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1 Introduction
Financial institutions are constantly looking at how to maximize profit through

their decisions to either accept or reject a credit application or reapplication. To
do this, the creditor will look at the applicant’s creditworthiness, or the measure
of likelihood that the applicant will not default on their loans. To determine
whether to accept or reject based on this value, the creditor requires an optimal
threshold, above which the lender will accept the application.

The optimization of a Profit Function to determine the value of this optimal
threshold allows for the derivation of a flexible formula that can be easily altered
for changes in cost, revenue, and assumptions of the population. By considering
a Profit Function that has elements of cost and revenue, the creditor is able to
find an optimal threshold that both maximizes profit and minimizes the risk of
the acceptance of a bad status applicant. We consider four classification prob-
abilities based on the good or bad status of the applicant (whether they will in
actuality repay their loans) and the decision of the creditor which will be correct
or incorrect due to the applicant’s status.

Throughout this paper, we have evaluated the optimal thresholds that max-
imize the profit function for different assumptions of the two populations: good
and bad status applicants. This analysis of optimal thresholds is built off the
research done by Chen et. al [1], which considers the population distribution
model of Normal-Normal with the σ values of both populations equal to 1. In
this paper, we considered varying assumptions of Normal, χ2, and Γ distribu-
tions. We present the methods we used to find the optimal threshold in more
depth in Section 2. Our findings of the optimal threshold under Normal-Normal
distribution assumptions of the populations are in Section 3 and our findings of
the optimal threshold under Gamma-Gamma distribution assumptions of the
populations are in Section 4. Finally, we explore a few examples in Section 5
with the conclusion of the paper in Section 6.

2 Methods
We considered customers reapplying for credit. The general setup for this

paper comes from a paper done by Chen et. al [1]. Let D be a binary variable
that reflects the status of a customer. The value of D can be either Good(G)
or Bad(B). In this paper, it is assumed a Good customer will pay back the loan
and a Bad customer will not pay back the loan. Each customer is assigned a
score, y∗, that represents the creditworthiness of the customer. This creditwor-
thiness is an attempt to measure the likelihood of the customer paying back
the loan. Then a threshold value, k is chosen for the creditworthiness scores
that decides whether a customer is accepted or rejected. For a creditworthi-
ness score, y∗, and a threshold value, k, let Yk be the binary decision variable
with the values A = Acceptance and R = Rejection. This could also be denoted:
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Decision (Yk)
Accept (A) Reject (R)

Status Good (G) True Positive (TP) False Negative (FN)
(D) Bad (B) False Positive (FP) True Negative (TN)

Table 1: Conditional Probabilities for Status and Decision

Yk =

{
A(Accept application) if y∗ > k,

R(Reject application) if y∗ ≤ k

Next, we will define the four conditional probabilities (shown in Table 1)
for our two binary variables, D and Yk. These conditional probabilities are the
True Positive (TP ) and the True Negative (TN) and their compliments, the
False Negative (FN) and the False Positive (FP ). True Positive is the proba-
bility of correctly accepting an application of a Good status applicant, and True
Negative is the probability of correctly rejecting an application of a Bad status
applicant. Likewise, False Positive is the probability of incorrectly accepting an
application of a Bad status applicant, and False Negative is the probability of
incorrectly rejecting an application of a Good status applicant. Additionally,
TP + FN = 1 and FP + TN = 1. The four conditional probabilities for a
specific threshold can be written as follows:

• TPk = P (y∗ > k|D = G) = P (Y = G|D = G),

• TNk = P (y∗ ≤ k|D = B) = P (Y = B|D = B),

• FNk = P (y∗ ≤ k|D = G) = P (Y = B|D = G),

• FPk = P (y∗ > k|D = B) = P (Y = G|D = B).

Each of these conditional probabilities are associated with either a cost or
a revenue. The revenues and costs of these probabilities have realistic interpre-
tations. The revenue of a True Positive, denoted rG is the interest earned from
the repayment of the loan. The revenue of a True Negative is the application
fees earned on the applications that were correctly rejected. This is represented
by rB . The costs of a False Positive and False Negative are symbolized by cB
and cG respectively. The cB value is the cost of the unpaid loan while cG is the
processing cost of the application along with the opportunity cost of the interest
that could have been made had the application been accepted. We assume that
all of these constants are greater than zero. These revenues and costs can be
shown in a payoff matrix, such as Table 2.

