P4P5P6

P1P3P5P6 P2P3P5P6
β = ( 14

56 , 12
56 , 12

56 , 10
56 , 4

56 , 4
56 )

0.4c.14 P1P2P5P6 P2P3P5P6

P1P3P5P6 P2P4P5P6

P1P4P5P6

β = (13
58 , 13

58 , 11
58 , 11

58 , 5
58 , 5

58 )

0.4c.15 P1P2P5P6 P2P3P5P6

P1P3P5P6 P2P4P5P6

P1P4P5P6 P3P4P5P6

β = (12
60 , 12

60 , 12
60 , 12

60 , 6
60 , 6

60 )

0.5a.8 P1P2P3 P1P2P3P4 P1P2P3P4P5

P1P2P4 P1P2P3P5 P1P2P3P4P6

P1P2P5 P1P2P3P6 P1P2P3P5P6

P1P2P6 P1P2P4P5 P1P2P4P5P6

P1P3P4 P1P2P4P6 P1P3P4P5P6

P1P2P5P6 P2P3P4P5P6

P1P3P4P5

P1P3P4P6

β = (18
46 , 12

46 , 6
46 , 6

46 , 2
46 , 2

46 )

0.5a.9a P1P3P5P6 β = (19
48 , 11

48 , 7
48 , 5

48 , 3
48 , 3

48 )
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0.5a.9b P2P3P4P5 β = ( 17
48 , 13

48 , 7
48 , 7

48 , 3
48 , 1

48 )

0.5a.10a P1P3P5P6

P1P4P5P6
β = ( 20

50 , 10
50 , 6

50 , 6
50 , 4

50 , 4
50 )

0.5a.10b P2P3P4P5

P2P3P4P6
β = (16

50 , 14
50 , 8

50 , 8
50 , 2

50 , 2
50 )

0.5a.10c P1P3P5P6

P2P3P5P6
β = (18

50 , 12
50 , 8

50 , 6
50 , 4

50 , 2
50 )

0.5a.11a P1P3P5P6

P1P4P5P6

P2P3P4P5

β = ( 19
52 , 11

52 , 7
52 , 7

52 , 5
52 , 3

52 )

0.5a.11b P1P3P5P6

P2P3P4P5

P2P3P4P6

β = (17
52 , 13

52 , 9
52 , 7

52 , 3
52 , 3

52 )

0.5a.12a P1P3P5P6 P2P3P4P6

P2P3P4P5 P2P3P5P6
β = (16

54 , 14
54 , 10

54 , 6
54 , 4

54 , 4
54 )

0.5a.12b P1P3P5P6 P2P3P4P5

P1P4P5P6 P2P3P4P6
β = (18

54 , 12
54 , 8

54 , 8
54 , 4

54 , 4
54 )

0.5a.13 P1P3P5P6 P2P3P4P6

P1P4P5P6 P2P3P5P6

P2P3P4P5

β = (17
56 , 13

56 , 9
56 , 7

56 , 5
56 , 5

56 )

0.5a.14 P1P3P5P6 P2P3P4P6

P1P4P5P6 P2P3P5P6

P2P3P4P5 P2P4P5P6

β = (16
58 , 14

58 , 8
58 , 8

58 , 6
58 , 6

58 )

0.5a.15 P1P3P5P6 P2P3P5P6

P1P4P5P6 P2P4P5P6

P2P3P4P5 P3P4P5P6

P2P3P4P6

β = (15
60 , 13

60 , 9
60 , 9

60 , 7
60 , 7

60 )

0.5b.10 P1P2P3 P1P2P3P4 P1P2P3P4P5

P1P2P4 P1P2P3P5 P1P2P3P4P6

P1P2P5 P1P2P3P6 P1P2P3P5P6

P1P3P4 P1P2P4P5 P1P2P4P5P6

P2P3P4 P1P2P4P6 P1P3P4P5P6

P1P2P5P6 P2P3P4P5P6

P1P3P4P5

P1P3P4P6

P2P3P4P5

P2P3P4P6

β = (14
50 , 14

50 , 10
50 , 10

50 , 2
50 , 0)

0.5b.11 P1P3P5P6 β = (15
52 , 13

52 , 11
52 , 9

52 , 3
52 , 1

52 )

0.5b.12a P1P3P5P6

P1P4P5P6
β = (16

54 , 12
54 , 10

54 , 10
54 , 4

54 , 2
54 )

0.5b.12b P1P3P5P6

P2P3P5P6
β = ( 14

54 , 14
54 , 12

54 , 8
54 , 4

54 , 2
54 )

0.5b.13 P1P3P5P6

P1P4P5P6

P2P3P5P6

β = (15
56 , 13

56 , 11
56 , 9

56 , 5
56 , 3

56 )
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0.5b.14 P1P3P5P6 P2P3P5P6

P1P4P5P6 P2P4P5P6
β = ( 14

58 , 14
58 , 10

58 , 10
58 , 6

58 , 4
58 )

0.5b.15 P1P3P5P6 P2P4P5P6

P1P4P5P6 P3P4P5P6

P2P3P5P6

β = ( 13
60 , 13

60 , 11
60 , 11

60 , 7
60 , 5

60 )

0.5c.9 P1P2P3 P1P2P3P4 P1P2P3P4P5

P1P2P4 P1P2P3P5 P1P2P3P4P6

P1P2P5 P1P2P3P6 P1P2P3P5P6

P1P3P4 P1P2P4P5 P1P2P4P5P6

P1P3P5 P1P2P4P6 P1P3P4P5P6

P1P2P5P6 P2P3P4P5P6

P1P3P4P5

P1P3P4P6

P1P3P5P6

β = (19
48 , 9

48 , 9
48 , 5

48 , 5
48 , 1

48 )

0.5c.10a P1P4P5P6 β = (20
50 , 8

50 , 8
50 , 6

50 , 6
50 , 2

50 )

0.5c.10b P2P3P4P5 β = (18
50 , 10

50 , 10
50 , 6

50 , 6
50 , 0)

0.5c.11a P1P4P5P6

P2P3P4P5
β = (19

52 , 9
52 , 9

52 , 7
52 , 7

52 , 1
52 )

0.5c.11b P2P3P4P5

P2P3P4P6
β = (17

52 , 11
52 , 11

52 , 7
52 , 5

52 , 1
52 )

0.5c.12a P1P4P5P6

P2P3P4P5

P2P3P4P6

β = (18
54 , 10

54 , 10
54 , 8

54 , 6
54 , 2

54 )

0.5c.12b P2P3P4P5

P2P3P4P6

P2P3P5P6

β = (16
54 , 12

54 , 12
54 , 6

54 , 6
54 , 2

54 )

0.5c.13 P1P4P5P6 P2P3P4P6

P2P3P4P5 P2P3P5P6
β = (17

56 , 11
56 , 11

56 , 7
56 , 7

56 , 3
56 )

0.5c.14 P1P4P5P6 P2P3P5P6

P2P3P4P5 P2P4P5P6

P2P3P4P6

β = (16
58 , 12

58 , 10
58 , 8

58 , 8
58 , 4

58 )

0.5c.15 P1P4P5P6 P2P3P5P6

P2P3P4P5 P2P4P5P6

P2P3P4P6 P3P4P5P6

β = (15
60 , 11

60 , 11
60 , 9

60 , 9
60 , 5

60 )

0.6a.11 P1P2P3 P1P2P3P4 P1P2P3P4P5

P1P2P4 P1P2P3P5 P1P2P3P4P6

P1P2P5 P1P2P3P6 P1P2P3P5P6

P1P3P4 P1P2P4P5 P1P2P4P5P6

P1P3P5 P1P2P4P6 P1P3P4P5P6

P2P3P4 P1P2P5P6 P2P3P4P5P6

P1P3P4P5

P1P3P4P6

P1P3P5P6

P2P3P4P5

P2P3P4P6

β = (16
52 , 12

52 , 12
52 , 8

52 , 4
52 , 0)

0.6a.12a P1P4P5P6 β = ( 17
54 , 11

54 , 11
54 , 9

54 , 5
54 , 1

54 )
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0.6a.12b P2P3P5P6 β = (15
54 , 13

54 , 13
54 , 7

54 , 5
54 , 1

54 )

0.6a.13 P1P4P5P6

P2P3P5P6
β = (16

56 , 12
56 , 12

56 , 8
56 , 6

56 , 2
56 )

0.6a.14 P1P4P5P6

P2P3P5P6

P2P4P5P6

β = (15
58 , 13

58 , 11
58 , 9

58 , 7
58 , 3

58 )

0.6a.15 P1P4P5P6 P2P4P5P6

P2P3P5P6 P3P4P5P6
β = (14

60 , 12
60 , 12

60 , 10
60 , 8

60 , 4
60 )

0.6b.9 P1P2P3 P1P2P3P4 P1P2P3P4P5

P1P2P4 P1P2P3P5 P1P2P3P4P6

P1P2P5 P1P2P3P6 P1P2P3P5P6

P1P2P6 P1P2P4P5 P1P2P4P5P6

P1P3P4 P1P2P4P6 P1P3P4P5P6

P1P3P5 P1P2P5P6 P2P3P4P5P6

P1P3P4P5

P1P3P4P6

P1P3P5P6

β = (20
48 , 10

48 , 8
48 , 4

48 , 4
48 , 2

48 )

0.6b.10a P1P4P5P6 β = (21
50 , 9

50 , 7
50 , 5

50 , 5
50 , 3

50 )

0.6b.10b P2P3P4P5 β = ( 19
50 , 11

50 , 9
50 , 5

50 , 5
50 , 1

50 )

0.6b.11a P1P4P5P6

P2P3P4P5
β = (20

52 , 10
52 , 8

52 , 6
52 , 6

52 , 2
52 )

0.6b.11b P2P3P4P5

P2P3P4P6
β = ( 18

52 , 12
52 , 10

52 , 6
52 , 4

52 , 2
52 )

0.6b.12a P1P4P5P6

P2P3P4P5

P2P3P4P6

β = (19
54 , 11

54 , 9
54 , 7

54 , 5
54 , 3

54 )

0.6b.12b P2P3P4P5

P2P3P4P6

P2P3P5P6

β = ( 17
54 , 13

54 , 11
54 , 5

54 , 5
54 , 3

54 )

0.6b.13 P1P4P5P6 P2P3P4P6

P2P3P4P5 P2P3P5P6
β = ( 18

56 , 12
56 , 10

56 , 6
56 , 6

56 , 4
56 )

