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Abstract. An enumeration of the virtually cyclic subgroups of the three-dimensional crystallographic

groups (“space groups”) is given. Additionally, we offer explanations of the underlying group theory and
develop several exclusion theorems which simplify our calculations.

1. Introduction

1.1. Crystallographic Groups. The crystallographic groups may be understood geometrically, linear-
algebraically, or abstract-algebraically. All three approaches will play a role in the theorems that follow, so
we will outline all three here. The geometric approach is the most easily understood by intuition alone, so
we will explore it first.

1.1.1. Geometric Approach. We first consider an infinite regular tiling of a Euclidean plane; similar efforts
may be made on spherical or hyperbolic geometries, but this is beyond the scope of our research. We
require that there be two linearly independent translations which each preserve the pattern’s symmetry—
that is, that we can move the plane by specific finite distances in two distinct directions and return the
pattern to its original state. Beyond these two required translations, we may be able to reflect the plane
across some line or rotate it about the origin and preserve its symmetry; in some cases, it may be possible
to translate and then reflect the plane such that neither the translation nor the reflection alone preserve
symmetry, but their combination does— this will be termed a “glide-reflection.” In all there are seventeen
possible combinations of translations, reflections, rotations, and glide-reflections which uniquely describe
ways to preserve symmetries of plane patterns. For further discussion of the geometry of these groups, see
the excellent chapter in Gallian [2].

The three– and n-dimensional crystallographic cases represent the same fundamental concept extended
into a higher-dimensional space. For three dimensions this may be understood as the symmetries of a
three-dimensional object like a chemical crystal; in this case, operations called inversion, axial screwing, and
rotoinversion are added. For higher dimensions than this it is necessary to call on more abstract geometries
or to shift to the linear– or abstract-algebraic model of crystallographic groups.

1.1.2. Linear–Algebraic Approach. Now, instead of rigid motions in n-dimensional Euclidean space, we con-
sider algebraic isometries of an n-dimensional vector space V A symmetry operator may be represented as
(v, φ), denoting a map x → v + φx with v, x ∈ V and φ an n × n orthogonal matrix. In this notation, v
represents any translation like those described in 1.1.1, φ represents a reflection, rotation, or other transform
which fixes the origin, and combinations with nontrivial v and φ components denote the glide-reflections and
other compound operations. This is the approach most frequently used by physical chemsists in their analysis
of crystal structures; a mathematical discussion, including a simple but thorough proof of the completeness
of the list of 17 plane groups and some ties to topology, is found in Schwarzenberger [6].

1.1.3. Abstract–Algebraic Approach. We now forgo direct consideration of the n-space entirely and consider
only the structure of its isometries. Since the symmetry operations from 1.1.2 under composition satisfy
requirements of associativity, identity, and invertibility, but do not necessarily commute, they may be con-
sidered as elements of non-Abelian groups. The translations described in 1.1.1 and represented as vector
addition in 1.1.2 are a subgroup and provide the basis for the definition of an n-dimensional crystallographic
group developed by Bieberbach.

Definition 1.1. A group G is n-dimensional crystallographic if it admits a subgroup T such that:
(1) T ∼= (Z)n

(2) T / G
(3) T is maximal abelian in G
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(4) [G : T ] <∞
This subgroup T is the “Bieberbach lattice” of G.

The matrix operations described in 1.1.2 also form a subgroup, although it is not normal. The more
complicated compound operations in the space are parts of the action of these matrix operations on T .
Together, these two types of operations form the so-called “point group” F — a misleading name, since it
is not necessarily a subgroup of G.

Several properties are of interest here:
• All origin-preserving elements of the point group F have finite order.
• All elements of the lattice T have infinite order.
• For each compound element z ∈ F , z has infinite order, and there is some finite power n such that
zn ∈ T .

1.2. Infinite virtually cyclic subgroups. Ultimately we intend to compute the infinite virtually cyclic
subgroups of the 3-dimensional crystallographic groups. To do so, we must explain what these subgroups
are.

1.2.1. Definitions.

Definition 1.2. A group G is cyclic if and only if it is generated by a single element.

