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Abstract

We work with copoint graphs of convex geometries. Copoint graphs can be used to study the complex
and fairly recent field of convex geometries. Comparing copoint graphs and their convex geometries helps
identify properties. We demonstrate that multiple convex geometries have the same underlying copoint
graph. All graphs on one to five vertices can be represented as possible copoint graphs of some convex
geometry. Furthermore, we construct several infinite classes of copoint graphs including the complete
k-partite graph, path graph, centipede graph, ladder graph, comb graph, pom-pom graph, sharkteeth
graph, and broken wheel graph.
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1 Introduction

In order to best understand our research, we need to introduce some preliminary definitions. We need
to understand what a convex geometry is to construct copoint graphs of convex geometries. A finite set
X together with L that is anti-exchange is a convex geometry, where X is the ground set of the convex
geometry [EJ85]. A convex geometry is denoted as (X,L ). L , a closure operator, is a function that takes
subsets of X to subsets of X. If L is anti-exchange and there is a closed set K with p, q ∈ X −K, then
q ∈ L (K ∪ p) implies that p 6∈ L (K ∪ q). The paper from Edelman and Jamison [EJ85] shows many
results and equivalent definitions of convex geometries. We work with the congruent definition that defines
a convex geometry as a finite set, X, together with an alignment L that has the greedy property. Thus,
this equivalent definition of convex geometries satisfies the following properties: 1. A is a subset of L (A),
2. if A is a subset of B then L (A) is a subset of L (B) and 3. L

(
L (A)

)
is equal to L (A). A set is closed

if L (A) is equal to A.
If the closure operator L is an alignment, then for all the sets of X in L , the intersections of the subsets

of X in L are also in L . The closure operator, L , has the greedy property if for any closed subset C, where
C does not equal X, there can be a point added to C; that is, there is a closed set of the form C ∪ p for
p 6∈ C. The greedy property works exclusively with closed sets.

A copoint is a maximal closed set C in X − p; in convex geometries, each copoint is attached to the
unique point p, where p = α(C). In a ground set of size X, each point in the ground set will have at least
one copoint attached to it. Copoint graphs are graphs where the vertices are labeled as an ordered pair,(
α(A), A

)
, where A is the copoint and α(A) is the point attached to the copoint. Copoint graphs were

introduced by Morris [Mor06] for planar point sets and later generalized by Beagley [Bea13] to all convex
geometries. A copoint graph is denoted as G(X,L ). Edges exist in the graph if the point attached to A is
in the copoint B and the point attached to B is in the copoint A, or α(A) ∈ B and α(B) ∈ A. In this paper,
when it is said that a copoint is adjacent or appended to another copoint, there exists an edge between the
copoints in the ordered pair notation.

Hasse diagrams are a type of mathematical diagram used to represent partially ordered sets. In our
research, Hasse diagrams display all the closed sets of the convex geometry ordered by inclusion. The closed
sets of size |X| − 1 are called the extreme points of the convex geometry.

A clique is a maximally connected subgraph of size n. The largest clique of size n found in the graph is
the clique number of the graph.

It is important to note that in this paper, we focus on the connected copoint graphs and their convex
geometries. If we study disconnected copoint graphs, the corresponding Hasse diagram will be a stacking
of the Hasse diagrams of each connected component. An example of the convex geometry of two connected
components is in Figure 1 with the corresponding copoint graph in Figure 2.

1234

123 124

12

1 2

∅ ∅

1 2

12 ∅

3 4

34

Figure 1: Hasse diagram stacking

A set of vertices that are pairwise non-adjacent in a graph is vertex independent or independent. For a
convex geometry, (X,L ), a set I is convexly independent if for all x in I, X is not in L (I−{x}). The clique
number is also the size of the largest convexly independent set [Mor06, Proposition 1.2]. Throughout the
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(2, 1) (1, 2)

(4, 123)(3, 124)

Figure 2: Labeled disconnected copoint graph of Figure 1

rest of the paper, when we reference independence, we are referencing vertex independence and will clarify
otherwise.

This project is motivated by the relationship between planar point sets and their copoints. Morris [Mor06]
gives an algorithm to find copoints from a planar point set. However, it is outside the scope of this paper.

Planar Point Set Hasse Diagram Copoint Graph

1

2

3
∅

1 2 3

12 13 23

123 (1,23)

(2,13) (3,12)

In a Hasse diagram, the copoints are easily located. They are the closed sets that contain only one
element above them. All of the copoints in the Hasse diagrams are circled or boxed throughout this paper.
We denote the set {1, 2, 3, ..., n} as [n].

In this paper, we will demonstrate the non-uniqueness of copoint graphs. We will also show the existence
of all copoints graphs from one to five vertices. In addition, we will prove the existence of several infinite
families of graphs including the complete k-partite graph, path graph, centipede graph, ladder graph, comb
graph, pom-pom graph, sharkteeth graph, and broken wheel graph. We will also pose questions for future
research.
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2 General Findings

Theorem 2.1. If the ground set 1 ≤ |X| ≤ 5, there exists a copoint graph of a convex geometry.