0.6b.14 P1P4P5P6 P2P3P4P6

P2P4P5P6 P2P3P5P6

P2P3P4P5

β = ( 17
58 , 13

58 , 9
58 , 7

58 , 7
58 , 5

58 )

0.6b.15 P1P4P5P6 P2P3P4P5

P2P4P5P6 P2P3P4P6

P3P4P5P6 P2P3P5P6

β = ( 16
60 , 12

60 , 10
30 , 8

60 , 8
60 , 6

60 )
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0.6c.10 P1P2P3 P1P2P3P4 P1P2P3P4P5

P1P2P4 P1P2P3P5 P1P2P3P4P6

P1P2P5 P1P2P3P6 P1P2P3P5P6

P1P3P4 P1P2P4P5 P1P2P4P5P6

P1P3P5 P1P2P4P6 P1P3P4P5P6

P1P4P5 P1P2P5P6 P2P3P4P5P6

P1P3P4P5

P1P3P4P6

P1P3P5P6

P1P4P5P6

β = (21
50 , 7

50 , 7
50 , 7

50 , 7
50 , 1

50 )

0.6c.11 P2P3P4P5 β = ( 20
52 , 8

52 , 8
52 , 8

52 , 8
52 , 0)

0.6c.12 P2P3P4P5

P2P3P4P6
β = ( 19

54 , 9
54 , 9

54 , 9
54 , 7

54 , 1
54 )

0.6c.13 P2P3P4P5

P2P3P4P6

P2P3P5P6

β = ( 18
56 , 10

56 , 10
56 , 8

56 , 8
56 , 2

56 )

0.6c.14 P2P3P4P5 P2P3P4P6

P2P3P5P6 P2P4P5P6
β = (17

58 , 11
58 , 9

58 , 9
58 , 9

58 , 3
58 )

0.6c.15 P2P3P4P5 P2P4P5P6

P2P3P4P6 P3P4P5P6

P2P3P5P6

β = (16
60 , 10

60 , 10
60 , 10

60 , 10
60 , 4

60 )

0.6d.10 P1P2P3 P1P2P3P4 P1P2P3P4P5

P1P2P4 P1P2P3P5 P1P2P3P4P6

P1P2P5 P1P2P3P6 P1P2P3P5P6

P1P2P6 P1P2P4P5 P1P2P4P5P6

P1P3P4 P1P2P4P6 P1P3P4P5P6

P2P3P4 P1P2P5P6 P2P3P4P5P6

P1P3P4P5

P1P3P4P6

P2P3P4P5

P2P3P4P6

β = (15
50 , 15

50 , 9
50 , 9

50 , 1
50 , 1

50 )

0.6d.11 P1P3P5P6 β = ( 16
52 , 14

52 , 10
52 , 8

52 , 2
52 , 2

52 )

0.6d.12a P1P3P5P6

P2P3P5P6
β = (15

54 , 15
54 , 11

54 , 7
54 , 3

54 , 3
54 )

0.6d.12b P1P3P5P6

P1P4P5P6
β = (17

54 , 13
54 , 9

54 , 9
54 , 3

54 , 3
54 )

0.6d.13 P1P3P5P6

P1P4P5P6

P2P3P5P6

β = ( 16
56 , 14

56 , 10
56 , 8

56 , 4
56 , 4

56 )

0.6d.14 P1P3P5P6 P2P3P5P6

P1P4P5P6 P2P4P5P6
β = (15

58 , 15
58 , 9

58 , 9
58 , 5

58 , 5
58 )

0.6d.15 P1P3P5P6 P2P4P5P6

P1P4P5P6 P3P4P5P6

P2P3P5P6

β = (14
60 , 14

60 , 10
60 , 10

60 , 6
60 , 6

60 )
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0.7a.9 P1P2P3 P1P2P3P4 P1P2P3P4P5

P1P2P4 P1P2P3P5 P1P2P3P4P6

P1P2P5 P1P2P3P6 P1P2P3P5P6

P1P2P6 P1P2P4P5 P1P2P4P5P6

P1P3P4 P1P2P4P6 P1P3P4P5P6

P1P3P5 P1P2P5P6 P2P3P4P5P6

P1P3P6 P1P3P4P5

P1P3P4P6

P1P3P5P6

β = (21
48 , 9

48 , 9
48 , 3

48 , 3
48 , 3

48 )

0.7a.10a P1P4P5P6 β = ( 22
50 , 8

50 , 8
50 , 4

50 , 4
50 , 4

50 )

0.7a.10b P2P3P4P5 β = (20
50 , 10

50 , 10
50 , 4

50 , 4
50 , 2

50 )

0.7a.11a P1P4P5P6

P2P3P4P5
β = ( 21

52 , 9
52 , 9

52 , 5
52 , 5

52 , 3
52 )

0.7a.11b P2P3P4P5

P2P3P4P6
β = (19

52 , 11
52 , 11

52 , 5
52 , 3

52 , 3
52 )

0.7a.12a P1P4P5P6

P2P3P4P5

P2P3P4P6

β = ( 20
54 , 10

54 , 10
54 , 6

54 , 4
54 , 4

54 )

0.7a.12b P2P3P4P5

P2P3P4P6

P2P3P5P6

β = (18
54 , 12

54 , 12
54 , 4

54 , 4
54 , 4

54 )

0.7a.13 P1P4P5P6 P2P3P4P5

P2P3P5P6 P2P3P4P6
β = (19

56 , 11
56 , 11

56 , 5
56 , 5

56 , 5
56 )

0.7a.14 P1P4P5P6 P2P3P5P6

P2P3P4P5 P2P4P5P6

P2P3P4P6

β = (18
58 , 12

58 , 10
58 , 6

58 , 6
58 , 6

58 )

0.7a.15 P1P4P5P6 P2P3P5P6

P2P3P4P5 P2P4P5P6

P2P3P4P6 P3P4P5P6

β = (17
60 , 11

60 , 11
60 , 7

60 , 7
60 , 7

60 )

0.7b.11 P1P2P3 P1P2P3P4 P1P2P3P4P5

P1P2P4 P1P2P3P5 P1P2P3P4P6

P1P2P5 P1P2P3P6 P1P2P3P5P6

P1P2P6 P1P2P4P5 P1P2P4P5P6

P1P3P4 P1P2P4P6 P1P3P4P5P6

P1P3P5 P1P2P5P6 P2P3P4P5P6

P2P3P4 P1P3P4P5

P1P3P4P6

P1P3P5P6

P2P3P4P5

P2P3P4P6

β = (17
52 , 13

52 , 11
52 , 7

52 , 3
52 , 1

52 )

0.7b.12a P2P3P5P6 β = (16
54 , 14

54 , 12
54 , 6

54 , 4
54 , 2

54 )

0.7b.12b P1P4P5P6 β = ( 18
54 , 12

54 , 10
54 , 8

54 , 4
54 , 2

54 )

0.7b.13 P1P4P5P6

P2P3P5P6
β = (17

56 , 13
56 , 11

56 , 7
56 , 5

56 , 3
56 )
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0.7b.14 P1P4P5P6

P2P3P5P6

P2P4P5P6

β = (16
58 , 14

58 , 10
58 , 8

58 , 6
58 , 4

58 )

0.7b.15 P1P4P5P6 P2P4P5P6

P2P3P5P6 P3P4P5P6
β = ( 15

60 , 13
60 , 11

60 , 9
60 , 7

60 , 5
60 )

0.7c.12 P1P2P3 P1P2P3P4 P1P2P3P4P5

P1P2P4 P1P2P3P5 P1P2P3P4P6

P1P2P5 P1P2P3P6 P1P2P3P5P6

P1P3P4 P1P2P4P5 P1P2P4P5P6

P1P3P5 P1P2P4P6 P1P3P4P5P6

P1P4P5 P1P2P5P6 P2P3P4P5P6

P2P3P4 P1P3P4P5

P1P3P4P6

P1P3P5P6

P1P4P5P6

P2P3P4P5

P2P3P4P6

β = (18
54 , 10

54 , 10
54 , 10

54 , 6
54 , 0)

0.7c.13 P2P3P5P6 β = ( 17
56 , 11

56 , 11
56 , 9

56 , 7
56 , 1

56 )

0.7c.14 P2P3P5P6

P2P4P5P6
β = ( 16

58 , 12
58 , 10

58 , 10
58 , 8

58 , 2
58 )

0.7c.15 P2P3P5P6

P2P4P5P6

P3P4P5P6

β = ( 15
60 , 11

60 , 11
60 , 11

60 , 9
60 , 3

60 )

0.7d.10 P1P2P3 P1P2P3P4 P1P2P3P4P5

P1P2P4 P1P2P3P5 P1P2P3P4P6

P1P2P5 P1P2P3P6 P1P2P3P5P6

P1P2P6 P1P2P4P5 P1P2P4P5P6

P1P3P4 P1P2P4P6 P1P3P4P5P6

P1P3P5 P1P2P5P6 P2P3P4P5P6

P1P4P5 P1P3P4P5

P1P3P4P6

P1P3P5P6

P1P4P5P6

β = (22
50 , 8

50 , 6
50 , 6

50 , 6
50 , 2

50 )

0.7d.11 P2P3P4P5 β = ( 21
52 , 9

52 , 7
52 , 7

52 , 7
52 , 1

52 )

0.7d.12 P2P3P4P5

P2P3P4P6
β = ( 20

54 , 10
54 , 8

54 , 8
54 , 6

54 , 2
54 )

0.7d.13 P2P3P4P5

P2P3P4P6

P2P3P5P6

β = ( 19
56 , 11

56 , 9
56 , 7

56 , 7
56 , 3

56 )

0.7d.14 P2P3P4P5 P2P3P5P6

P2P3P4P6 P2P4P5P6
β = (18

58 , 12
58 , 8

58 , 8
58 , 8

58 , 4
58 )

0.7d.15 P2P3P4P5 P2P4P5P6

P2P3P4P6 P3P4P5P6

P2P3P5P6

β = (17
60 , 11

60 , 9
60 , 9

60 , 9
60 , 5

60 )
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0.7e.12 P1P2P3 P1P2P3P4 P1P2P3P4P5

P1P2P4 P1P2P3P5 P1P2P3P4P6

P1P2P5 P1P2P3P6 P1P2P3P5P6

P1P3P4 P1P2P4P5 P1P2P4P5P6

P1P3P5 P1P2P4P6 P1P3P4P5P6

P2P3P4 P1P2P5P6 P2P3P4P5P6

P2P3P5 P1P3P4P5

P1P3P4P6

P1P3P5P6

P2P3P4P5

P2P3P4P6

P2P3P5P6

β = (14
54 , 14

54 , 14
54 , 6

54 , 6
54 , 0)