Now, we will combine the four conditional probabilities with their associ-
ated costs and revenues to define the Profit Function. Let R(k) be the Profit
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Decision (Y)
Accept (G) Reject (B)

Status Good (G) rG cG
(D) Bad (B) cB rB

Table 2: Payoff Matrix

Function defined as

R(k) = (PG ∗ rG ∗ TPk + PB ∗ rB ∗ TNk)− (PG ∗ cG ∗ FNk + PB ∗ cB ∗ FPk)

where PG is the proportion of the applicants who are of Good status and PB is
the proportion of those who are of Bad status with PG +PB = 1. R(k) gives us
the profit by taking the revenues minus the costs. The objective of our paper is
to find the optimal threshold, k∗ that maximizes the expected profit R(k).

To maximize expected profit, we used two different methods: optimization
of a multivariate function and simulations. We used both these methods for
each of the different assumptions we made about the population distribution.
First, we optimized the profit function by taking its derivative with respect to
k and setting it equal to zero. By solving for k, we are able to get an extreme
point. Using the Second Derivative Test, we were able to show that our extreme
point was a maximum. Next, we used simulations to confirm the results we had
derived. To do this, we generated a random sample of creditworthiness scores
using the distribution we were analyzing at the time. Then we created a list
of possible threshold values from the minimum creditworthiness score to the
maximum creditworthiness score in our sample using small increments. By
passing each of these through the Profit Function, we were able to approximate
where the threshold should be set to maximize profit. By comparing this value
to the one derived earlier, we could confirm that our threshold value is correct.

3 Normal Distribution
We begin by assuming a Normal-Normal model for population distributions.

While it is not quite realistic that both distributions are distributed Normally,
it is likely that there are clumps of the population centered around mediocre
values of good and bad creditworthiness, so considering a Normal-Normal model
is valid. And because analyzing a symmetric distribution such as the Normal
distribution is easier in some ways, we begin with this population assumption.

Let Y ∗ ∼ N(µG, σ
2
G) for the good population and Y ∗ ∼ N(µB , σ

2
B) for

the bad population. We assume that µG > µB and that the good and bad
population are independent.

fG(y∗|µG, σ2
G) =

1√
2πσ2

G

exp

[
− (y∗ − µG)2

2σ2
G

]
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fB(y∗|µB , σ2
B) =

1√
2πσ2

B

exp

[
− (y∗ − µB)2

2σ2
B

]
Under these assumptions, we have the following probabilities:

TPk = P (y∗ > k|D = G) = 1− FG(k) =
∫∞
k
fG(y∗)dy∗

FPk = P (y∗ > k|D = B) = 1− FB(k) =
∫∞
k
fB(y∗)dy∗

3.1 Case 1: σG = σB

We begin with the assumption that σG = σB in order to make the computa-
tions easier, though this is not a very realistic assumption of the two populations.
In the following two theorems, let k0 be the optimal threshold value satisfying
R′(k0) = 0. Theorem 1 derives this k0 value and Theorem 2 gives the second
derivate test where k0 proves to be a maximum.

Theorem 1: Under the assumption of Normal-Normal model and σG =
σB = σ, k0 can be shown to be unique and expressible in a closed-form expres-
sion involving PG, PB , cG, cB , rG, rB , µG, and µB .

k0 = σ2 lnC
µG−µB + µG+µB

2
where

C = PB
PG

rB+cB
rG+cG

.

Proof: Given the profit function, R(k):

R(k) = PG ∗ rG ∗ TPk + PB ∗ rB ∗ TNk − (PG ∗ cG ∗ FNk + PB ∗ cB ∗ FPk)

= PG ∗ (rG + cG) ∗ TPk − PB ∗ (rB + cB) ∗ FPk + (PB ∗ rB − PG ∗ cG)

Then, under the Normal-Normal model assumptions and σG = σB = σ, we
have

TPk =
∫∞
k

1√
2πσ2

exp
[
− (y∗−µG)2

2σ2

]
dy∗

and
FPk =

∫∞
k

1√
2πσ2

exp
[
− (y∗−µB)2

2σ2

]
dy∗
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Taking the first derivative of R(k) with respect to k, we have