This was proven by brute force: By finding at least one labeled copoint graph and proving that its
corresponding Hasse diagram was of a convex geometry, we are able to show that all connected graphs are
possible within this given ground set. For reference, please see Appendix A-D beginning on page 27. During
this process, we found that we could find multiple convex geometries for a given graph. This led us to the
following theorem.

Theorem 2.2. The convex geometry that represents any existing copoint graph is not unique.

See Figure D.2 and Figure D.3 on page 32 for an example of the same copoint graph with different
labeling and convex geometries. Notice how the same graph on 5 vertices is represented in a ground set, X,
of size 4 and 5.
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3 Constructing Copoint Graphs

Theorem 3.1. There exists a convex geometry whose copoint graph is a complete Kn,m graph for all positive
integers n and m.

A complete bipartite graph is a graph composed of two disjoint sets where everything in one disjoint set
is adjacent to everything in the other disjoint set. A Kn,m bipartite graph has n elements in the first disjoint
set and m elements in the second disjoint set. See Figure 3 for reference.

Figure 3: K4,4 copoint graph

Proof:

We construct a convex geometry, (X,L ), such that its copoint graph, G(X,L ), is a complete Kn,m

graph with a ground set |X| = n+m. If there is a generic closed set C ∈ L , then C = I1 ∪ I2.

I1 = {1, .., k},
I2 = {n+ 1, ..., n+ `},
∅

1 ≤ k ≤ n
1 ≤ ` ≤ m

are all of the possible closed sets in L .

L is an alignment because C1, C2 ∈ L where

C1 : {1...k1} ∪ {n+ 1...n+ `1}
C2 : {1...k2} ∪ {n+ 1...n+ `2}

C1 ∩ C2 : {1, ...,min(k1, k2)} ∪ {n+ 1, ...,min(`1, `2)} ∈ L .

There is a C ∈ L where C 6= [n + m] such that one of the following, or both, is in the convex geometry
(X,L ):

C ∪
(
k + 1

)
∈ L ,

C ∪
(
n+ `+ 1

)
∈ L .

Thus, L has the greedy property.
Next, we consider the copoints of (X,L ). A ∈ L is a copoint if there is a unique p such that (A∪p) ∈ L .

So, either
A : {1, ..., n} ∪ {n+ 1, ..., n+ `}

in which case, α(A) = n+ `+ 1,

or
B : {1, ..., k} ∪ {n+ 1, ..., n+m}

in which case, α(B) = k + 1.
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Any other closed set has two such p’s, n+ `+ 1 and k + 1, and are not copoints. Therefore the above cases
consider all copoints.

Now, we verify that the copoint graph, G(X,L ), is a complete Kn,m graph. The set of A’s is an
independent set and the set of B’s is an independent set. These sets of A’s and B’s are convexly independent
to each other and therefore adjacent in their copoint graph. A and B are two disjoint sets of n and m elements
respectively, where one disjoint set is adjacent to every element in the other disjoint set.

Thus, we have constructed a convex geometry whose copoint graph is a complete Kn,m graph.

�

3.1 Example of Kn,m

[n+m]

[(n+m)− 1] 2...n+m

[(n+m)− 2] 2...(n+m)− 1 3...(n+m)

[(n+m)− 3] 2...(n+m)− 2 3...(n+m)− 1 m+ 1...(n+m)

[m] m− 1,m,m+ 1 m,m+ 1,m+ 2 m+ 1,m+ 2,m+ 3

m− 1,m m,m+ 1 m+ 1,m+ 2

m m+ 1

∅

Figure 4: Hasse diagram of a convex geometry whose copoint graph is Kn,m

(
n+ 1, [(n+m)− 1]

)
(
n+ 2, [(n+m)− 2]

)
(
n+ 3, [(n+m)− 3]

)

(1, 2...n+m)

(2, 3...n+m)

(3, 4...n+m)

(
n+m, [n]

) (
n, n+ 1...n+m

)
Figure 5: Labeled copoint graph of Kn,m
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Corollary 3.2. There exists a convex geometry whose copoint graph is the complete k-partite graph for any
k ≥ 2.

A k-partite graph has k disjoint sets where each element is adjacent to all the elements of the other
disjoint sets, but not adjacent to any element within its own disjoint set. This can be proven in a similar
fashion as Theorem 3.1 with k arbitrary disjoint sets.

Theorem 3.3. There exists a convex geometry whose copoint graph is a n,m pom-pom where n ≥ m.

A n,m pom-pom graph is a graph with a two clique base graph. Appended to one endpoint of the
two-clique base graph are n leaves and appended to the other endpoint of the two-clique base graph are m
leaves. See Figure 6 for reference.

Figure 6: 6,5 Pom-pom copoint graph

Proof:

We construct a convex geometry, (X,L ), such that the copoint graph, G(X,L ), is a n,m pom-pom
graph with a ground set |X| = n+ 2. If there is a generic closed set C ∈ L , then C = I1.

I = {a...b},
1 ≤ a ≤ b ≤ n+ 2

a ≤ m+ 2

where the set {a...b} is a consecutively ordered set.

I1 and ∅ are all the closed sets in L . We say L is an alignment because if we take the intersection of any
two closed sets,

{a...c2} ∩ {c1...b}

then {c1...c2} or ∅ is ∈ L .