0.7e.13 P1P4P5P6 β = (15
56 , 13

56 , 13
56 , 7

56 , 7
56 , 1

56 )

0.7e.14 P1P4P5P6

P2P4P5P6
β = (14

58 , 14
58 , 12

58 , 8
58 , 8

58 , 2
58 )

0.7e.15 P1P4P5P6

P2P4P5P6

P3P4P5P6

β = (13
60 , 13

60 , 13
60 , 9

60 , 9
60 , 3

60 )

0.8a.12 P1P2P3 P1P2P3P4 P1P2P3P4P5

P1P2P4 P1P2P3P5 P1P2P3P4P6

P1P2P5 P1P2P3P6 P1P2P3P5P6

P1P2P6 P1P2P4P5 P1P2P4P5P6

P1P3P4 P1P2P4P6 P1P3P4P5P6

P1P3P5 P1P2P5P6 P2P3P4P5P6

P2P3P4 P1P3P4P5

P2P3P5 P1P3P4P6

P1P3P5P6

P2P3P4P5

P2P3P4P6

P2P3P5P6

β = (15
54 , 15

54 , 13
54 , 5

54 , 5
54 , 1

54 )

0.8a.13 P1P4P5P6 β = (16
56 , 14

56 , 12
56 , 6

56 , 6
56 , 2

56 )

0.8a.14 P1P4P5P6

P2P4P5P6
β = (15

58 , 15
58 , 11

58 , 7
58 , 7

58 , 3
58 )

0.8a.15 P1P4P5P6

P2P4P5P6

P3P4P5P6

β = (14
60 , 14

60 , 12
60 , 8

60 , 8
60 , 4

60 )

0.8b.11 P1P2P3 P1P2P3P4 P1P2P3P4P5

P1P2P4 P1P2P3P5 P1P2P3P4P6

P1P2P5 P1P2P3P6 P1P2P3P5P6

P1P2P6 P1P2P4P5 P1P2P4P5P6

P1P3P4 P1P2P4P6 P1P3P4P5P6

P1P3P5 P1P2P5P6 P2P3P4P5P6

P1P3P6 P1P3P4P5

P2P3P4 P1P3P4P6

P1P3P5P6

P2P3P4P5

P2P3P4P6

β = (18
52 , 12

52 , 12
52 , 6

52 , 2
52 , 2

52 )

0.8b.12a P1P4P5P6 β = (19
54 , 11

54 , 11
54 , 7

54 , 3
54 , 3

54 )

0.8b.12b P2P3P5P6 β = ( 17
54 , 13

54 , 13
54 , 5

54 , 3
54 , 3

54 )
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0.8b.13 P1P4P5P6

P2P3P5P6
β = (18

56 , 12
56 , 12

56 , 6
56 , 4

56 , 4
56 )

0.8b.14 P1P4P5P6

P2P3P5P6

P2P4P5P6

β = (17
58 , 13

58 , 11
58 , 7

58 , 5
58 , 5

58 )

0.8b.15 P1P4P5P6 P2P3P5P6

P3P4P5P6 P2P4P5P6
β = ( 16

60 , 12
60 , 12

60 , 8
60 , 6

60 , 6
60 )

0.8c.12 P1P2P3 P1P2P3P4 P1P2P3P4P5

P1P2P4 P1P2P3P5 P1P2P3P4P6

P1P2P5 P1P2P3P6 P1P2P3P5P6

P1P2P6 P1P2P4P5 P1P2P4P5P6

P1P3P4 P1P2P4P6 P1P3P4P5P6

P1P3P5 P1P2P5P6 P2P3P4P5P6

P1P4P5 P1P3P4P5

P2P3P4 P1P3P4P6

P1P3P5P6

P1P4P5P6

P2P3P4P5

P2P3P4P6

β = (19
54 , 11

54 , 9
54 , 9

54 , 5
54 , 1

54 )

0.8c.13 P2P3P5P6 β = ( 18
56 , 12

56 , 10
56 , 8

56 , 6
56 , 2

56 )

0.8c.14 P2P3P5P6

P2P4P5P6
β = ( 17

58 , 13
58 , 9

58 , 9
58 , 7

58 , 3
58 )

0.8c.15 P1P4P5P6

P2P3P5P6
β = ( 16

60 , 12
60 , 10

60 , 10
60 , 8

60 , 4
60 )

0.8d.10 P1P2P3 P1P2P3P4 P1P2P3P4P5

P1P2P4 P1P2P3P5 P1P2P3P4P6

P1P2P5 P1P2P3P6 P1P2P3P5P6

P1P2P6 P1P2P4P5 P1P2P4P5P6

P1P3P4 P1P2P4P6 P1P3P4P5P6

P1P3P5 P1P2P5P6 P2P3P4P5P6

P1P3P6 P1P3P4P5

P1P4P5 P1P3P4P6

P1P3P5P6

P1P4P5P6

β = (23
50 , 7

50 , 7
50 , 5

50 , 5
50 , 3

50 )

0.8d.11 P2P3P4P5 β = ( 22
52 , 8

52 , 8
52 , 6

52 , 6
52 , 2

52 )

0.8d.12 P2P3P4P5

P2P3P4P6
β = ( 21

54 , 9
54 , 9

54 , 7
54 , 5

54 , 3
54 )

0.8d.13 P2P3P4P5

P2P3P4P6

P2P3P5P6

β = ( 20
56 , 10

56 , 10
56 , 6

56 , 6
56 , 4

56 )

0.8d.14 P2P3P4P5 P2P3P5P6

P2P3P4P6 P2P4P5P6
β = (19

58 , 11
58 , 9

58 , 7
58 , 7

58 , 5
58 )

0.8d.15 P2P3P4P5 P2P4P5P6

P2P3P4P6 P3P4P5P6

P2P3P5P6

β = (18
60 , 10

60 , 10
60 , 8

60 , 8
60 , 6

60 )
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0.8e.13 P1P2P3 P1P2P3P4 P1P2P3P4P5

P1P2P4 P1P2P3P5 P1P2P3P4P6

P1P2P5 P1P2P3P6 P1P2P3P5P6

P1P3P4 P1P2P4P5 P1P2P4P5P6

P1P3P5 P1P2P4P6 P1P3P4P5P6

P1P4P5 P1P2P5P6 P2P3P4P5P6

P2P3P4 P1P3P4P5

P2P3P5 P1P3P4P6

P1P3P5P6

P1P4P5P6

P2P3P4P5

P2P3P4P6

P2P3P5P6

β = (16
56 , 12

56 , 12
56 , 8

56 , 8
56 , 0)

0.8e.14 P2P4P5P6 β = (15
58 , 13

58 , 11
58 , 9

58 , 9
58 , 1

58 )

0.8e.15 P2P4P5P6

P3P4P5P6
β = (14

60 , 12
60 , 12

60 , 10
60 , 10

60 , 2
60 )

0.9a.14 P1P2P3 P1P2P3P4 P1P2P3P4P5

P1P2P4 P1P2P3P5 P1P2P3P4P6

P1P2P5 P1P2P3P6 P1P2P3P5P6

P1P3P4 P1P2P4P5 P1P2P4P5P6

P1P3P5 P1P2P4P6 P1P3P4P5P6

P1P4P5 P1P2P5P6 P2P3P4P5P6

P2P3P4 P1P3P4P5

P2P3P5 P1P3P4P6

P2P4P5 P1P3P5P6

P1P4P5P6

P2P3P4P5

P2P3P4P6

P2P3P5P6

P2P4P5P6

β = (14
58 , 14

58 , 10
58 , 10

58 , 10
58 , 0)

0.9a.15 P3P4P5P6 β = (13
60 , 13

60 , 11
60 , 11

60 , 11
60 , 1

60 )

0.9b.12 P1P2P3 P1P2P3P4 P1P2P3P4P5

P1P2P4 P1P2P3P5 P1P2P3P4P6

P1P2P5 P1P2P3P6 P1P2P3P5P6

P1P2P6 P1P2P4P5 P1P2P4P5P6

P1P3P4 P1P2P4P6 P1P3P4P5P6

P1P3P5 P1P2P5P6 P2P3P4P5P6

P1P3P6 P1P3P4P5

P2P3P4 P1P3P4P6

P2P3P5 P1P3P5P6

P2P3P4P5

P2P3P4P6

P2P3P5P6

β = (16
54 , 14

54 , 14
54 , 4

54 , 4
54 , 2

54 )

0.9b.13 P1P4P5P6 β = (17
56 , 13

56 , 13
56 , 5

56 , 5
56 , 3

56 )

0.9b.14 P1P4P5P6

P2P4P5P6
β = (16

58 , 14
58 , 12

58 , 6
58 , 6

58 , 4
58 )

0.9b.15 P1P4P5P6

P2P4P5P6 P3P4P5P6
β = (15

60 , 13
60 , 13

60 , 7
60 , 7

60 , 5
60 )
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0.9c.12 P1P2P3 P1P2P3P4 P1P2P3P4P5

P1P2P4 P1P2P3P5 P1P2P3P4P6

P1P2P5 P1P2P3P6 P1P2P3P5P6

P1P2P6 P1P2P4P5 P1P2P4P5P6

P1P3P4 P1P2P4P6 P1P3P4P5P6

P1P3P5 P1P2P5P6 P2P3P4P5P6

P1P3P6 P1P3P4P5

P1P4P5 P1P3P4P6

P2P3P4 P1P3P5P6

P1P4P5P6

P2P3P4P5

P2P3P4P6

β = (20
54 , 10

54 , 10
54 , 8

54 , 4
54 , 2

54 )

0.9c.13 P2P3P5P6 β = ( 19
56 , 11

56 , 11
56 , 7

56 , 5
56 , 3

56 )

0.9c.14 P2P3P5P6

P2P4P5P6
β = ( 18

58 , 12
58 , 10

58 , 8
58 , 6

58 , 4
58 )

0.9c.15 P2P3P5P6

P2P4P5P6

P3P4P5P6

β = ( 17
60 , 11

60 , 11
60 , 9

60 , 7
60 , 5

60 )