R′(k) = PB ∗ (rB + cB) ∗ fB(k)− PG ∗ (rG + cG) ∗ fG(k)

= PB ∗ (rB + cB)
1√

2πσ2
exp

[
− (k − µB)2

2σ2

]
− PG ∗ (rG + cG) ∗ 1√

2πσ2
exp

[
− (k − µG)2

2σ2

]
= PG ∗ (rG + cG) ∗ fB(k) ∗

(
C − fG(k)

fB(k)

)

where C = PB
PG

rB+cB
rG+cG

. Then R′(k) = 0 if and only if

PG ∗ (rG + cG) ∗ fB(k) ∗
(
C − fG(k)

fB(k)

)
= 0

Since PG, rG, cG, and fB(k) are all positive, the previous equation is equiv-
alent to the following condition.

C =
fG(k0)

fB(k0)

C =

1√
2πσ2

exp
[
− (k0−µG)2

2σ2

]
1√

2πσ2
exp

[
− (k0−µB)2

2σ2

]
C = exp

[(
− (k0 − µG)2

2σ2

)
−
(
− (k0 − µB)2

2σ2

)]
lnC =

(
− (k0 − µG)2

2σ2

)
−
(
− (k0 − µB)2

2σ2

)
2σ2 lnC = (k0 − µB)2 − (k0 − µG)2

2σ2 lnC = k2
0 − 2k0µB + µ2

B − k2
0 + 2k0µG − µ2

G

2σ2 lnC = 2k0(µG − µB) + (µ2
B − µ2

G)

2σ2 lnC + (µ2
G − µ2

B) = 2k0(µG − µB)

k0 =
σ2 lnC

µG − µB
+
µG + µB

2
�

Theorem 2: Assume a Normal-Normal distribution for the two populations
with N(µG, σ

2) and N(µB , σ
2) with µG > µB . Let C = PB

PG

(rB+cB)
(rG+cG) and k0 be

defined as in Thm. 1. Then:

1. R′(k) ≥ 0 when k ≤ k0.

2. R′(k) ≤ 0 when k ≥ k0.

3. R′′(k) < 0.
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Proof: (1) and (2) can be easily proved by changing the equal sign in Thm. 1
to ≥ and ≤, respectively.
To prove (3), we take the second derivative of R(k) with respect to k:

∂2R(k)

∂k2
= − (µG − k)

σ3
√

2π
e

−1

2σ2
(k−µG)2PG(rG+cG)+

[
(µB − k)

σ3
√

2π
e

−1

2σ2
(k−µB)2

]
PB(rB+cB)

Considering the local maximum for which R′′(k) < 0, we look at:

(µB − k)

σ3
√

2π
e

−1

2σ2
(k−µB)2PB(rB + cB) <

(µG − k)

σ3
√

2π
e

−1

2σ2
(k−µG)2PG(rG + cG)

µB − k0

µG − k0
C < exp

[
1

2σ2
((µB − k0)2 − (µG − k0)2)

]
2σ2(ln(µB − k0)− ln(µG − k0) + lnC) < (µB − k0)2 − (µG − k0)2)

2σ2 ln(µB − k0)− 2σ2 ln(µG − k0) + 2σ2 lnC < µ2
B − 2µBk0 − µ2

G + 2µGk0

Substituting in k0 = σ2 lnC
µG−µB + µG+µB

2 on the right hand side:

2σ2 ln(µB−k0)−2σ2 ln(µG−k0)+2σ2 lnC < µ2
B−

2µGσ
2 lnC

µG − µB
−µGµB−µ2

B−µ2
G+

2µBσ
2 lnC

µG − µB
+µGµB+µ2

G

2σ2 ln(µB − k0)− 2σ2 ln(µG − k0) + 2σ2 lnC <
2σ2 lnC(µG − µB)

(µG − µB)

2σ2 ln(µB − k0)− 2σ2 ln(µG − k0) < 0

µB < µG

Thus we get R′′(k0) < 0 if and only if µB < µG, which is an assumption and
therefore R′′(k0) < 0.
Theorem 9 below follows immediately from Theorem 2. �

3.2 Case 2: σG 6= σB

Next we consider the case in which σG 6= σB . This is a more realistic as-
sumption under the Normal-Normal model, because as previous consultation on
the paper by Chen et. al [1] and literature suggests that these populations are
uniquely distributed and independent from each another. In the following two
theorems, let k0 be the optimal threshold value satisfying R′(k0) = 0. Theorem
3 derives this k0 value and Theorem 4 gives the second derivate test where k0

proves to be a maximum.