All cyclic groups G are isomorphic either to Zn, n ∈ Z+ or to Z according as there is or is not some finite
integer i such that, for each element g ∈ G, gi = e.

Definition 1.3. The index of a subgroup H in its supergroup G (written [G : H]) is the order of the factor
group G/H; if the factor group is finite, this is the same as the number of cosets of H in G. Equivalently, it
is the number of elements g ∈ G such that gH— the coset of H by g— is a distinct set.

A group G is virtually cyclic if it has a subgroup H of finite index such that H is cyclic.

1.2.2. Virtually cyclic groups. All finite groups are virtually cyclic because they admit the trivial group as
a subgroup of finite index, and the trivial group is cyclic. Hence, to compute the finite virtually cyclic
subgroups of the 3-dimensional crystallographic groups is simply to compute the finite subgroups.

Infinite virtually cyclic subgroups are significantly less trivial to construct. There are two distinct types
— semidirect products and amalgamated free products.

1.3. Semidirect products. The semidirect product of two groups is a generalization of the direct product
through an automorphism. We will use the notation A oα B, where A,B are groups such that A / A oα B
and α denotes a homomorphism α : B → AutA. Given the group structures of A,B and the homomorphism
α, the group structure of the semidirect product is determined as follows: for elements ai ∈ A, bi ∈ B,

(a1, b1) · (a2, b2) = (a1 · α(b1)a2, b1 · b2)
A oα B reduces to A×B when α(b) : a→ a for all a ∈ A, b ∈ B.

Example 1.4. Consider the groups Z3
∼= 〈x|x3 = e〉, Z2

∼= 〈y|y2 = e〉. Let α(y) : x→ x2. Then

Z3 oα Z2
∼= 〈x, y|x3 = y2 = e, yx = x2y〉.

The calculation of these semidirect product groups is simplified dramatically when groups A,B are re-
stricted, as they will be in 2.1.3. Specifically, A will be a finite subgroup of a crystallographic group, and
B ∼= Z.

1.4. Amalgamated Free Products. Let A and B be groups and B / A, B / C. Then the amalgamated
free product A ∗

B
C is generated by the elements of A and of C with the common elements from B identified.

Example 1.5. Consider the groups D3
∼= 〈r, f |r3 = f2 = e, fr = r2f〉 and Z6

∼= 〈x|x6 = e〉 with subgroup
Z3. Then

D3 ∗
Z3

Z6
∼= 〈r, f, x|r3 = f2 = x6 = e, x2 = r, fr = r2f〉.

1.5. Completeness. According to the work of Scott and Wall [7], given a group G, the only infinite virtually
cyclic subgroups of G will be semidirect products N oα Z and amalgamated free products A ∗

B
C for

N,A,B,C < G. Combining this result with a list of finite virtually cyclic subgroups of G then then yields
the complete list of virtually cyclic subroups of G.
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2. Computational technique for semidirect products

2.1. Methods. To compute the semidirect products which will give us candidate infinite virtually cyclic
subgroups, we first must know the finite subgroups of the 3-dimensional crystallographic groups and the
automorphisms of those groups.

2.1.1. Finite Subgroups. The finite subgroups of the crystallographic groups may be derived exclusively from
their point groups, because any finite subgroup of a 3-dimensional crystallographic group G is isomorphic to
a subgroup of the point group of G. Information about the group structure of these point groups is found
in the Tables [3]; a group-theoretical enumeration of them follows easily. Categorized by complexity and
structural class, they are:

• e
• Z2,Z3,Z4,Z6

• D2, D3, D4, D6

• Z2 × Z2 × Z2,Z2 × Z4,Z2 × Z6

• D3 × Z2, D4 × Z2, D6 × Z2

• A4, S4, A4 × Z2, S4 × Z2

2.1.2. Automorphisms. We next must know the automorphisms of each of these subgroups in order to com-
pute their semidirect products. The exclusion theorems in Section 3 reduce dramatically the list of subgroups
that need be considered, so the automorphisms will not be fully enumerated here. They are listed in their
entirety in Table 1.