There exists a C where C 6= [n+ 2] such that

C = {a...b}.

One of the following, or both, is in the convex geometry (X,L ):

C ∪ {a− 1} ∈ L ,

C ∪ {b+ 1} ∈ L .

Thus, L has the greedy property.
Next, we consider the copoints in (X,L ). A ∈ L is a copoint if there is a unique p such that (A∪p) ∈ L .

So, either
A : {1...c1}

in which case, α(A) = c1 + 1 where c1 ≤ n+ 1,

or
B : {c2...m+ 2...n+ 2}

in which case, α(B) = c2 − 1 where c2 ≥ 2.

NSF Grant DMS-155 9912 7



Any other closed set has two such p’s, c1 + 1 and c2− 1, and therefore are not copoints. Therefore the above
case considers all copoints.

Now, we verify that the copoint graph, G(X,L ), is a n,m pom-pom graph. First, we denote the following
copoints:

C : {1...n+ 1}

attached to n+ 2.

D : {2...n+ 2}

attached to 1.

These copoints are convexly independent with each other and therefore adjacent in the copoint graph. They
make up the base two-clique graph to which the leaves are appended. The independent set of A’s is convexly
independent with the copoint D and therefore adjacent in the copoint graph. This creates the n leaves
appended to the copoint D. The independent set of B’s is convexly independent with the copoint C and
therefore adjacent in the copoint graph. This creates the m leaves appended to the copoint C.

Thus, we have constructed a convex geometry whose copoint graph is a n,m pom-pom.

�

3.2 Example of Pom-pom

[n+ 2]

[n+ 1] 2...n+ 2

[n] 2...n+ 1 3...n+ 2

[n− 1] 2...n 3...n+ 1 4...n+ 2

123 234 m+ 2...n+ 2

12 23

1 2 m+ 2

∅

Figure 7: Hasse diagram of a convex geometry whose copoint graph is an n,m pom-pom
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4 Constructing Copoint Graphs by Induction

Theorem 4.1. There exists a convex geometry whose copoint graph is a path, Pn for all n > 0.

A path graph is a graph of consecutively appended vertices where the degree of the vertex is either one
or two. See Figure 8 for reference.

Figure 8: Path copoint graph on 7 vertices

Proof:

Given the closed sets
∅ {1} {12} {123}
{2} {13}

where the following are copoints
{2} {12}

{13},

we have constructed a convex geometry ([3],L ). It is an alignment as the intersections of these sets are
in L and the sets have the greedy property. Note that this graph is equivalent to Figure A.1 on page 27,
though the labels will be permutated. Figure A.1 verifies that this is a path on two vertices.

Based on the above case, we assume ([n],L ) is a convex geometry. Consider the inductive case, L ′,
where n+ 1 is added to the ground set. The additional closed sets in L ′ are

[n− 1] ∪ {n+ 1}
[n] ∪ {n+ 1}

and the following are copoints

[n]

[n− 1] ∪ {n+ 1}

where [n− 1] is no longer a copoint.

All of the intersections of sets in L ′ are in L ′, making L ′ an alignment and all the sets have the greedy
property.

Now, we verify that the copoint graph, G(X,L ′) is a path. Consider a copoint A of size k that is not an
endpoint. The copoint A contains all other copoints of size less than or equal to k − 2 and is contained in
all copoints of size greater than or equal to k + 2. Thus, the copoint A is only convexly independent to two
copoints, a copoint B of size k+ 1 and a copoint C of size k− 1. Thus, A is adjacent to B and A is adjacent
to C in the copoint graph. We know that B contains C and therefore they are non-adjacent in the copoint
graph. We can consider any non-endpoint copoint of L ′ in a similar fashion. The copoint of size 1 will not
have any (k − 1)-sized copoint to be convexly independent to because it is not a closed set in L ′.

Now, we consider the special cases of the endpoint created by the extreme points. The extreme points
are copoints of the same size and it is obvious that they are convexly independent and therefore adjacent in
the copoint graph.

Thus, ([n+ 1],L ′) is a convex geometry whose copoint graph is a path.

�

4.1 Example of Path
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(1, 2) (2, 13) (3, 12) (1, 2) (2, 13) (3, 124) (4, 123)

Figure 9: Labeled path copoint graph

123

13 12

1 2

∅

1234

123 124

13 12

1 2

∅

Figure 10: Hasse diagram of a convex geometry whose copoint graph is a path

[n]

1...n− 2, n [n− 1]

[n− 2] 1...n− 3, n− 1

1...n− 4, n− 2 [n− 3]

3...(n− 2) 4...(n− 1)

1...n− 5, n− 3 [n− 4]

1 2

∅

[n+ 1]

[n] 1...n− 1, n+ 1

1...n− 2, n [n− 1]

[n− 2] 1...n− 3, n− 1

1...n− 4, n− 2 [n− 3]

3...(n− 2) 4...(n− 1)

1...n− 5, n− 3 [n− 4]

1 2

∅

Figure 11: Hasse diagram of a convex geometry whose copoint graph is a path
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Theorem 4.2. There exists a convex geometry whose copoint graph is a broken wheel.

A wheel graph is a cycle of vertices that is also adjacent to one vertex in the center. A broken wheel
graph is a wheel graph with one edge missing between only two vertices in the cycle. See Figure 12 for
reference.