Theorem 3: Under the assumption of Normal-Normal model and σG 6= σB .
We then define σB = σ and σG = mσ where m > 0 and m 6= 1. Then k0 can be
shown to be unique and expressible in a closed-form expression involving PG,
PB , cG, cB , rG, rB , σ, m, µG, and µB .
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k0 =
(m2µB−µG)±

√
(m2µB−µG)2−(m2−1)(m2µ2

B−µ2
G−2σ2m2 lnCm)

m2−1
and

C = PB
PG

rB+cB
rG+cG

.

Proof: Given the profit function R(k):

R(k) = PG ∗ rG ∗ TPk + PB ∗ rB ∗ TNk − (PG ∗ cG ∗ FNk + PB ∗ cB ∗ FPk)

= PG ∗ (rG + cG) ∗ TPk − PB ∗ (rB + cB) ∗ FPk + (PB ∗ rB − PG ∗ cG)

Under the Normal-Normal model assumptions and σG 6= σB , we have
TPk =

∫∞
k

1√
2πm2σ2

exp
[
− (y∗−µG)2

2m2σ2

]
dy∗

and
FPk =

∫∞
k

1√
2πσ2

exp
[
− (y∗−µB)2

2σ2

]
dy∗

Take the first derivative of the Profit Function with respect to k, we have

R′(k) = PB ∗ (rB + cB) ∗ fB(k)− PG ∗ (rG + cG) ∗ fG(k)

= PB ∗ (rB + cB)
1√

2πσ2
exp

[
− (k − µB)2

2σ2

]
− PG ∗ (rG + cG) ∗ 1√

2πm2σ2
exp

[
− (k − µG)2

2m2σ2

]
= PG ∗ (rG + cG) ∗ fB(k) ∗

(
C − fG(k)

fB(k)

)

where C = PB
PG
∗ rB+cB
rG+cG

. Then R′(k) = 0 if and only if

PG ∗ (rG + cG) ∗ fB(k) ∗
(
C − fG(k)

fB(k)

)
= 0

Since PG, rG, cG, and fB(k) are all positive, the previous equation is equivalent
to the following condition.
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C =
fG(k0)

fB(k0)

C =

1√
2π(mσ)2

exp
[
− (k0−µG)2

2(mσ)2

]
1√

2πσ2
exp

[
− (k0−µB)2

2σ2

]
C =

√
2πσ2

√
2πm2σ2

exp

[
(k0 − µB)2

2σ2
− (k0 − µG)2

2m2σ2

]
C =

1

m
exp

[
(k0 − µB)2

2σ2
− (k0 − µG)2

2m2σ2

]
ln (Cm) =

(k0 − µB)2

2σ2
− (k0 − µG)2

2m2σ2

2m2σ2 ln (Cm) = m2(k0 − µB)2 − (k0 − µG)2

2m2σ2 ln (Cm) = m2k2
0 − 2m2µBk0 +m2µ2

B − k2
0 + 2µGk0 − µ2

G

2m2σ2 ln (Cm) = (m2 − 1)k2
0 + (2µG − 2m2µB)k0 +m2µ2

B − µ2
G

0 = (m2 − 1)k2
0 + 2(µG −m2µB)k0 +m2µ2

B − µ2
G − 2m2σ2 ln (Cm)

Note that when m = 1, the quadratic term goes to zero. In this case, σG = σB
which is in Section 3.1. Using the quadratic formula:

k0 =
−2(µG −m2µB)±

√
[(2)(m2µB − µG)]2 − 4(m2 − 1)(m2µ2

B − µ2
G − 2m2σ2 ln (Cm))

2(m2 − 1)

k0 =
2(m2µ2

B − µ2
G)±

√
4(m2µB − µG)2 − 4(m2 − 1)(m2µ2

B − µ2
G − 2m2σ2 ln (Cm))

2(m2 − 1)

k0 =
(m2µB − µG)±

√
(m2µB − µG)2 − (m2 − 1)(m2µ2

B − µ2
G − 2σ2m2 ln (Cm))

m2 − 1

Theorem 4: Assume a Normal-Normal distribution for the two popula-
tions with N(µG, (mσ)2) and N(µB , σ

2) with µG > µB and σG = mσB . Let
C = PB

PG

(rB+cB)
(rG+cG) and k0 be defined as in Thm. 3. Then:

1. R′(k) ≥ 0 when k ≤ k0.

2. R′(k) ≤ 0 when k ≥ k0.

3. R′′(k0) < 0 when k0 =
(m2µB−µG)+

√
(m2µB−µG)2−(m2−1)(m2µ2

B−µ2
G−2σ2m2 ln (Cm))

m2−1 .