2.1.3. Computing the Semidirect Product. We are concerned with semidirect products of the form N oα Z,
where N is a finite subgroup of a crystallographic group. As explained in 1.3, the semidirect product is
computed (in this case) using α : Z → AutN ; since Z is cyclic, the behavior of α is completely determined
by the choice of some φ ∈ AutN such that α(1) = φ. In fact, given a presentation N ∼= 〈n1, n2, . . . , ni| . . .〉,
we may obtain a presentation

N oα Z ∼= 〈n1, n2, . . . , ni, x|..., x · nj = φ(nj) · x〉

2.2. Identifying Semidirect Products in the International Tables. We begin by choosing a finite
group N from the initial list of candidates in 2.1.1. We then first consider whether it satisfies the requirement
of Theorem 3.2. If it does not, we may exclude N oα Z for all α by Lemma 3.3. Elsewise, we know
categorically that N × Z is a subgroup of some 3-dimensional crystallographic group because it is simply
a 2-dimensional point group coupled with an orthogonal translation. We then determine AutN and group
these automorphisms into conjugacy classes in accordance with Theorem 3.5. One representative from
each conjugacy class is chosen; as all are equivalent, those which are computationally simplest are the best
choices. The requirements of Theorem 3.6 provide our final exclusion; if they are not satisfied for a given
representative automorphism, its conjugacy class cannot contribute to our listing, but if they are satisfied
then its conjugacy class will be found as a subgroup of some 3-dimensional crystallographic group.

2.3. Results. In 3 we have obtained several exclusion theorems on the virtually cyclic subgroups of 3-
dimensional crystallographic groups as obtained through semidirect products. Additionally, we have a com-
plete listing of these semidirect products, including their supergroups and information from the International
Tables where applicable.

3. Exclusion Theorems for Semidirect Products

To begin the process of exclusion we require the following lemma.

Lemma 3.1. In a crystallographic group G, let f = (0, B) be a finite-ordered element and x = (v, I) be a
translation. Then f commutes with x if and only if B fixes v.

Proof. First, we assume that f commutes with x.

fx = xf

(0, B)(v, I) = (v, I)(0, B)

(Bv,B) = (v,B)
Bv = v
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Hence, that f commutes with x implies that B fixes v. If we conversely assume that B fixes v, it follows
readily by the same process that f commutes with x. �

With this lemma we establish a theorem which will exclude many of the large candidate finite subgroups.

Theorem 3.2. F × Z is a subgroup of some d-dimensional crystallographic group if and only if F is a
subgroup of some (d− 1)-dimensional crystallographic group.

Proof. First, assume that F is a subgroup of some (d−1)-dimensional crystallographic group G. Then F ×Z
is a subgroup of the d-dimensional crystallographic group G× Z.

Conversely, assume that F × Z is a subgroup of some d-dimensional crystallographic group H. Since in
this direct product the generator x ∈ Z commutes with all f ∈ F and x ∈ T , T the Bieberbach lattice of
H, we see that there may be at most d− 1 independent elements t ∈ T which do not commute with a given
f ∈ F . Therefore, F must be a subgroup of some (d− 1)-dimensional crystallographic group. �

The following well-known result will help us to exclude the semidirect products of a candidate finite group
based only on its direct product.

Lemma 3.3. If a crystallographic group G admits a subgroup F oα Z for some finite group F and some
homomorphism α : Z → AutF , then G also admits a subgroup F × Z.

Proof. Since Z is cyclic, α is completely determined by the automorphism α(1) = φ. Since F is finite, AutF
is also finite, so φn = I for some finite n. If we then consider only those elements y = xkn ∈ Z∀k ∈ Z, we
find that fy = yf∀f ∈ F . Hence, the subgroup of F oα Z generated by f ∈ F and y = xkn ∈ Z is a direct
product F × Z. �

Note that it is the contrapositive of this theorem which provides the exclusion we need.
We also note the following corollary.

Corollary 3.4. For any semidirect product F oα Z a subgroup of a crystallographic group with Z ∼= 〈x〉,
the elements f ∈ F fix the shift vectors xk ∈ T .