Figure 12: Broken wheel copoint graph on 7 vertices

Proof:

Given the closed sets
∅ {1} {12} {123} {1234}
{2} {13} {124}
{3} {23} {234}

{24}

where the following are copoints
{13} {123}

{124}
{234},

we have constructed a convex geometry ([4],L ). It is an alignment as the intersections of these sets are
in L and the sets have the greedy property. Note that this graph is equivalent to Figure C.5 on page 31,
though the labels may be permutated. Figure C.5 verifies that this is a wheel on four vertices.

Based on the above case, we assume ([n],L ) is a convex geometry. Consider the inductive case, L ′,
where n+ 1 is added to the ground set. The additional closed sets in L ′ are

{2...n− 1} ∪ {n+ 1}
[n− 1] ∪ {n+ 1}
{2...n} ∪ {n+ 1}

[n] ∪ {n+ 1}

and the following are copoints

[n]

[n− 1] ∪ {n+ 1}
{2...n} ∪ {n+ 1}

where [n− 1] and {2...n} are no longer copoints.

All of the intersections of the sets in L ′ are in L ′, making L ′ an alignment. In addition, all the sets
have the greedy property.

Now, we verify that the copoint graph, G(X,L ′), is a broken wheel. Consider the copoint

A : {2...n+ 1}

attached to 1.
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This copoint is convexly independent to all other copoints in L ′ because it contains no other copoints in
L ′. Therefore, it is adjacent to all other copoints in the copoint graph.

Now consider all other copoints. They are the same closed sets as the convex geometry of the path.
Therefore, the path is a subgraph of this copoint graph. See Theorem 4.1 for proof on why the closed sets
in this convex geometry are linked as a path in the copoint graph.

Thus, ([n+ 1],L ′) is a convex geometry whose copoint graph is a broken wheel.

�

4.2 Example of Broken wheel

(1, 234)

(2, 13)

(3, 124)

(4, 123)

(1, 2345)

(2, 13)

(3, 124)

(4, 1235)

(5, 1234)

(1, 23456)

(2, 13)

(3, 124)

(4, 1235)

(5, 12346)

(6, 12345)

Figure 13: Labeled broken wheel copoint graph

1234

123 124 234

1312 23 24

1 2 3

∅

12345

1234 1235 2345

123 124 234 235

1312 23 24

1 2 3

∅

Figure 14: Hasse diagram of a convex geometry whose copoint graph is a broken wheel
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Theorem 4.3. There exists a convex geometry whose copoint graph is the sharkteeth graph.

The sharkteeth graph is created by appending three cliques in a linear form so that the maximum degree
of any vertex is four. See Figure 15 for reference.

Figure 15: Sharkteeth copoint graph on 9 vertices

Proof:

Given the closed sets
∅ {1} {12} {123} {1234} {12345}
{2} {13} {124} {1235}
{3} {14} {134} {1245}

{23} {125}

where the following are copoints
{23} {134} {1234}

{1235}
{1245},

we have constructed a convex geometry ([4],L ). It is an alignment as the intersections of these sets are in
L and the sets have the greedy property. Note that this graph is equivalent to Figure D.19 on page 41,
though the labels may be permutated. Figure D.19 verifies that this is a sharkteeth on five vertices.

Based on the above case, we assume ([n],L ) is a convex geometry. Consider the inductive case, L ′,
where n+ 1 is added to the ground set. The additional closed sets in L ′ are

[n− 1] ∪ {n+ 1}
[n− 2] ∪ {n+ 1}
[n− 2] ∪ {n} ∪ {n+ 1}

[n] ∪ {n+ 1}

and the following are copoints

[n]

[n− 1] ∪ {n+ 1}
[n− 2] ∪ {n} ∪ {n+ 1}

where [n− 1] and [n− 2] ∪ {n} are no longer copoints.

All of the intersections of the sets in L ′ are in L ′, making L ′ an alignment. In addition, all the sets
have the greedy property.

Now, we verify that the copoint graph, G(X,L ′), is the sharkteeth graph. First we consider the three
extreme points. One of the three extreme points is adjacent to only two vertices, one is adjacent to only
three vertices, and the third to only four vertices.

A : [n]

attached to n+ 1 and is of degree two.

B : {1, ...n− 1, n+ 1}

attached to n and is of degree three.

NSF Grant DMS-155 9912 13



C : {1, ..., n− 2, n, n+ 1}

attached to n− 1 and is of degree four.

Case 1: Extreme point of degree two
It is obvious that copoint A is convexly independent to B and C. Additionally, A contains all other

copoints in L ′ because all other copoints are some subset of the numbers 1 through n. Thus, A is only
convexly independent to two copoints, B and C. Therefore, C is adjacent to B and C in the copoint graph
and nothing else.

Case 2: Extreme point of degree three
It is obvious that copoint B is convexly independent to A and C. Because B is of size n, B is convexly

independent to the copoint of size n− 1, denoted D. Because D is contained in A, as stated in case 1, it is
not contained in B. Thus, B is convexly independent to D. Therefore, B is adjacent to A, C, and D in the
copoint graph and nothing else.