0.9d.13 P1P2P3 P1P2P3P4 P1P2P3P4P5

P1P2P4 P1P2P3P5 P1P2P3P4P6

P1P2P5 P1P2P3P6 P1P2P3P5P6

P1P2P6 P1P2P4P5 P1P2P4P5P6

P1P3P4 P1P2P4P6 P1P3P4P5P6

P1P3P5 P1P2P5P6 P2P3P4P5P6

P1P4P5 P1P3P4P5

P2P3P4 P1P3P4P6

P2P3P5 P1P3P5P6

P1P4P5P6

P2P3P4P5

P2P3P4P6

P2P3P5P6

β = (17
56 , 13

56 , 11
56 , 7

56 , 7
56 , 1

56 )

0.9d.14 P2P4P5P6 β = ( 16
58 , 14

58 , 10
58 , 8

58 , 8
58 , 2

58 )

0.9d.15 P2P4P5P6

P3P4P5P6
β = ( 15

60 , 13
60 , 11

60 , 9
60 , 9

60 , 3
60 )

0.9e.10 P1P2P3 P1P2P3P4 P1P2P3P4P5

P1P2P4 P1P2P3P5 P1P2P3P4P6

P1P2P5 P1P2P3P6 P1P2P3P5P6

P1P2P6 P1P2P4P5 P1P2P4P5P6

P1P3P4 P1P2P4P6 P1P3P4P5P6

P1P3P5 P1P2P5P6 P2P3P4P5P6

P1P3P6 P1P3P4P5

P1P4P5 P1P3P4P6

P1P4P6 P1P3P5P6

P1P4P5P6

β = (24
50 , 6

50 , 6
50 , 6

50 , 4
50 , 4

50 )

0.9e.11 P2P3P4P5 β = (23
52 , 7

52 , 7
52 , 7

52 , 5
52 , 3

52 )

0.9e.12 P2P3P4P5

P2P3P4P6
β = (22

54 , 8
54 , 8

54 , 8
54 , 4

54 , 4
54 )
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0.9e.13 P2P3P4P5

P2P3P4P6

P2P3P5P6

β = (21
56 , 9

56 , 9
56 , 7

56 , 5
56 , 5

56 )

0.9e.14 P2P3P4P5 P2P3P5P6

P2P3P4P6 P2P4P5P6
β = (20

58 , 10
58 , 8

58 , 8
58 , 6

58 , 6
58 )

0.9e.15 P2P3P4P5 P2P4P5P6

P2P3P4P6 P3P4P5P6

P2P3P5P6

β = (19
60 , 9

60 , 9
60 , 9

60 , 7
60 , 7

60 )

0.10a.13 P1P2P3 P1P2P3P4 P1P2P3P4P5

P1P2P4 P1P2P3P5 P1P2P3P4P6

P1P2P5 P1P2P3P6 P1P2P3P5P6

P1P2P6 P1P2P4P5 P1P2P4P5P6

P1P3P4 P1P2P4P6 P1P3P4P5P6

P1P3P5 P1P2P5P6 P2P3P4P5P6

P1P3P6 P1P3P4P5

P1P4P5 P1P3P4P6

P2P3P4 P1P3P5P6

P2P3P5 P1P4P5P6

P2P3P4P5

P2P3P4P6

P2P3P5P6

β = (18
56 , 12

56 , 12
56 , 6

56 , 6
56 , 2

56 )

0.10a.14 P2P4P5P6 β = ( 17
58 , 13

58 , 11
58 , 7

58 , 7
58 , 3

58 )

0.10a.15 P2P4P5P6

P3P4P5P6
β = ( 16

60 , 12
60 , 12

60 , 8
60 , 8

60 , 4
60 )

0.10b.14 P1P2P3 P1P2P3P4 P1P2P3P4P5

P1P2P4 P1P2P3P5 P1P2P3P4P6

P1P2P5 P1P2P3P6 P1P2P3P5P6

P1P2P6 P1P2P4P5 P1P2P4P5P6

P1P3P4 P1P2P4P6 P1P3P4P5P6

P1P3P5 P1P2P5P6 P2P3P4P5P6

P1P4P5 P2P3P5P6

P2P3P4 P2P4P5P6

P2P3P5 P1P3P4P5

P2P4P5 P1P3P4P6

P1P3P5P6

P1P4P5P6

P2P3P4P5

P2P3P4P6

β = (15
58 , 15

58 , 9
58 , 9

58 , 9
58 , 1

58 )

0.10b.15 P3P4P5P6 β = (14
60 , 14

60 , 10
60 , 10

60 , 10
60 , 2

60 )

0.10c.10 P1P2P3 P1P2P3P4 P1P2P3P4P5

P1P2P4 P1P2P3P5 P1P2P3P4P6

P1P2P5 P1P2P3P6 P1P2P3P5P6

P1P2P6 P1P2P4P5 P1P2P4P5P6

P1P3P4 P1P2P4P6 P1P3P4P5P6

P1P3P5 P1P2P5P6 P2P3P4P5P6

P1P3P6 P1P3P4P5

P1P4P5 P1P3P4P6

P1P4P6 P1P3P5P6

P1P5P6 P1P4P5P6

β = (25
50 , 5

50 , 5
50 , 5

50 , 5
50 , 5

50 )

0.10c.11 P2P3P4P5 β = ( 24
52 , 6

52 , 6
52 , 6

52 , 6
52 , 4

52 )
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0.10c.12 P2P3P4P5

P2P3P4P6
β = ( 23

54 , 7
54 , 7

54 , 7
54 , 5

54 , 5
54 )

0.10c.13 P2P3P4P5

P2P3P4P6

P2P3P5P6

β = ( 22
56 , 8

56 , 8
56 , 6

56 , 6
56 , 6

56 )

0.10c.14 P2P3P4P5 P2P3P5P6

P2P3P4P6 P2P4P5P6
β = (21

58 , 9
58 , 7

58 , 7
58 , 7

58 , 7
58 )

0.10c.15 P2P3P4P5 P2P4P5P6

P2P3P4P6 P3P4P5P6

P2P3P5P6

β = (20
60 , 8

60 , 8
60 , 8

60 , 8
60 , 8

60 )

0.10d.12 P1P2P3 P1P2P3P4 P1P2P3P4P5

P1P2P4 P1P2P3P5 P1P2P3P4P6

P1P2P5 P1P2P3P6 P1P2P3P5P6

P1P2P6 P1P2P4P5 P1P2P4P5P6

P1P3P4 P1P2P4P6 P1P3P4P5P6

P1P3P5 P1P2P5P6 P2P3P4P5P6

P1P3P6 P1P3P4P5

P1P4P5 P1P3P4P6

P1P4P6 P1P3P5P6

P2P3P4 P1P4P5P6

P2P3P4P5

P2P3P4P6

β = (21
54 , 9

54 , 9
54 , 9

54 , 3
54 , 3

54 )

0.10d.13 P2P3P5P6 β = (20
56 , 10

56 , 10
56 , 8

56 , 4
56 , 4

56 )

0.10d.14 P2P3P5P6

P2P4P5P6
β = (19

58 , 11
58 , 9

58 , 9
58 , 5

58 , 5
58 )

0.10d.15 P2P3P5P6

P2P4P5P6

P3P4P5P6

β = (18
60 , 10

60 , 10
60 , 10

60 , 6
60 , 6

60 )

0.10e.15 P1P2P3 P1P2P3P4 P1P2P3P4P5

P1P2P4 P1P2P3P5 P1P2P3P4P6

P1P2P5 P1P2P3P6 P1P2P3P5P6

P1P3P4 P1P2P4P5 P1P2P4P5P6

P1P3P5 P1P2P4P6 P1P3P4P5P6

P1P4P5 P1P2P5P6 P2P3P4P5P6

P2P3P4 P1P3P4P5

P2P3P5 P1P3P4P6

P2P4P5 P1P3P5P6

P3P4P5 P1P4P5P6

P2P3P4P5

P2P3P4P6

P2P3P5P6

P2P4P5P6

P3P4P5P6

β = (12
60 , 12

60 , 12
60 , 12

60 , 12
60 , 0)
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0.10f.12 P1P2P3 P1P2P3P4 P1P2P3P4P5

P1P2P4 P1P2P3P5 P1P2P3P4P6

P1P2P5 P1P2P3P6 P1P2P3P5P6

P1P2P6 P1P2P4P5 P1P2P4P5P6

P1P3P4 P1P2P4P6 P1P3P4P5P6

P1P3P5 P1P2P5P6 P2P3P4P5P6

P1P3P6 P1P3P4P5

P2P3P4 P1P3P4P6

P2P3P5 P1P3P5P6

P2P3P6 P2P3P4P5

P2P3P4P6

P2P3P5P6

β = (15
54 , 15

54 , 15
54 , 3

54 , 3
54 , 3

54 )

0.10f.13 P1P4P5P6 β = (16
56 , 14

56 , 14
56 , 4

56 , 4
56 , 4

56 )

0.10f.14 P1P4P5P6

P2P4P5P6
β = (15

58 , 15
58 , 13

58 , 5
58 , 5

58 , 5
58 )

0.10f.15 P1P4P5P6

P2P4P5P6

P3P4P5P6

β = (14
60 , 14

60 , 14
60 , 6

60 , 6
60 , 6

60 )

1.4.6 P1P2 P1P2P3 P1P2P3P4 P1P2P3P4P5

P1P2P4 P1P2P3P5 P1P2P3P4P6

P1P2P5 P1P2P3P6 P1P2P3P5P6

P1P2P6 P1P2P4P5 P1P2P4P5P6

P1P2P4P6 P1P3P4P5P6

P1P2P5P6 P2P3P4P5P6

β = (16
40 , 16

40 , 2
40 , 2

40 , 2
40 , 2

40 )

1.4.7 P1P3P4P5 β = (17
42 , 15

42 , 3
42 , 3

42 , 3
42 , 1

42 )

1.4.8a P1P3P4P5

P1P3P4P6
β = (18

44 , 14
44 , 4

44 , 4
44 , 2

44 , 2
44 )

1.4.8b P1P3P4P5

P2P3P4P5
β = ( 16

44 , 16
44 , 4

44 , 4
44 , 4

44 , 0
44 )

1.4.9a P1P3P4P5

P1P3P4P6

P2P3P4P5

β = (17
46 , 15

46 , 5
46 , 5

46 , 3
46 , 1

46 )

1.4.9b P1P3P4P5

P1P3P4P6

P1P3P5P6

β = ( 19
46 , 13

46 , 5
46 , 3

46 , 3
46 , 3

46 )

1.4.10a P1P3P4P5 P2P3P4P5

P1P3P4P6 P2P3P4P6
β = (16

48 , 16
48 , 6

48 , 6
48 , 2

48 , 2
48 )