Proof. Given G = F oα Z a subgroup of a crystallographic group, we consider the subgroup H < G such
that H ∼= F × Z shown to exist in the proof of Lemma 3.3. The elements z ∈ Z of H correspond to the
shift vectors xk ∈ Z of G, and becuase H is a direct product F × Z all f ∈ F commute with all z ∈ H. By
Lemma 3.1, all f ∈ F then fix all xk ∈ G. �

We also utilize this theorem from Alperin and Bell [1]. Its proof is reprinted here for convenience, with
notation modified for consistency with our conventions.

Theorem 3.5. Let F and H be groups, let α : H → Aut(F ) be a homomorphism, and let φ ∈ AutF . If φ̂
is the inner automorphism of Aut(F ) induced by φ, then F obφ◦α H

∼= F oα H.

Proof. Define θ : F oα H → F obφ◦α H by θ(fh) = φ(f)h. We have

θ(f1h1f2h2) = θ(f1α(h1)(f2)h1h2)

= φ(f1)φ(α(h1)(f2))h1h2

= φ(f1) · (φ ◦ α(h1) ◦ φ−1 ◦ φ)(f2) · h1h2

= φ(f1) · (φ̂ ◦ α)(h1)(φ(f2)) · h1h2

= φ(f1)h1φ(f2)h2 = θ(f1h1)θ(f2h2),

which shows that θ is a homomorphism. But the homomorphism sending fh ∈ F obφ◦α H to φ−1(f)h ∈
F oα H is inverse to θ, and therefore θ is an automorphism. �

This result implies that, if we identify the conjugacy classes of automorphisms of a given group, we need
to consider only one element of each class to evaluate the candidacy of all automorphisms in that class.

Now we develop a test to determine whether a given semidirect product of a group is or is not a subgroup
of any d-dimensional crystallographic group. â will denote conjugation by a.

Theorem 3.6. Let F be a finite subgroup of some 2-dimensional crystallographic group, α : Z → AutF be
a homomorphism, and α(1) = φ ∈ AutF . Then F oα Z is a subgroup of some 3-crystallographic group if
and only if φ = m̂ for some m ∈ M , with M also a finite subgroup of some 2-dimensional crystallographic
group and F < M .
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Proof. In F oα Z with Z ∼= 〈x〉 and f ∈ F we have the relation x−1fx = φ(f). Considered linear-
algebraically, x = (v,A) and f = (0, B) for some vector v and orthogonal 3× 3 matrices A,B. Following the
implications of this relation, we have:

x−1nx = φ(n)

(−A−1v,A−1)(0, B)(v,A) = (0, ψ(B))

(−A−1v +A−1Bv,A−1BA) = (0, ψ(B))

So A−1BA = ψ(B). Accordingly, since φ = x̂ implies ψ = Â, if we let y = (0, A) we also have φ = ŷ.
Note that no compound operation z = (v′, A′) in the 3-dimensional crystallographic groups has v′ not fixed
by A′. Now consider the group M generated by y and all f ∈ F . M must also be a finite subgroup of
some 2-dimensional crystallographic group because, for all z = (v′, A′) in the 3-dimensional crystallographic
groups, A′ fixes v′.

Now we consider a case in which there is no y such that y ∈M for some group M with F < M for which
φ = ŷ. Since it is clear that φ = x̂, φ 6= ŷ implies that A does not fix v for x = (v,A). But this is not the case
for any 3-dimensional compound operation, so there exists no x for which this can be a valid relation. �

4. Computational Technique for Amalgamated Free Products

4.1. Methods. First, using the same list of finite subgroups ennumerated above, a list of all posible amal-
gamated free products is obtained. Using the following theorem, the list is dramatically reduced.

Theorem 4.1. If the presentation of the amalgamated free product contains two or more elements of order
two that do not commute, then the amalgamated free product is not a subgroup of any three dimensional
crystallographic group.