D : {1, ..n− 3, n, n+ 1}

attached to n− 2.

Case 3: Extreme point of degree four
It is obvious that copoint C is convexly independent to A and B. It is also clear that C is convexly

independent to D because D is contained in the extreme point A (as stated in case 1). In addition, C is
convexly independent to the copoint E because E is contained in the intersection of the extreme points A
and B and thus cannot be contained in C. Therefore, C is adjacent to A, B, D, and E in the copoint graph
and nothing else.

E : {1, ...n− 4, n− 2, n− 1}

attached to n− 3.

Case 4: Copoints D and E
The copoint D is contained in the extreme point A and is thus convexly independent to the other extreme

points, B and C. Therefore, D is adjacent to B and C in the copoint graph, but is independent to A. The
copoint E is convexly independent to D because E is not contained in D. Therefore, E is adjacent to D in
the copoint graph. Assume D is of size n − 1. The copoint of size n − 3 is contained in the intersection of
the three closed sets of size n − 1, but not D. Therefore, D is convexly independent to the copoint of size
n − 3 and adjacent in the copoint graph. The copoint D is of degree four as it is convexly independent to
B, C, E and the copoint of size n− 3 and nothing else.

The copoint E is of size n − 2 and is also of degree four. E is convexly independent to one of the
extreme points, C. In addition, it is convexly independent to the copoints of size n− 3 and n− 4, by simi-
lar reasoning of D. Therefore, E is adjacent to C, D, and the copoints of size n−3 and n−4 and nothing else.

Case 5: All other copoints
Consider any other copoint, K of size k. By previous argument, K will be contained in A, B or C.

However, it will be convexly independent to the copoints of size k+ 2, k+ 1, k− 1, and k− 2. Therefore, K
will be of degree four unless there does not exist a copoint of size k−1 or k−2 in L ′. There will be two such
points; they will be the endpoints of the sharkteeth graph and will be of degree two and three respectively.

Thus, ([n+ 1],L ′) is a convex geometry whose copoint graph is the sharkteeth graph.

�

4.3 Example of Sharkteeth
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(1, 23)

(2, 134)

(3, 1245)

(4, 1235)

(5, 1234) (1, 23)

(2, 134)

(3, 1245)

(4, 12356)

(5, 12346)

(6, 12345)

Figure 16: Labeled sharkteeth copoint graph

12345

1234 1235 1245

123 124 125 134

12 13 14 23

1 2 3

∅

123456

12345 12346 12356

1234 1245 1235 1236

123 124 125 134

12 13 14 23

1 2 3

∅

Figure 17: Hasse diagram of a convex geometry whose copoint graph is a sharkteeth graph
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Theorem 4.4. There exists a convex geometry whose copoint graph is a ladder.

The ladder graph is a n-by-2 grid of vertices where the maximum degree of any vertex is three. See
Figure 18 for reference.

Figure 18: 6 by 2 Ladder copoint graph

Proof:

Given the closed sets
∅ {1} {12} {123} {1234}
{2} {14} {124}

{23}

where the following are copoints
{14} {123}
{23} {124},

we have constructed a convex geometry ([4],L ). It is an alignment as the intersections of these sets are in
L and the sets follow the greedy property. Note that this graph is equivalent to Figure C.2 on page 29,
though the labels will be permutated. Figure C.2 verifies that this is a ladder on four vertices.

Based on the above case, we assume ([n],L ) is a convex geometry. Consider the inductive case, L ′,
where n+ 2 is added to the ground set. The additional closed sets in L ′ are

[n− 2] ∪ {n} ∪ {n+ 1}
[n− 1] ∪ {n+ 2}

[n] ∪ {n+ 1}
[n] ∪ {n+ 2}
[n] ∪ {n+ 1} ∪ {n+ 2}

and the following are copoints

[n− 2] ∪ {n} ∪ {n+ 1}
[n− 1] ∪ {n+ 2}

[n] ∪ {n+ 1}
[n] ∪ {n+ 2}

where [n− 2] ∪ {n} and [n− 3] are no longer copoints.

All of the intersections in L ′ are in L ′, making L ′ an alignment and all the sets have the greedy
property.

Now, we verify that the copoint graph, G(X,L ′), is a ladder. Consider the copoint:

A : {a1, ..., a2}

of size k.

We claim that A is contained in or contains every copoint except for three copoints. Thus it is adjacent to
these three copoints in the copoint graph.

We begin by looking at the two copoints of size k + 2. (Note that if there are no copoints of size k + 2,
consider the copoints of size k + 1. This is a special case where the k + 1 sized copoints are the extreme
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points, and the proof is similar). We claim that A is convexly independent to only one of the copoints of
sized k + 2. We call these two copoints B and C where

B : {a1 − 1, a1....a2, a2 + 1}

C : {a1 + 1, ....a2, a2 + 1, a2 + 2, a2 + 3}

We note that B contains A, but C does not contain A as C is does not contain a1 in its copoint. Thus, A
and C are convexly independent and therefore adjacent in the copoint graph.

Next, we consider all copoints of size k. There are two copoints of size k, A and another we call D. It
is obvious that A does not contain D and that they are convexly independent. Therefore, in the copoint
graph, they are adjacent to each other; D is the second copoint of three that are convexly independent to A.