Proof: (1) and (2) can be easily proved by changing the equal sign in the Thm.
3 to ≥ and ≤, respectively. To derive (3), we take the second derivative of R(k)
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with respect to k:

∂2R(k)

∂k2
= − (µG − k)

σ3
√

2π
e

−1

2σ2
(k−µG)2PG(rG+cG)+

(µB − k)

m3σ3
√

2π
e

−1

2m2σ2
(k−µB)2PB(rB+cB)

Considering the local maximum for which R′′(k) < 0 we look at:

(µB − k0)

m3σ3
√

2π
e

−1

2m2σ2
(k0−µB)2PB(rB + cB) <

(µG − k0)

σ3
√

2π
e

−1

2σ2
(k0−µG)2PG(rG + cG)

m3µB − k0

µG − k0
C < exp

[
(µB − k0)2

2σ2
− (µG − k0)2

2m2σ2

]

2σ2m2
(
ln(µB − k0) + ln(m3)− ln(µG − k0)

)
+ µB − k0 ln(C) <m2(µB − k0)2 − (µG − k0)2

2σ2m2
(
ln(µB − k0) + ln(m3)− ln(µG − k0)

)
+ µB − k0 ln(C) <(m2 − 1)k0 + 2(µG − µBm2)k0

+ (µ2
Bm

2 − µ2
G)

Completing the square with the quadratic from Thm. 3, we get:

2σ2m2
(
ln(µB − k0) + ln(m3)− ln(µG − k0)

)
+ µB − k0 ln(C) <−m2µ2

B + µ2
G + 2m2σ2 ln(Cm)

+ µ2
Bm

2 − µ2
G

ln(µB − k0)− ln(µG − k0) < − ln(Cm) + ln(m3)− ln(C)

(µB − k0)

(µG − k0)
<

1

m2

This only holds true if k0 =
(m2µB−µG)+

√
(m2µB−µG)2−(m2−1)(m2µ2

B−µ2
G−2σ2m2 ln (Cm))

m2−1 ,
so only the one k0 value from Thm. 3 proves a local maximum where R′′(k) < 0.
Theorem 9 below follows immediately from Theorem 3.

4 Gamma Distribution
Once we considered both of the previously examined cases for the Normal

distribution, we decided to consider what a threshold may be for asymmetric
distributions. Asymmetric distributions are likely to be more appropriate mod-
els for the distribution of Y ∗ as the scores will likely be clustered around the
means of the Good or Bad status with a skew toward the center of the joint
distribution. This would be a skew right for the Bad population and a skew
left for the Good population. We initially considered the Γ-Distribution as it is
defined for y∗ > 0.
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4.1 Case 3: βG = βB = 2

A special case of βG = βB is one where Y ∗ is χ2 − χ2 distributed [2]. This
is when βG = βB = 2, αG = νG

2 , and αB = νB
2 .

Let Y ∗ ∼ χ2(νG) for the good population and Y ∗ ∼ χ2(νB) for the bad
population.

fG(y∗|νG) =
1

Γ(νG2 )2νG/2
y∗

νG
2 −1e−

y∗
2

fB(y∗|νB) =
1

Γ(νB2 )2νB/2
y∗

νB
2 −1e−

y∗
2

Under these assumptions, we have:
TPk = P (y∗ > k|D = G) = 1− FG(k) =

∫∞
k
fG(y∗)dy∗

and
FPk = P (y∗ > k|D = B) = 1− FB(k) =

∫∞
k
fB(y∗)dy∗

Theorem 5: Under the assumption of χ2-χ2 model. k0 can be shown to be
expressible in a closed-form expression involving PG, PB , cG, cB , rG, rB , νG,
and νB .