1.4.10b P1P3P4P5 P1P3P5P6

P1P3P4P6 P2P3P4P5
β = ( 18

48 , 14
48 , 6

48 , 4
48 , 4

48 , 2
48 )

1.4.10c P1P3P4P5 P1P3P5P6

P1P3P4P6 P1P4P5P6
β = (20

48 , 12
48 , 4

48 , 4
48 , 4

48 , 4
48 )

1.4.11a P1P3P4P5 P2P3P4P5

P1P3P4P6 P2P3P4P6

P1P3P5P6

β = (17
50 , 15

50 , 7
50 , 5

50 , 3
50 , 3

50 )
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1.4.11b P1P3P4P5 P1P4P5P6

P1P3P4P6 P2P3P4P5

P1P3P5P6

β = ( 19
50 , 15

50 , 5
50 , 5

50 , 3
50 , 3

50 )

1.4.12a P1P3P4P5 P1P4P5P6

P1P3P4P6 P2P3P4P5

P1P3P5P6 P2P3P4P6

β = (18
52 , 14

52 , 6
52 , 6

52 , 4
52 , 4

52 )

1.4.12b P1P3P4P5 P2P3P4P5

P1P3P4P6 P2P3P4P6

P1P3P5P6 P2P3P5P6

β = ( 16
52 , 16

52 , 8
52 , 4

52 , 4
52 , 4

52 )

1.4.13 P1P3P4P5 P2P3P4P5

P1P3P4P6 P2P3P4P6

P1P3P5P6 P2P3P5P6

P1P4P5P6

β = (17
54 , 15

54 , 7
54 , 5

54 , 5
54 , 5

54 )

1.4.14 P1P3P4P5 P2P3P4P5

P1P3P4P6 P2P3P4P6

P1P3P5P6 P2P3P5P6

P1P4P5P6 P2P4P5P6

β = (16
56 , 16

56 , 6
56 , 6

56 , 6
56 , 6

56 )

1.5.7 P1P2 P1P2P3 P1P2P3P4 P1P2P3P4P5

P1P2P4 P1P2P3P5 P1P2P3P4P6

P1P2P5 P1P2P3P6 P1P2P3P5P6

P1P2P6 P1P2P4P5 P1P2P4P5P6

P1P3P4 P1P2P4P6 P1P3P4P5P6

P1P2P5P6 P2P3P4P5P6

P1P3P4P6

β = (19
44 , 13

44 , 5
44 , 5

44 , 1
44 , 1

44 )

1.5.8a P2P3P4P5 β = (18
46 , 14

46 , 6
46 , 6

46 , 2
46 , 0)

1.5.8b P1P3P5P6 β = ( 20
46 , 12

46 , 6
46 , 4

46 , 2
46 , 2

46 )

1.5.9a P2P3P4P5

P2P3P4P6
β = (17

48 , 15
48 , 7

48 , 7
48 , 1

48 , 1
48 )

1.5.9b P1P3P5P6

P2P3P4P5
β = ( 19

48 , 13
48 , 7

48 , 5
48 , 3

48 , 1
48 )

1.5.9c P1P3P5P6

P1P4P5P6
β = (21

48 , 11
48 , 5

48 , 5
48 , 3

48 , 3
48 )

1.5.10a P1P3P5P6

P2P3P4P5

P2P3P4P6

β = ( 18
50 , 14

50 , 8
50 , 6

50 , 2
50 , 2

50 )

1.5.10b P1P3P5P6

P1P4P5P6

P2P3P4P5

β = (20
50 , 12

50 , 6
50 , 6

50 , 4
50 , 2

50 )

1.5.11a P1P3P5P6 P2P3P4P5

P1P4P5P6 P2P3P4P6
β = (19

52 , 13
52 , 7

52 , 7
52 , 3

52 , 3
52 )

1.5.11b P1P3P5P6 P2P3P4P6

P2P3P4P5 P2P3P5P6
β = ( 17

52 , 15
52 , 9

52 , 5
52 , 3

52 , 3
52 )

1.5.12 P1P3P5P6 P2P3P4P6

P1P4P5P6 P2P3P5P6

P2P3P4P5

β = (18
54 , 14

54 , 8
54 , 6

54 , 4
54 , 4

54 )
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1.5.13 P1P3P5P6 P2P3P4P5

P1P4P5P6 P2P3P4P6

P2P4P5P6 P2P3P5P6

β = (17
56 , 15

56 , 7
56 , 7

56 , 5
56 , 5

56 )

1.6a.9 P1P2 P1P2P3 P1P2P3P4 P1P2P3P4P5

P1P2P4 P1P2P3P5 P1P2P3P4P6

P1P2P5 P1P2P3P6 P1P2P3P5P6

P1P2P6 P1P2P4P5 P1P2P4P5P6

P1P3P4 P1P2P4P6 P1P3P4P5P6

P1P3P5 P1P2P5P6 P2P3P4P5P6

P1P3P4P5

P1P3P4P6

P1P3P5P6

β = ( 21
46 , 11

46 , 7
46 , 3

46 , 3
46 , 1

46 )

1.6a.10a P2P3P4P5 β = ( 20
48 , 12

48 , 8
48 , 4

48 , 4
48 , 0

48 )

1.6a.10b P1P4P5P6 β = (22
48 , 10

48 , 6
48 , 4

48 , 4
48 , 2

48 )

1.6a.11a P2P3P4P5

P2P3P4P6
β = ( 19

50 , 13
50 , 9

50 , 5
50 , 3

50 , 1
50 )

1.6a.11b P1P4P5P6

P2P3P4P5
β = (21

50 , 11
50 , 7

50 , 5
50 , 5

50 , 1
50 )

1.6a.12a P1P4P5P6

P2P3P4P5

P2P3P4P6

β = ( 20
52 , 12

52 , 8
52 , 6

52 , 4
52 , 2

52 )

1.6a.12b P2P3P4P5

P2P3P4P6

P2P3P5P6

β = (18
52 , 14

52 , 10
52 , 4

52 , 4
52 , 2

52 )

1.6a.13 P1P4P5P6 P2P3P4P6

P2P3P4P5 P2P3P5P6
β = (19

54 , 13
54 , 9

54 , 5
54 , 5

54 , 3
54 )

1.6a.14 P1P4P5P6 P2P3P4P6

P2P3P4P5 P2P4P5P6

P2P3P5P6

β = (18
56 , 14

56 , 8
56 , 6

56 , 6
56 , 4

56 )

1.6b.10 P1P2 P1P2P3 P1P2P3P4 P1P2P3P4P5

P1P2P4 P1P2P3P5 P1P2P3P4P6

P1P2P5 P1P2P3P6 P1P2P3P5P6

P1P2P6 P1P2P4P5 P1P2P4P5P6

P1P3P4 P1P2P4P6 P1P3P4P5P6

P2P3P4 P1P2P5P6 P2P3P4P5P6

P1P3P4P5

P1P3P4P6

P2P3P4P5

P2P3P4P6

β = (16
48 , 16

48 , 8
48 , 8

48 , 0
48 , 0

48 )

1.6b.11 P1P3P5P6 β = (17
50 , 15

50 , 9
50 , 7

50 , 1
50 , 1

50 )

1.6b.12a P1P3P5P6

P1P4P5P6
β = (18

52 , 14
52 , 8

52 , 8
52 , 2

52 , 2
52 )

1.6b.12b P1P3P5P6

P2P3P5P6
β = ( 16

52 , 16
52 , 10

52 , 6
52 , 2

52 , 2
52 )
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1.6b.13 P1P3P5P6

P1P4P5P6

P2P3P5P6

β = (17
54 , 15

54 , 9
54 , 7

54 , 3
54 , 3

54 )

1.6b.14 P1P3P5P6 P2P3P5P6

P1P4P5P6 P2P4P5P6
β = ( 16

56 , 16
56 , 8

56 , 8
56 , 4

56 , 4
56 )

1.7a.11 P1P2 P1P2P3 P1P2P3P4 P1P2P3P4P5

P1P2P4 P1P2P3P5 P1P2P3P4P6

P1P2P5 P1P2P3P6 P1P2P3P5P6

P1P2P6 P1P2P4P5 P1P2P4P5P6

P1P3P4 P1P2P4P6 P1P3P4P5P6

P1P3P5 P1P2P5P6 P2P3P4P5P6

P2P3P4 P1P3P4P5

P1P3P4P6

P1P3P5P6

P2P3P4P5

P2P3P4P6

β = (18
50 , 14

50 , 10
50 , 6

50 , 2
50 , 0

50 )

1.7a.12a P1P4P5P6 β = ( 19
52 , 13

52 , 9
52 , 7

52 , 3
52 , 1

52 )

1.7a.12b P2P3P5P6 β = (17
52 , 15

52 , 11
52 , 5

52 , 3
52 , 1

52 )

1.7a.13 P1P4P5P6

P2P3P5P6
β = (18

54 , 14
54 , 10

54 , 6
54 , 4

54 , 2
54 )

1.7a.14 P1P4P5P6

P2P3P5P6

P2P4P5P6

β = (17
56 , 15

56 , 9
56 , 7

56 , 5
56 , 3

56 )

1.7b.9 P1P2 P1P2P3 P1P2P3P4 P1P2P3P4P5

P1P2P4 P1P2P3P5 P1P2P3P4P6

P1P2P5 P1P2P3P6 P1P2P3P5P6

P1P2P6 P1P2P4P5 P1P2P4P5P6

P1P3P4 P1P2P4P6 P1P3P4P5P6

P1P3P5 P1P2P5P6 P2P3P4P5P6

P1P3P6 P1P3P4P5

P1P3P4P6

P1P3P5P6

β = (22
46 , 10

46 , 8
46 , 2

46 , 2
46 , 2

46 )

1.7b.10 P2P3P4P5 β = (21
48 , 11

48 , 9
48 , 3

48 , 3
48 , 1

48 )

1.7b.11a P2P3P4P5

P2P3P4P6
β = (20

50 , 12
50 , 10

50 , 4
50 , 2

50 , 2
50 , )

1.7b.11b P1P4P5P6

P2P3P4P5
β = ( 22

50 , 10
50 , 8

50 , 4
50 , 4

50 , 2
50 )

1.7b.12 P1P4P5P6

P2P3P4P5

P2P3P4P6

β = (21
52 , 11

52 , 9
52 , 5

52 , 3
52 , 3

52 )