Lastly, we consider the third copoint, which is one of the two copoints of size k− 2. We call them E and
F where

E : {a1 + 1, ...a2 − 1}

F : {a1 + 3...a2 + 1}.

It is clear that E is contained in A. However F includes a2 + 1 and is therefore not contained in the copoint
A. Thus, A is convexly independent to F and adjacent to F in the copoint graph.

It is obvious that all copoints of greater or equal to k + 4 contain A. Similarly, all copoints less than or
equal to k + 4 are contained in A. Therefore, there are only three copoints convexly independent to A.

The endpoints of the smallest size are a special case where the (k − 2)-sized copoints do not exist as
closed sets in L ′. Note that the extreme points are convexly independent (because they are of the same
size) and adjacent to each other in the copoint graph. This creates a n-by-2 grid copoint graph.

Thus, ([n+ 2],L ′) is a convex geometry whose copoint graph is a ladder.

�

4.4 Example of Ladder

(1, 23)

(2, 14)

(3, 124)

(4, 123)

(1, 23)

(2, 14)

(3, 1245)

(4, 1236)

(5, 12346)

(6, 12345)

Figure 19: Labeled ladder copoint graph
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[4]

123 124

23 12 14

2 1

∅

123456

12345 12346

1245 1234 1236

123 124

23 12 14

2 1

∅

Figure 20: Hasse diagram of a convex geometry whose copoint graph is a ladder

[n]

[n− 1] 2...n

[n− 2] 2...n− 1 3...n

2...n− 2 3...n− 1

2...n− 3 3...n− 2 4...n− 1

3...n− 3 4...n− 2

3...n− 4 4...n− 3 5...n− 2

4...n− 4 5...n− 3

n
2 − 1, n2

n
2 ,

n
2 + 1 n

2 + 1, n2 + 2

n
2

n
2 + 1

∅

Figure 21: Hasse diagram of a convex geometry whose copoint graph is a ladder |X| = n
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Theorem 4.5. There exists a convex geometry whose copoint graph is a comb.

A comb graph has a path graph as its base graph. The endpoints of this base path graph have exactly
two leaves and every other vertex of the base path graph has exactly one leaf extending from it. See Figure
22 for reference.

Figure 22: Comb copoint graph on 12 vertices

Proof:

Given the closed sets
∅ {1} {12} {123} {1234}
{2} {23} {234}

where the following are copoints
{1} {12} {123}

{234},

we have constructed a convex geometry ([4],L ). It is an alignment as the intersections of these sets are in
L and the sets follow the greedy property. Note that this graph is equivalent to Figure C.3 on page 30,
though the labels will be permutated. Figure C.3 verifies that this is a comb on four vertices.

Based on the above case, we assume ([n],L ) is a convex geometry. Consider the inductive case, L ′,
where n+ 2 is added to the ground set. The additional closed sets in L ′ are

[n− 1] ∪ {n+ 1}
[n] ∪ {n+ 1}

[n− 1] ∪ {n+ 1} ∪ {n+ 2}
[n] ∪ {n+ 1} ∪ {n+ 2}

and the following are copoints

[n]

[n] ∪ {n+ 1}
[n− 1] ∪ {n+ 1} ∪ {n+ 2}

where [n− 1] is no longer a copoint.

All of the intersections of the sets in L ′ are in L ′, making L ′ an alignment and all the sets have the
greedy property. We verify that this copoint graph is a centipede with the proof of (n1, n2, ..., nk)-centipede
in Theorem 5.1 on page 23.

Thus, ([n+ 2],L ′) is a convex geometry whose copoint graph is a comb.

�

4.5 Example of Comb
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(2, 1)

(3, 12)

(4, 123)(1, 234) (2, 1)

(3, 12)

(1, 234)

(5, 1234)

(6, 12345)(4, 12356)

Figure 23: Comb copoint graph

[4]

123 234

12 23

1 2

∅

[6]

12356 12345

1235 1234

123 234

12 23

1 2

∅

Figure 24: Hasse diagram of a convex geometry whose copoint graph is a comb

[10]

1234567910 123456789

1234579 12345678

1234567 1234578

123456 123457

12356 12345

1235 1234

123 234

12 23

1 2

∅

[3] ∪ 5

[5] ∪ 7

[7] ∪ 9

Figure 25: Hasse diagram for comb copoint graph. X = 10
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Theorem 4.6. There exists a convex geometry whose copoint graph is a centipede.

A centipede graph has a path graph as its base graph. Every vertex of the base path graph has exactly
one leaf extending from it.

Figure 26: Centipede copoint graph on 12 vertices

Proof:

Given the closed sets

∅ {1} {12} {123} {1234} {12345} {123456}
{2} {23} {124} {1246} {12346}

where the following are copoints

{1} {23} {123} {1246} {12345}
{12346},

we have constructed a convex geometry ([6],L ). It is an alignment as the intersections of these sets are in
L and the sets follow the greedy property. We verify that this copoint graph is a centipede with the proof
of (n1, n2, ..., nk)-centipede in Thereom 5.1 on page 23.