Proof. Note that in three dimensions there are only three possible elements of order two: inversion, 180◦

rotation, and reflection. It can easily be shown geometrically that all of these symmetry moves commute.
Therefore, an amalgamated free product with two order two elements that do not commute cannot exist in
three dimensions. �

4.2. Results. Examples of all cases not covered by the previous theorem are listed in Table 3.

5. Results

We have identified all the finite virtually cyclic subgroups of the 3-dimensional crystallographic groups as
well as all the infinite virtually cyclic subgroups obtained through semidirect products and amalgamated free
products. In accordance with 1.5,there can be no other cyclic subgroups of the 3-dimensional crystallographic
groups, so this enumeration is complete.

Appendix A. Computational Tables

A.1. Semidirect Products. We enumerate N oα Z for finite subgroups N of the 3-dimensional crystallo-
graphic groups; where possible, they are identified within actual crystallographic groups.

A.1.1. Finite groups. All the finite subgroups of the 3-dimensional crystallographic groups are virtually
cyclic. They are listed in 2.1.1.

A.1.2. Infinite groups. The candidate infinite virtually cyclic subgroups of the 3-dimensional crystallographic
groups are presented in Table 2. When a candidate conjugacy class is viable, it is listed with its member
automorphisms and an example of generators taken from the International Tables. For this table, the Z
component of the semidirect product will always be taken to be the z-axis. Accordingly, all rotations will be
measured counter-clockwise about this axis, all reflection planes will be described by lines in the xy-plane,
and all compound operations will be described by “glide-reflection by . . . ” or “screw by . . . ”

Note that by Theorem 3.2 we may exclude all finite subgroups other than Zn and Dn. Accordingly, the
automorphisms of these groups and the semidirect products over them will not be considered.

A.2. Amalgamated Free Products. We enumerate A ∗
B
C for triples of finite subgroups A,B,C of the

3-dimensional crystallographic groups such that [A : B] = [C : B] = 2; where possible, they are identified
within actual crystallographic groups.
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Finite Group Automorphism Name Mapping
Z3 φ2 x→ x2

Z4 φ2 x→ x3

Z6 φ2 x→ x5

D2 φ2 r → r f → rf
φ3 r → f f → r
φ4 r → rf f → f
φ5 r → f f → rf
φ6 r → rf f → r

D3 φ2 r → r f → rf
φ3 r → r f → r2f
φ4 r → r2 f → f
φ5 r → r2 f → rf
φ6 r → r2 f → r2f

D4 φ2 r → r f → rf
φ3 r → r f → r2f
φ4 r → r f → r3f
φ5 r → r3 f → f
φ6 r → r3 f → rf
φ7 r → r3 f → r2f
φ8 r → r3 f → r3f

D6 φ2 r → r f → rf
φ3 r → r f → r2f
φ4 r → r f → r3f
φ5 r → r f → r4f
φ6 r → r f → r5f
φ7 r → r5 f → f
φ8 r → r5 f → rf
φ9 r → r5 f → r2f
φ10 r → r5 f → r3f
φ11 r → r5 f → r4f
φ12 r → r5 f → r5f

Table 1: Automorphisms of finite subgroups of 3DCG’s
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Finite Group Conj. Class in AutN 3DCG Supergroup Generators
Z2 I IT #3 (2)– rotation by 180◦