1.7b.13 P2P3P4P5 P2P3P5P6

P2P3P4P6 P2P4P5P6
β = ( 19

52 , 13
52 , 11

52 , 3
52 , 3

52 , 3
52 )

1.7b.13 P1P4P5P6 P2P3P4P5

P2P3P5P6 P2P3P4P6
β = ( 20

54 , 12
54 , 10

54 , 4
54 , 4

54 , 4
54 )
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1.7b.12 P1P4P5P6 P2P3P5P6

P2P3P4P5 P2P4P5P6

P2P3P4P6

β = ( 19
56 , 13

56 , 9
56 , 5

56 , 5
56 , 5

56 )

1.7c.10 P1P2 P1P2P3 P1P2P3P4 P1P2P3P4P5

P1P2P4 P1P2P3P5 P1P2P3P4P6

P1P2P5 P1P2P3P6 P1P2P3P5P6

P1P2P6 P1P2P4P5 P1P2P4P5P6

P1P3P4 P1P2P4P6 P1P3P4P5P6

P1P3P5 P1P2P5P6 P2P3P4P5P6

P1P4P5 P1P3P4P5

P1P3P4P6

P1P3P5P6

P1P4P5P6

β = (23
48 , 9

48 , 5
48 , 5

48 , 5
48 , 1

48 )

1.7c.11 P2P3P4P5 β = ( 22
50 , 10

50 , 6
50 , 6

50 , 6
50 , 0)

1.7c.12 P2P3P4P5

P2P3P4P6
β = ( 21

52 , 11
52 , 7

52 , 7
52 , 5

52 , 1
52 )

1.7c.13 P2P3P4P5

P2P3P4P6

P2P3P5P6

β = ( 20
54 , 12

54 , 8
54 , 6

54 , 6
54 , 2

54 )

1.7c.14 P2P3P4P5 P2P3P5P6

P2P3P4P6 P2P4P5P6
β = (19

56 , 13
56 , 7

56 , 7
56 , 7

56 , 3
56 )

1.8a.10 P1P2 P1P2P3 P1P2P3P4 P1P2P3P4P5

P1P2P4 P1P2P3P5 P1P2P3P4P6

P1P2P5 P1P2P3P6 P1P2P3P5P6

P1P2P6 P1P2P4P5 P1P2P4P5P6

P1P3P4 P1P2P4P6 P1P3P4P5P6

P1P3P5 P1P2P5P6 P2P3P4P5P6

P1P3P6 P1P3P4P5

P1P4P5 P1P3P4P6

P1P3P5P6

P1P4P5P6

β = (24
48 , 8

48 , 6
48 , 4

48 , 4
48 , 2

48 )

1.8a.11 P2P3P4P5 β = (23
50 , 9

50 , 7
50 , 5

50 , 5
50 , 1

50 )

1.8a.12 P2P3P4P5

P2P3P4P6
β = (22

52 , 10
52 , 8

52 , 6
52 , 4

52 , 2
52 )

1.8a.13 P2P3P4P5

P2P3P4P6

P2P3P5P6

β = (21
54 , 11

54 , 9
54 , 5

54 , 5
54 , 3

54 )

1.8a.14 P2P3P4P5 P2P3P5P6

P2P3P4P6 P2P4P5P6
β = (20

56 , 12
56 , 8

56 , 6
56 , 6

56 , 4
56 )



USING SETS OF WINNING COALITIONS TO GENERATE FEASIBLE BANZHAF POWER DISTRIBUTIONS 45

1.8b.12 P1P2 P1P2P3 P1P2P3P4 P1P2P3P4P5

P1P2P4 P1P2P3P5 P1P2P3P4P6

P1P2P5 P1P2P3P6 P1P2P3P5P6

P1P2P6 P1P2P4P5 P1P2P4P5P6

P1P3P4 P1P2P4P6 P1P3P4P5P6

P1P3P5 P1P2P5P6 P2P3P4P5P6

P1P4P5 P1P3P4P5

P2P3P4 P1P3P4P6

P1P3P5P6

P1P4P5P6

P2P3P4P5

P2P3P4P6

β = (20
52 , 12

52 , 8
52 , 8

52 , 4
52 , 0)

1.8b.13 P2P3P5P6 β = (19
54 , 13

54 , 9
54 , 7

54 , 5
54 , 1

54 )

1.8b.14 P2P3P5P6

P2P4P5P6
β = (18

56 , 14
56 , 8

56 , 8
56 , 6

56 , 2
56 )

1.8c.11 P1P2 P1P2P3 P1P2P3P4 P1P2P3P4P5

P1P2P4 P1P2P3P5 P1P2P3P4P6

P1P2P5 P1P2P3P6 P1P2P3P5P6

P1P2P6 P1P2P4P5 P1P2P4P5P6

P1P3P4 P1P2P4P6 P1P3P4P5P6

P1P3P5 P1P2P5P6 P2P3P4P5P6

P1P3P6 P1P3P4P5

P2P3P4 P1P3P4P6

P1P3P5P6

P2P3P4P5

P2P3P4P6

β = (19
50 , 13

50 , 11
50 , 5

50 , 1
50 , 1

50 )

1.8c.12a P2P3P5P6 β = (20
52 , 12

52 , 10
52 , 6

52 , 2
52 , 2

52 )

1.8c.12b P1P4P5P6 β = (18
52 , 14

52 , 12
52 , 4

52 , 2
52 , 2

52 )

1.8c.13 P1P4P5P6

P2P3P5P6
β = ( 19

54 , 13
54 , 11

54 , 5
54 , 3

54 , 3
54 )

1.8c.14 P1P4P5P6

P2P3P5P6

P2P4P5P6

β = ( 18
56 , 14

56 , 10
56 , 6

56 , 4
56 , 4

56 )

1.8d.12 P1P2 P1P2P3 P1P2P3P4 P1P2P3P4P5

P1P2P4 P1P2P3P5 P1P2P3P4P6

P1P2P5 P1P2P3P6 P1P2P3P5P6

P1P2P6 P1P2P4P5 P1P2P4P5P6

P1P3P4 P1P2P4P6 P1P3P4P5P6

P1P3P5 P1P2P5P6 P2P3P4P5P6

P2P3P4 P1P3P4P5

P2P3P5 P1P3P4P6

P1P3P5P6

P2P3P4P5

P2P3P4P6

P2P3P5P6

β = (16
52 , 16

52 , 12
52 , 4

52 , 4
52 , 0)

1.8d.13 P1P4P5P6 β = ( 17
54 , 15

54 , 11
54 , 5

54 , 5
54 , 1

54 )

1.8d.14 P1P4P5P6

P2P4P5P6
β = ( 16

56 , 16
56 , 10

56 , 6
56 , 6

56 , 2
56 )
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1.9a.12 P1P2 P1P2P3 P1P2P3P4 P1P2P3P4P5

P1P2P4 P1P2P3P5 P1P2P3P4P6

P1P2P5 P1P2P3P6 P1P2P3P5P6

P1P2P6 P1P2P4P5 P1P2P4P5P6

P1P3P4 P1P2P4P6 P1P3P4P5P6

P1P3P5 P1P2P5P6 P2P3P4P5P6

P1P3P6 P1P3P4P5

P1P4P5 P1P3P4P6

P2P3P4 P1P3P5P6

P1P4P5P6

P2P3P4P5

P2P3P4P6

β = (21
52 , 11

52 , 9
52 , 7

52 , 3
52 , 1

52 )

1.9a.13 P2P3P5P6 β = (20
54 , 12

54 , 10
54 , 6

54 , 4
54 , 2

54 )

1.9a.14 P2P3P5P6

P2P4P5P6
β = (19

56 , 13
56 , 9

56 , 7
56 , 5

56 , 3
56 )

1.9b.10 P1P2 P1P2P3 P1P2P3P4 P1P2P3P4P5

P1P2P4 P1P2P3P5 P1P2P3P4P6

P1P2P5 P1P2P3P6 P1P2P3P5P6

P1P2P6 P1P2P4P5 P1P2P4P5P6

P1P3P4 P1P2P4P6 P1P3P4P5P6

P1P3P5 P1P2P5P6 P2P3P4P5P6

P1P3P6 P1P3P4P5

P1P4P5 P1P3P4P6

P1P4P6 P1P3P5P6

P1P4P5P6

β = (25
48 , 7

48 , 5
48 , 5

48 , 3
48 , 3

48 )

1.9b.11 P2P3P4P5 β = (24
50 , 8

50 , 6
50 , 6

50 , 4
50 , 2

50 )

1.9b.12 P2P3P4P5

P2P3P4P6
β = (23

52 , 9
52 , 7

52 , 7
52 , 3

52 , 3
52 )

1.9b.13 P2P3P4P5

P2P3P4P6

P2P3P5P6

β = (22
54 , 10

54 , 8
54 , 6

54 , 4
54 , 4

54 )

1.9b.14 P2P3P4P5 P2P3P5P6

P2P3P4P6 P2P4P5P6
β = ( 21

56 , 11
56 , 7

56 , 7
56 , 5

56 , 5
56 )

1.9c.13 P1P2 P1P2P3 P1P2P3P4 P1P2P3P4P5

P1P2P4 P1P2P3P5 P1P2P3P4P6

P1P2P5 P1P2P3P6 P1P2P3P5P6

P1P2P6 P1P2P4P5 P1P2P4P5P6

P1P3P4 P1P2P4P6 P1P3P4P5P6

P1P3P5 P1P3P4P5 P2P3P4P5P6

P1P4P5 P1P3P4P6

P2P3P4 P1P3P5P6

P2P3P5 P1P4P5P6

P2P3P4P5

P1P2P5P6

P2P3P4P6

P2P3P5P6

β = (18
54 , 14

54 , 10
54 , 6

54 , 6
54 , 0)

1.9c.14 P2P4P5P6 β = ( 17
56 , 15

56 , 9
56 , 7

56 , 7
56 , 1

56 )
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1.9d.12 P1P2 P1P2P3 P1P2P3P4 P1P2P3P4P5

P1P2P4 P1P2P3P5 P1P2P3P4P6

P1P2P5 P1P2P3P6 P1P2P3P5P6

P1P2P6 P1P2P4P5 P1P2P4P5P6

P1P3P4 P1P2P4P6 P1P3P4P5P6

P1P3P5 P1P2P5P6 P2P3P4P5P6

P1P3P6 P1P3P4P5

P2P3P4 P1P3P4P6

P2P3P5 P1P3P5P6

P2P3P4P5

P2P3P4P6

P2P3P5P6

β = (17
52 , 15

52 , 13
52 , 3

52 , 3
52 , 1

52 )