Based on the above case, we assume ([n],L ) is a convex geometry. Consider the inductive case, L ′,
where n+ 2 is added to the ground set. The additional closed sets in L ′ are

[n− 1] ∪ {n+ 1}
[n] ∪ {n+ 1}
[n] ∪ {n+ 2}
[n] ∪ {n+ 1} ∪ {n+ 2}

and the following are copoints

[n− 1] ∪ {n+ 1}
[n] ∪ {n+ 1}
[n] ∪ {n+ 2}

where [n− 1] is no longer a copoint.

All of the intersections in L ′ are in L ′, making L ′ an alignment and all the sets have the greedy
property. We verify that this copoint graph is a centipede with the proof of (n1, n2, ..., nk)-centipede in
Theorem 5.1 on page 23.

Thus, ([n+ 2],L ′) is a convex geometry whose copoint graph is a centipede.

�

4.6 Example of Centipede

Because we know all graphs of size 1-5 exist, we begin looking at the graph of 6 vertices.
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(1, 23)

(2, 1)

(4, 123)

(3, 1246)

(6, 12345)

(5, 12346)

(1, 23)

(2, 1)

(4, 123)

(3, 1246)

(6, 123457)

(5, 12346)

(8, 1234567)

(7, 1234568)

Figure 27: Labeled centipede copoint graph

[6]

12345 12346

1234 1246

123 124

23 12

2 1

∅

[8]

1234567 1234568

123457 123456

12345 12346

1234 1246

123 124

23 12

2 1

∅

Figure 28: Hasse diagram of a convex geometry whose copoint graph is a centipede
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5 Results on Trees

Trees, or acyclic graphs where there is exactly one path between two vertices, sometimes exists as copoint
graphs of convex geometries.

Theorem 5.1. There exists a convex geometry whose copoint graph is a (n1, n2, ..., nk)-centipede graph.

A n1, n2, ..., nk centipede graph is a path graph with k vertices, where n1 leaves are adjacent to the v1
vertex, n2 leaves are adjacent to the v2 vertex, and nk leaves are adjacent to the vk vertex. Note that
n1, n2, ..., nk ≥ 0.

Proof:

We begin by considering the graph of Kn,1 as the base copoint graph. We know by Theorem 3.1 on page
5 that Kn,1 exists as a convex geometry. We append a leaf to the Kn,1 graph but place this (n + 1)th leaf
into the base path graph and call it v2. This copoint graph becomes a Kn+1,1 graph, whose convex geometry
clearly still exists. Note that n leaves and the v2 vertex are all adjacent to v1. They form an chain in L
(reference Figure 29).

Now, we show that adding a leaf off of the vertex v2 is still a convex geometry. Every time we add a leaf,
we increase the ground set by 1. We add a leaf u1 adjacent only to v2. The leaf u1 is independent because
it contains all other copoints except for v2. Therefore, u1 is only adjacent to v2 in the copoint graph.

We can also add u2 to the set of leaves U adjacent to v2. Similarly, u2 is independent because it contains
all other copoints; u2 is only adjacent to v2. |U | is arbitrary. We note that |U | may equal zero. To this,
since we have shown that we can add another leaf. We call this vk. To that we can add nk leaves as before.
Given vk vertices with n1, n2, ...nk leaves, we can construct a (n1, n2, ..., nk)-centipede graph.

�

v1 v2 vk

n1 leaves n2 leaves nk leaves

Figure 29: (n1, n2, ..., nk)-centipede copoint graph

Note that the (n1, n2)-centipede graph is also a n1, n2 pom-pom graph like in Theorem 3.3 but with a
different sized ground set. This presents an infinite number of graphs that satisfy Theorem 3.3.
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6 Future Research

6.1 A Pressing Question in the Field

We ask the question, what is the maximum number of copoints in a convex geometry given a ground set of
size n?

We conjecture that with a ground set of size n, the convex geometry represented by Ln,n/2 gives the

maximum number of copoints, where
n

2
is number of extreme points in L .

Beagley and Morris [BM14] shows that the lower bound for the maximum number of copoints in a convex
geometry given a ground set of size n is (

n

bn/2c

)
+

⌊
n− 1

2

⌋
.

We pose the question, if given a convex geometry with a ground set of size n, there is only one convex
geometry that gives (

n

bn/2c

)
+

⌊
n− 1

2

⌋
number of copoints.

This led us to consider its copoint graph, G(X,Ln,n/2), and the following conjecture:

If k < n then, G([k],Lk,k/2) ⊆ G([n],Ln,n/2).
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6.2 Graphs that do not exist

Throughout our research, our team has found plenty of infinite classes of copoint graphs of convex geometries
that exist and and pose the question about copoints graph of convex geometries that do not exist beyond a
certain sized ground set. We challenge the reader to prove the following conjectures:

Conjecture 6.1. A wheel on eight or more vertices do not exist as a copoint graph of a convex geometry.

A wheel graph is a cycle of vertices that is also adjacent to one vertex in the center.

Figure 30: Wheel copoint graph on 7 vertices

Conjecture 6.2. An exploding n-star beyond two completely-filled levels does not exist as a copoint graph
of a convex geometry.

Exploding n-star graphs are wheel graphs where the outside vertices are not connected and n is the
degree of the middle vertex. The levels refers to extending the spokes of the wheel being extended to another
vertex. See Figure 31 for reference.