t(0, 0, 1)– translation along z-axis
Z3 I IT #143 (2)– rotation by 120◦

t(0, 0, 1)– translation along z-axis
φ2 IT #159 (2)– rotation by 120◦

(6)– glide-reflection over y-axis
Z4 I IT #75 (3)– rotation by 90◦

t(0, 0, 1)– translation along z-axis
φ2 IT #103 (3)– rotation by 90◦

(5)– glide-reflection over x-axis
Z6 I IT #168 (6)– rotation by 60◦

t(0, 0, 1)– translation along z-axis
φ2 IT #184 (6)– rotation by 60◦

(11)– glide-reflection over x-axis
D2 I IT #25 (2)– rotation by 180◦

(3)– reflection over x-axis
t(0, 0, 1)– translation along z-axis

φ2, φ3, φ4 IT #105 (2)– rotation by 180◦

(6)– reflection over y-axis
(3)– screw by 90◦

φ5, φ6 Impossible by Theorem 3.6
D3 I IT #156 (2)– rotation by 120◦

(5)– reflection over line y = 2x
t(0, 0, 1)– translation along z-axis

φ2, φ3 IT #157 (2)– rotation by 120◦

(6)– reflection over y-axis
(2) ◦ t(0, 0, 1)– screw by 120◦

φ4, φ5, φ6 IT #185 (2)– rotation by 120◦

(11)– reflection over x-axis
(8)– glide-reflection over line y = 2x

D4 I IT #99 (3)– rotation by 90◦

(5)– reflection over x-axis
t(0, 0, 1)– translation along z-axis

φ3 IT #99 (3)– rotation by 90◦

(6)– reflection over y-axis
(3) ◦ t(0, 0, 1)– screw by 90◦

φ5, φ7 IT #99 (3)– rotation by 90◦

(5)– reflection over x-axis
(5) ◦ t(0, 0, 1)– glide-reflection over x-axis

φ2, φ4, φ6, φ8 Impossible by Theorem 3.6
D6 I IT #183 (6)– rotation by 60◦

(11)– reflection over x-axis
t(0, 0, 1)– translation along z-axis

φ3, φ5 IT #193 (6)– rotation by 60◦

(12)– reflection over y-axis
(3) ◦ t(0, 0, 1)– screw by 60◦

φ7, φ8, φ9 IT #183 (5)– rotation by 60◦

(11)– reflection over x-axis
(12) ◦ t(0, 0, 1)– glide-reflection over y-axis

φ10, φ11, φ12 IT #183 (5)– rotation by 60◦

(11)– reflection over x-axis
(8) ◦ t(0, 0, 1)– glide-revlection over line y = 2x

φ2, φ4, φ6 Impossible by Theorem 3.6
Table 2: Semidirect products in the 3DCG’s
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Amalgamated Free Product 3DCG Supergroup Generators
Z2 ∗

e
Z2 IT #25 (3)– reflection over x-axis

(4)– reflection over y-axis
Z4 ∗

Z2
Z4 IT #123 (3)– rotation by 90◦

(11)– rotoinversion by 90◦

Z4 ∗
Z2
D2 IT #123 (2)– rotation by 180◦

(3)– rotation by 90◦

(13)– reflection over x-axis
D2 ∗

Z2
D2 Impossible by Theorem 4.1

Z6 ∗
Z3

Z6 IT #191 (5)– rotation by 60◦

(17)– rotoinversion by 60◦

Z6 ∗
Z3
D3 IT #191 (2)– rotation by 120◦

(5)– rotation by 60◦

(23)– reflection over x-axis
D3 ∗

Z3
D3 Impossible by Theorem 4.1

D4 ∗
Z4
D4 Impossible by Theorem 4.1

Z4 × Z2 ∗
Z4

Z4 × Z2 Impossible by Theorem 4.1

Z4 × Z2 ∗
Z4
D4 Impossible by Theorem 4.1

D4 ∗
D2

D4 IT #123 (3)– rotation by 90◦

(11)– rotoinversion by 90◦

(13)– reflection over x-axis
D2 × Z2 ∗

D2
D2 × Z2 Impossible by Theorem 4.1

D2 × Z2 ∗
D2

D4 IT #123 (2)– rotation by 180◦

(3)– rotation by 90◦

(9)– inversion through origin
(13)– reflection over x-axis

D6 ∗
Z6
D6 Impossible by Theorem 4.1

Z6 × Z2 ∗
Z6

Z6 × Z2 Impossible by Theorem 4.1

Z6 × Z2 ∗
Z6
D6 Impossible by Theorem 4.1

D6 ∗
D3

D6 IT #191 (5)– rotation by 60◦

(17)– rotoinversion by 60◦

(23)– reflection over x-axis
D3 × Z2 ∗

D3
D3 × Z2 Impossible by Theorem 4.1

D3 × Z2 ∗
D3

D6 IT #191 (2)– rotation by 120◦

(5)– rotation by 60◦

(13)– inversion through origin
(23)– reflection over x-axis

D4 × Z2 ∗
D4

D4 × Z2 Impossible by Theorem 4.1

D6 × Z2 ∗
D6

D6 × Z2 Impossible by Theorem 4.1

Table 3: Amalgamated free products in the 3DCG’s
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