1.9d.13 P1P4P5P6 β = ( 18
54 , 14

54 , 12
54 , 4

54 , 4
54 , 2

54 )

1.9d.14 P1P4P5P6

P2P4P5P6
β = ( 17

56 , 15
56 , 11

56 , 5
56 , 5

56 , 3
56 )

1.10a.14 P1P2 P1P2P3 P1P2P3P4 P1P2P3P4P5

P1P2P4 P1P2P3P5 P1P2P3P4P6

P1P2P5 P1P2P3P6 P1P2P3P5P6

P1P2P6 P1P2P4P5 P1P2P4P5P6

P1P3P4 P1P2P4P6 P1P3P4P5P6

P1P3P5 P1P2P5P6 P2P3P4P5P6

P1P4P5 P1P3P4P5

P2P3P4 P1P3P4P6

P2P3P5 P1P3P5P6

P2P4P5 P1P4P5P6

P2P3P4P5

P2P3P4P6

P2P3P5P6

P2P4P5P6

β = (16
56 , 16

56 , 8
56 , 8

56 , 8
56 , 0)

1.10b.10 P1P2 P1P2P3 P1P2P3P4 P1P2P3P4P5

P1P2P4 P1P2P3P5 P1P2P3P4P6

P1P2P5 P1P2P3P6 P1P2P3P5P6

P1P2P6 P1P2P4P5 P1P2P4P5P6

P1P3P4 P1P2P4P6 P1P3P4P5P6

P1P3P5 P1P2P5P6 P2P3P4P5P6

P1P3P6 P1P3P4P5

P1P4P5 P1P3P4P6

P1P4P6 P1P3P5P6

P1P5P6 P1P4P5P6

β = (26
48 , 6

48 , 4
48 , 4

48 , 4
48 , 4

48 )

1.10b.11 P2P3P4P5 β = (25
50 , 7

50 , 5
50 , 5

50 , 5
50 , 3

50 )

1.10b.12 P2P3P4P5

P2P3P4P6
β = (24

52 , 8
52 , 6

52 , 6
52 , 4

52 , 4
52 )

1.10b.13 P2P3P4P5

P2P3P4P6

P2P3P5P6

β = (23
54 , 9

54 , 7
54 , 5

54 , 5
54 , 5

54 )

1.10b.14 P2P3P4P5 P2P3P5P6

P2P3P4P6 P2P4P5P6
β = (22

56 , 10
56 , 6

56 , 6
56 , 6

56 , 6
56 )
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1.10c.12 P1P2 P1P2P3 P1P2P3P4 P1P2P3P4P5

P1P2P4 P1P2P3P5 P1P2P3P4P6

P1P2P5 P1P2P3P6 P1P2P3P5P6

P1P2P6 P1P2P4P5 P1P2P4P5P6

P1P3P4 P1P2P4P6 P1P3P4P5P6

P1P3P5 P1P2P5P6 P2P3P4P5P6

P1P3P6 P1P3P4P5

P1P4P5 P1P3P4P6

P1P4P6 P1P3P5P6

P2P3P4 P1P4P5P6

P2P3P4P5

P2P3P4P6

β = (22
52 , 10

52 , 8
52 , 8

52 , 2
52 , 2

52 )

1.10c.13 P2P3P5P6 β = (21
54 , 11

54 , 9
54 , 7

54 , 3
54 , 3

54 )

1.10c.14 P2P3P5P6

P2P4P5P6
β = (20

56 , 12
56 , 8

56 , 8
56 , 4

56 , 4
56 )

1.10d.12 P1P2 P1P2P3 P1P2P3P4 P1P2P3P4P5

P1P2P4 P1P2P3P5 P1P2P3P4P6

P1P2P5 P1P2P3P6 P1P2P3P5P6

P1P2P6 P1P2P4P5 P1P2P4P5P6

P1P3P4 P1P2P4P6 P1P3P4P5P6

P1P3P5 P1P2P5P6 P2P3P4P5P6

P1P3P6 P1P3P4P5

P2P3P4 P1P3P4P6

P2P3P5 P1P3P5P6

P2P3P6 P2P3P4P5

P2P3P4P6

P2P3P5P6

β = (16
52 , 16

52 , 14
52 , 2

52 , 2
52 , 2

52 )

1.10d.13 P1P4P5P6 β = (17
54 , 15

54 , 13
54 , 3

54 , 3
54 , 3

54 )

1.10d.14 P1P4P5P6

P2P4P5P6
β = (16

56 , 16
56 , 12

56 , 4
56 , 4

56 , 4
56 )

1.10e.13 P1P2 P1P2P3 P1P2P3P4 P1P2P3P4P5

P1P2P4 P1P2P3P5 P1P2P3P4P6

P1P2P5 P1P2P3P6 P1P2P3P5P6

P1P2P6 P1P2P4P5 P1P2P4P5P6

P1P3P4 P1P2P4P6 P1P3P4P5P6

P1P3P5 P1P2P5P6 P2P3P4P5P6

P1P3P6 P1P3P4P5

P1P4P5 P1P3P4P6

P2P3P4 P1P3P5P6

P2P3P5 P1P4P5P6

P2P3P4P5

P2P3P4P6

P2P3P5P6

β = (19
54 , 13

54 , 11
54 , 5

54 , 5
54 , 1

54 )

1.10e.14 P2P4P5P6 β = ( 18
56 , 14

56 , 10
56 , 6

56 , 6
56 , 2

56 )
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2.7.9 P1P2 P1P2P3 P1P2P3P4 P1P2P3P4P5

P1P3 P1P2P4 P1P2P3P5 P1P2P3P4P6

P1P2P5 P1P2P3P6 P1P2P3P5P6

P1P2P6 P1P2P4P5 P1P2P4P5P6

P1P3P4 P1P2P4P6 P1P3P4P5P6

P1P3P5 P1P2P5P6 P2P3P4P5P6

P1P3P6 P1P3P4P5

P1P3P4P6

P1P3P5P6

β = (23
44 , 9

44 , 9
44 , 1

44 , 1
44 , 1

44 )

2.7.10a P1P4P5P6 β = ( 24
46 , 8

46 , 8
46 , 2

46 , 2
46 , 2

46 )

2.7.10b P2P3P4P5 β = (22
46 , 10

46 , 10
46 , 2

46 , 2
46 , 0)

2.7.11a P2P3P4P5

P2P3P4P6
β = (21

48 , 11
48 , 11

48 , 3
48 , 1

48 , 1
48 )

2.7.11b P1P4P5P6

P2P3P4P5
β = (23

48 , 9
48 , 9

48 , 3
48 , 3

48 , 1
48 )

2.7.12a P2P3P4P5

P2P3P4P6

P2P3P5P6

β = (20
50 , 12

50 , 12
50 , 2

50 , 2
50 , 2

50 )

2.7.12b P1P4P5P6

P2P3P4P5

P2P3P4P6

β = (22
50 , 10

50 , 10
50 , 4

50 , 2
50 , 2

50 )

2.7.13 P1P4P5P6 P2P3P4P6

P2P3P4P5 P2P3P5P6
β = (21

52 , 11
52 , 11

52 , 3
52 , 3

52 , 3
52 )

2.8a.10 P1P2 P1P2P3 P1P2P3P4 P1P2P3P4P5

P1P3 P1P2P4 P1P2P3P5 P1P2P3P4P6

P1P2P5 P1P2P3P6 P1P2P3P5P6

P1P2P6 P1P2P4P5 P1P2P4P5P6

P1P3P4 P1P2P4P6 P1P3P4P5P6

P1P3P5 P1P2P5P6 P2P3P4P5P6

P1P3P6 P1P3P4P5

P1P4P5 P1P3P4P6

P1P3P5P6

P1P4P5P6

β = (25
46 , 7

46 , 7
46 , 3

46 , 3
46 , 1

46 )

2.8a.11 P2P3P4P5 β = (24
48 , 8

48 , 8
48 , 4

48 , 4
48 , 0)

2.8a.12 P2P3P4P5

P2P3P4P6
β = ( 23

50 , 9
50 , 9

50 , 5
50 , 3

50 , 1
50 )

2.8a.13 P2P3P4P5

P2P3P4P6 P2P3P5P6
β = (22

52 , 10
52 , 10

52 , 4
52 , 4

52 , 2
52 )
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2.8b.11 P1P2 P1P2P3 P1P2P3P4 P1P2P3P4P5

P1P3 P1P2P4 P1P2P3P5 P1P2P3P4P6

P1P2P5 P1P2P3P6 P1P2P3P5P6

P1P2P6 P1P2P4P5 P1P2P4P5P6

P1P3P4 P1P2P4P6 P1P3P4P5P6

P1P3P5 P1P2P5P6 P2P3P4P5P6

P1P3P6 P1P3P4P5

P2P3P4 P1P3P4P6

P1P3P5P6

P2P3P4P5

P2P3P4P6

β = (20
48 , 12

48 , 12
48 , 4

48 , 0, 0)

2.8b.12a P1P4P5P6 β = (21
50 , 11

50 , 11
50 , 5

50 , 1
50 , 1

50 )

2.8b.12b P2P3P5P6 β = ( 19
50 , 13

50 , 13
50 , 3

50 , 1
50 , 1

50 )

2.8b.13 P1P4P5P6

P2P3P5P6
β = (20

52 , 12
52 , 12

52 , 4
52 , 2

52 , 2
52 )

2.9a.10 P1P2 P1P2P3 P1P2P3P4 P1P2P3P4P5

P1P3 P1P2P4 P1P2P3P5 P1P2P3P4P6

P1P2P5 P1P2P3P6 P1P2P3P5P6

P1P2P6 P1P2P4P5 P1P2P4P5P6

P1P3P4 P1P2P4P6 P1P3P4P5P6

P1P3P5 P1P2P5P6 P2P3P4P5P6

P1P3P6 P1P3P4P5

P1P4P5 P1P3P4P6

P1P4P6 P1P3P5P6

P1P4P5P6

β = (26
46 , 6

46 , 6
46 , 4

46 , 2
46 , 2

46 )

2.9a.11 P2P3P4P5 β = ( 25
48 , 7

48 , 7
48 , 5

48 , 3
48 , 1

48 )

2.9a.12 P2P3P4P5

P2P3P4P6
β = ( 24

50 , 8
50 , 8

50 , 6
50 , 2

50 , 2
50 )

2.9a.13 P2P3P4P5

P2P3P4P6 P2P3P5P6
β = (23

52 , 9
52 , 9

52 , 5
52 , 3

52 , 3
52 )