Figure 31: Exploding 4-star copoint graph

Conjecture 6.3. A complete binary tree on ≥ 12 vertices does not exist as a copoint graph of a convex
geometry.

Complete binary trees are acyclic graphs where the vertices on every level have two leaves except possibly
the last level, where all of the leaves are filled leftmost. See Figure 32 for reference.

Figure 32: Complete binary tree copoint graph
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A Appendix

All copoint graphs on 2 vertices.

12

1 2

∅
1,2 2,1

Figure A.1
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B Appendix

All copoints on 3 vertices.

123

12 23

1 2

∅

3,12 2,1

1,23

Figure B.1

123

12 13 23

1 2 3

∅

3,12 2,13

1,23

Figure B.2
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C Appendix

All copoint graphs on 4-vertices

1234

123 234

23 24

3 2

∅
1,234 4,123

3,24 2,3

Figure C.1

1234

123 234

12 23 34

2 3

∅
1,234 3,12

4,123 2,12

Figure C.2
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1234

123 234

12 23

1 2

∅
4,123 1,234

3,12 2,1

Figure C.3

1234

123 124 234

12 23 24

2 3

∅
4,123 3,124

1,234 2,3

Figure C.4
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1234

123 234 134

12 23 13 34

2 1 3

∅
4,123 2,134

1,234 3,12

Figure C.5

1234

123 124 134 234

12 13 14 23 24 34

1 2 3 4

∅
1,234 2,134

3,124 4,123

Figure C.6
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D Appendix

All copoint graphs on 5-vertices

1234

234 134

3424 14

4 1

∅
1,234 2,134

3,14 4,1

3,24

Figure D.1

12345

1234 2345

123 234

13 23

3 2

∅
1,23452,13

3,2 4,123

5,1234

Figure D.2
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1234

123 234

12 23 24

1 2

∅
1,2344,123

3,24 3,12

2,1

Figure D.3

12345

1234 2345

234123

2312

21

∅
4,123 5,1234

3,12 2,1

1,2345

Figure D.4

NSF Grant DMS-155 9912 33



1234

123 124 234

12 23 24

1 2 4

∅
2,1 1,234

2,4 4,123

3,124

Figure D.5

12345

1234 1245 2345

124 234 245

12 24

1 2

∅
4,12 1,2345

2,1 3,1245

5,1234

Figure D.6
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12345

1234 1245 2345

124 234 245

24 45

2 4

∅
2,45 5,1234

4,2 1,2345

3,1245

Figure D.7

1234

123 234

12 23 34

1 2 3

∅
2,34 3,12

4,123 1,234

2,1

Figure D.8
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1234

123 234

12 23 24

2 3

∅
1,234 4,123

3,12 2,3

3,24

Figure D.9

1234

234 134124

3424 14 13

2 34 1

∅
3,124 4,123

2,13 1,234

2,4

Figure D.10
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12345

1234 1345 2345

124 134 234 345

14 24 34

1 4

∅
2,1345 3,124

5,1234 1,2345

4,1

Figure D.11

12345

1234 1245 2345

124 234 245

23 24 45

2 4

∅
4,23 3,1245

2,45 5,1234

1,2345

Figure D.12
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12345

1234 2345

123 234

13 23 24

3 2

∅
5,1234 3,24

2,13 1,2345

4,123

Figure D.13

12345

1234 1345 2345

134 234 345

14 13 34

1 4 3

∅
2,1345 1,2345

5,1234 3,14

4,13

Figure D.14
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12345

1234 1345 1245 2345

134 124 234 145 345 245

14 34 24 45

4 5

∅
1,2345 2,1345

3,1245 4,1234

4,5

Figure D.15

12345

1234 1345 2345

134 234 345 235

34 23 35 25

3 2 5

∅
1,2345 2,1345

4,234 5,1234

3,25

Figure D.16
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12345

1234 2345 1345

124 234 134 345

24 14 34 35

4 3

∅
1,2345 2,1345

5,1234 4,35

3,124

Figure D.17

1234

234134123

2313 1412 34

1 32 4

∅
3,12 1,234

2,134 4,123

3,14

Figure D.18
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12345

1234 1235 1245

123 124 125 134

12 13 14 23

1 2 3

∅
1,23 3,1245

2,134 4,1235

5,1234

Figure D.19

12345

1234 1345 1245 2345

134 124 234145 345245

14 3424 35

4 3

∅
2,1345 3,1245

1,2345 5,1234

4,35

Figure D.20
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12345

1234 1345 2345

135 134 234 245345

13 34 45

3 4

∅
1,2345 2,1345

3,245 4,135

5,1234

Figure D.21

12345

1234 1345 1235 2345

123 134 135 234 235 245 345

13 23 24 2534 35 45

2 3 4 5

∅
1,2345 2,1345

3,245 4,1235

5,1234

Figure D.22
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12345

1234 1345 1245 1235 2345

123 124 125 134 135 145 234 235 245 345

12 13 14 15 23 24 25 34 35 45

1 2 3 4 5

∅
1,2345 2,1345

3,1245 4,1235

5,1234

Figure D.23
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