2.9b.12 P1P2 P1P2P3 P1P2P3P4 P1P2P3P4P5

P1P3 P1P2P4 P1P2P3P5 P1P2P3P4P6

P1P2P5 P1P2P3P6 P1P2P3P5P6

P1P2P6 P1P2P4P5 P1P2P4P5P6

P1P3P4 P1P2P4P6 P1P3P4P5P6

P1P3P5 P1P2P5P6 P2P3P4P5P6

P1P3P6 P1P3P4P5

P2P3P4 P1P3P4P6

P2P3P5 P1P3P5P6

P2P3P4P5

P2P3P4P6

P2P3P5P6

β = (18
50 , 14

50 , 14
50 , 2

50 , 2
50 , 0)

2.9b.13 P1P4P5P6 β = (19
52 , 13

52 , 13
52 , 3

52 , 3
52 , 1

52 )
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2.9c.12 P1P2 P1P2P3 P1P2P3P4 P1P2P3P4P5

P1P3 P1P2P4 P1P2P3P5 P1P2P3P4P6

P1P2P5 P1P2P3P6 P1P2P3P5P6

P1P2P6 P1P2P4P5 P1P2P4P5P6

P1P3P4 P1P2P4P6 P1P3P4P5P6

P1P3P5 P1P2P5P6 P2P3P4P5P6

P1P3P6 P1P3P4P5

P1P4P5 P1P3P4P6

P2P3P4 P1P3P5P6

P1P4P5P6

P2P3P4P5

P2P3P4P6

β = (22
50 , 10

50 , 10
50 , 6

50 , 2
50 , 0)

2.10a.10 P1P2 P1P2P3 P1P2P3P4 P1P2P3P4P5

P1P3 P1P2P4 P1P2P3P5 P1P2P3P4P6

P1P2P5 P1P2P3P6 P1P2P3P5P6

P1P2P6 P1P2P4P5 P1P2P4P5P6

P1P3P4 P1P2P4P6 P1P3P4P5P6

P1P3P5 P1P2P5P6 P2P3P4P5P6

P1P3P6 P1P3P4P5

P1P4P5 P1P3P4P6

P1P4P6 P1P3P5P6

P1P5P6 P1P4P5P6

β = (27
46 , 5

46 , 5
46 , 3

46 , 3
46 , 3

46 )

2.10a.11 P2P3P4P5 β = (26
48 , 6

48 , 6
48 , 4

48 , 4
48 , 2

48 )

2.10a.12 P2P3P4P5

P2P3P4P6
β = (25

50 , 7
50 , 7

50 , 5
50 , 3

50 , 3
50 )

2.10a.13 P2P3P4P5

P2P3P4P6 P2P3P5P6
β = (24

52 , 8
52 , 8

52 , 4
52 , 4

52 , 4
52 )

2.10b.12 P1P2 P1P2P3 P1P2P3P4 P1P2P3P4P5

P1P3 P1P2P4 P1P2P3P5 P1P2P3P4P6

P1P2P5 P1P2P3P6 P1P2P3P5P6

P1P2P6 P1P2P4P5 P1P2P4P5P6

P1P3P4 P1P2P4P6 P1P3P4P5P6

P1P3P5 P1P2P5P6 P2P3P4P5P6

P1P3P6 P1P3P4P5

P2P3P4 P1P3P4P6

P2P3P5 P1P3P5P6

P2P3P6 P2P3P4P5

P2P3P4P6

P2P3P5P6

β = (17
50 , 15

50 , 15
50 , 1

50 , 1
50 , 1

50 )

2.10b.13 P1P4P5P6 β = (18
52 , 14

52 , 14
52 , 2

52 , 2
52 , 2

52 )

2.10c.12 P1P2 P1P2P3 P1P2P3P4 P1P2P3P4P5

P1P3 P1P2P4 P1P2P3P5 P1P2P3P4P6

P1P2P5 P1P2P3P6 P1P2P3P5P6

P1P2P6 P1P2P4P5 P1P2P4P5P6

P1P3P4 P1P2P4P6 P1P3P4P5P6

P1P3P5 P1P2P5P6 P2P3P4P5P6

P1P3P6 P1P3P4P5

P1P4P5 P1P3P4P6

P1P4P6 P1P3P5P6

P2P3P4 P1P4P5P6

P2P3P4P5

P2P3P4P6

β = (23
50 , 9

50 , 9
50 , 7

50 , 1
50 , 1

50 )
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2.10c.13 P2P3P5P6 β = (22
52 , 10

52 , 10
52 , 6

52 , 2
52 , 2

52 )

2.10d.13 P1P2 P1P2P3 P1P2P3P4 P1P2P3P4P5

P1P3 P1P2P4 P1P2P3P5 P1P2P3P4P6

P1P2P5 P1P2P3P6 P1P2P3P5P6

P1P2P6 P1P2P4P5 P1P2P4P5P6

P1P3P4 P1P2P4P6 P1P3P4P5P6

P1P3P5 P1P2P5P6 P2P3P4P5P6

P1P3P6 P1P3P4P5

P1P4P5 P1P3P4P6

P2P3P4 P1P3P5P6

P2P3P5 P1P4P5P6

P2P3P4P5

P2P3P4P6

P2P3P5P6

β = (20
52 , 12

52 , 12
52 , 4

52 , 4
52 , 0)

3.9.10 P1P2 P1P2P3 P1P2P3P4 P1P2P3P4P5

P1P3 P1P2P4 P1P2P3P5 P1P2P3P4P6

P1P4 P1P2P5 P1P2P3P6 P1P2P3P5P6

P1P2P6 P1P2P4P5 P1P2P4P5P6

P1P3P4 P1P2P4P6 P1P3P4P5P6

P1P3P5 P1P2P5P6 P2P3P4P5P6

P1P3P6 P1P3P4P5

P1P4P5 P1P3P4P6

P1P4P6 P1P3P5P6

P1P4P5P6

β = (27
44 , 5

44 , 5
44 , 5

44 , 1
44 , 1

44 )

3.9.11 P2P3P4P5 β = (26
46 , 6

46 , 6
46 , 6

46 , 2
46 , 0)

3.9.12 P2P3P4P5

P2P3P4P6
β = (25

48 , 7
48 , 7

48 , 7
48 , 1

48 , 1
48 )

3.10a.10 P1P2 P1P2P3 P1P2P3P4 P1P2P3P4P5

P1P3 P1P2P4 P1P2P3P5 P1P2P3P4P6

P1P4 P1P2P5 P1P2P3P6 P1P2P3P5P6

P1P2P6 P1P2P4P5 P1P2P4P5P6

P1P3P4 P1P2P4P6 P1P3P4P5P6

P1P3P5 P1P2P5P6 P2P3P4P5P6

P1P3P6 P1P3P4P5

P1P4P5 P1P3P4P6

P1P4P6 P1P3P5P6

P1P5P6 P1P4P5P6

β = (28
44 , 4

44 , 4
44 , 4

44 , 2
44 , 2

44 )

3.10a.11 P2P3P4P5 β = ( 27
46 , 5

46 , 5
46 , 5

46 , 3
46 , 1

46 )

3.10a.12 P2P3P4P5

P2P3P4P6
β = ( 26

48 , 6
48 , 6

48 , 6
48 , 2

48 , 2
48 )
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3.10b.12 P1P2 P1P2P3 P1P2P3P4 P1P2P3P4P5

P1P3 P1P2P4 P1P2P3P5 P1P2P3P4P6

P1P4 P1P2P5 P1P2P3P6 P1P2P3P5P6

P1P2P6 P1P2P4P5 P1P2P4P5P6

P1P3P4 P1P2P4P6 P1P3P4P5P6

P1P3P5 P1P2P5P6 P2P3P4P5P6

P1P3P6 P1P3P4P5

P1P4P5 P1P3P4P6

P1P4P6 P1P3P5P6

P2P3P4 P1P4P5P6

P2P3P4P5

P2P3P4P6

β = (24
48 , 8

48 , 8
48 , 8

48 , 0, 0)

3.10c.12 P1P2 P1P2P3 P1P2P3P4 P1P2P3P4P5

P1P3 P1P2P4 P1P2P3P5 P1P2P3P4P6

P2P3 P1P2P5 P1P2P3P6 P1P2P3P5P6

P1P2P6 P1P2P4P5 P1P2P4P5P6

P1P3P4 P1P2P4P6 P1P3P4P5P6

P1P3P5 P1P2P5P6 P2P3P4P5P6

P1P3P6 P1P3P4P5

P2P3P4 P1P3P4P6

P2P3P5 P1P3P5P6

P2P3P6 P2P3P4P5

P2P3P4P6

P2P3P5P6

β = (16
48 , 16

48 , 16
48 , 0, 0, 0)

4.10.10 P1P2 P1P2P3 P1P2P3P4 P1P2P3P4P5

P1P3 P1P2P4 P1P2P3P5 P1P2P3P4P6

P1P4 P1P2P5 P1P2P3P6 P1P2P3P5P6

P1P5 P1P2P6 P1P2P4P5 P1P2P4P5P6

P1P3P4 P1P2P4P6 P1P3P4P5P6

P1P3P5 P1P2P5P6 P2P3P4P5P6

P1P3P6 P1P3P4P5

P1P4P5 P1P3P4P6

P1P4P6 P1P3P5P6

P1P5P6 P1P4P5P6

β = (29
42 , 3

42 , 3
42 , 3

42 , 3
42 , 1

42 )

4.10.11 P2P3P4P5 β = ( 28
44 , 4

44 , 4
44 , 4

44 , 4
44 , 0)

5.10.10 P1P2 P1P2P3 P1P2P3P4 P1P2P3P4P5

P1P3 P1P2P4 P1P2P3P5 P1P2P3P4P6

P1P4 P1P2P5 P1P2P3P6 P1P2P3P5P6

P1P5 P1P2P6 P1P2P4P5 P1P2P4P5P6

P1P6 P1P3P4 P1P2P4P6 P1P3P4P5P6

P1P3P5 P1P2P5P6 P2P3P4P5P6

P1P3P6 P1P3P4P5

P1P4P5 P1P3P4P6

P1P4P6 P1P3P5P6

P1P5P6 P1P4P5P6

β = (30
40 , 2

40 , 2
40 , 2

40 , 2
40 , 2

40 )

E-mail address: acuttler@haverford.edu

E-mail address: adeguire@nd.edu

E-mail address: rowellsk@xavier.edu