k0 = 2(CD)
2

νG−νB

where
C = PB

PG
rB+cB
rG+cG

and
D =

Γ(
νG
2 )

Γ(
νB
2 )

.
Proof: Given the profit function R(k):

R(k) = PG ∗ rG ∗ TPk + PB ∗ rB ∗ TNk − (PG ∗ cG ∗ FNk + PB ∗ cB ∗ FPk)

= PG ∗ (rG + cG) ∗ TPk − PB ∗ (rB + cB) ∗ FPk + (PB ∗ rB − PG ∗ cG)

Under the χ2-χ2 model assumptions, we have
TPk =

∫∞
k

1
Γ(
νG
2 )2νG/2

y∗
νG
2 −1e−

y∗
2 dy∗

and
FPk =

∫∞
k

1
Γ(
νB
2 )2νB/2

y∗
νB
2 −1e−

y∗
2 dy∗

Take the first derivative of the Profit Function with respect to k, we have

R′(k) = PB ∗ (rB + cB) ∗ fB(k)− PG ∗ (rG + cG) ∗ fG(k)

= PG ∗ (rG + cG) ∗ fB(k) ∗
(
C − fG(k)

fB(k)

)

where C = PB
PG
∗ rB+cB
rG+cG

. Then R′(k) = 0 if and only if

PG ∗ (rG + cG) ∗ fB(k0) ∗
(
C − fG(k0)

fB(k0)

)
= 0
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Since PG, rG, cG, and fB(k) are all positive, the previous equation is equivalent
to the following condition.

C =
fG(k0)

fB(k0)
=

1
Γ(
νG
2 )2νG/2

k
νG
2 −1

0 e−
k0
2

1
Γ(
νB
2 )2νB/2

k
νB
2 −1

0 e−
k0
2

C =
Γ(νB2 )

Γ(νG2 )
2νB/2−νG/2k

νG/2−1−νB/2+1
0 e−k0/2+k0/2

Let D =
Γ(νG2 )

Γ(νB2 )
.

CD = 2
1
2 (νB−νG)k

1
2 (νG−νB)
0

ln(CD) =
1

2
(νB − νG) ln(2) +

1

2
(νG − νB) ln(k0)

ln(CD) +
1

2
(νG − νB) ln(2) =

1

2
(νG − νB) ln(k0)

2

νG − νB
ln(CD) + ln(2) = ln(k0)

2(CD)
2

νG−νB = k0

Theorem 6: Assume a χ2 distribution for the two populations with χ2(νG)

and χ2(νB) with νG > νB . Let C = PB
PG

(rB+cB)
(rG+cG) , D =

Γ(
νG
2 )

Γ(
νB
2 )

, and k0 be defined
as in Thm. 5. Then:

1. R′(k) ≥ 0 when k ≤ k0.

2. R′(k) ≤ 0 when k ≥ k0.

3. R′′(k) < 0.

Proof: (1) and (2) can be easily proved by changing the equal sign in Thm. 5
to ≥ and ≤, respectively. To derive the (3), we take the second derivative of
R(k) with respect to k:

∂2R(k)

∂k2
=− PG(rG + cG)

1

Γ(νG2 )2
νG
2

(
−1

2
k
νG
2 −1e

−k
2 + (

νG
2
− 1)e

−k
2 k

νG
2 −1

)
+ PB(rB + cB)

1

Γ(νB2 )2
νB
2

(
−1

2
k
νB
2 −1e

−k
2 + (

νB
2
− 1)e

−k
2 k

νB
2 −1

)
Considering the local maximum, for which R′′(k) < 0 we look at:

PG(rG+cG)
1

Γ(νG2 )2
νG
2

(k
νG
2 −1

0 +(2−νG)k
νG
2 −1

0 ) < PB(rB+cB)
1

Γ(νB2 )2
νB
2

(k
νB
2 −1

0 +(2−νB)k
νB
2 −1

0 )

12



(k
νG
2 −1

0 + (2− νG)k
νG
2 −1

0 ) < CD2
νG−νB

2 (k
νB
2 −1

0 + (2− νB)k
νB
2 −1

0 )

k
νG
2 −1

0 (1 + (2− νG)k−1
0 ) < CD2

νG−νB
2 k

νB
2 −1

0 (1 + (2− νB)k−1
0 )

Substituting for k0:

CD2
νG−νB

2 (1 + (2− νG)k−1
0 ) < CD2

νG−νB
2 k

νB
2 −1

0 (1 + (2− νB)k−1
0 )

(1 + (2− νG)k−1
0 ) < (1 + (2− νB)k−1

0 )

−νG < −νB
µG = νG > νB = µB

4.2 Case 4: βG 6= βB

Let Y ∗ ∼ Γ(αG, βG) for the good population and Y ∗ ∼ Γ(αB , βB) for the
bad population [3].

fG(y∗) = 1
Γ(αG)β

αG
G

y∗αG−1e
−y∗
βG

fB(y∗) = 1
Γ(αB)β

αB
B

y ∗αB−1 e
−y∗
βB

Under these assumptions, we have:
TPk = P (y∗ > k|D = G) = 1− FG(k) =

∫∞
k
fG(y∗)dy∗

and
FPk = P (y∗ > k|D = B) = 1− FB(k) =

∫∞
k
fB(y∗)dy∗.

Recall the profit function:

R(k) = PG ∗ rG ∗ TPk + PB ∗ rB ∗ TNk − (PG ∗ cG ∗ FNk + PB ∗ cB ∗ FPk)

= PG ∗ (rG + cG) ∗ TPk − PB ∗ (rB + cB) ∗ FPk + (PB ∗ rB − PG ∗ cG)

Theorem 7: Under the assumptions, k0 can be shown to be unique and ex-
pressible in a closed-form expression involving PG, PB , cG, cB , rG, rB , αG, αB ,
and βG, and βB .

k0 =
(αB − αG)βGβB

βB − βG
W

(
(βB − βG)(CD)

−1
αB−αG

(αB − αG)βBβG

)

C =
PB
PG

rB + cB
rG + cG

D =
Γ(αG)βαGG
Γ(αB)βαBB

13



Proof: Given the profit function R(k):

R(k) = PG ∗ rG ∗ TPk + PB ∗ rB ∗ TNk − (PG ∗ cG ∗ FNk + PB ∗ cB ∗ FPk)

= PG ∗ (rG + cG) ∗ TPk − PB ∗ (rB + cB) ∗ FPk + (PB ∗ rB − PG ∗ cG)

Under the assumptions, we have
TPk =

∫∞
k

1
Γ(αG)β

αG
G

y∗αG−1e
−y∗
βG dy∗

and
FPk =

∫∞
k

1
Γ(αB)β

αB
B

y ∗αB−1 e
−y∗
βB dy∗

Take the first derivative with respect to k, we have,

R′(k) = PB ∗ (rB + cB) ∗ fB(k)− PG ∗ (rG + cG) ∗ fG(k)

= PG ∗ (rG + cG) ∗ fB(k) ∗
(
C − fG(k)

fB(k)

)

where C = PB
PG
∗ rB+cB
rG+cG

. Then R′(k) = 0 if and only if
Since PG, rG, cG, and fB(k) are all positive, the previous equation is equivalent
to the following condition.

PG ∗ (rG + cG) ∗ fB(k0) ∗
(
C − fG(k0)

fB(k0)

)
= 0

C =
fG(k0)

fB(k0)

C =

1
Γ(αG)β

αG
G

kαG−1
0 e

−k0
βG

1
Γ(αB)β

αB
B

kαB−1
0 e

−k0
βB

C =
Γ(αB)βαBB
Γ(αG)βαGG

kαG−αB0 e
−k0

(
1
βG
− 1
βB

)

C
Γ(αG)βαGG
Γ(αB)βαBB

= kαG−αB0 e
−k0

(
1
βG
− 1
βB

)

Let D =
Γ(αG)βαGG
Γ(αB)βαBB

.

CD = kαG−αB0 e
−k0

(
1
βG
− 1
βB

)
After some math...(Mathematica),

k0 =
(αB − αG)βGβB

βB − βG
W

(
(βB − βG)(CD)

−1
αB−αG

(αB − αG)βBβG

)
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where W is the Lambert W function. The Lambert W function is the function
that satisfies z = W (z)eW (z) or the inverse of f(W ) = WeW [4]. �

Theorem 8: Assume a Γ- distribution for the two populations with Γ(αG, βG)

and Γ(αB , βB) with µG−k0
βG

> µB−k0
βB

. Let C = PB
PG

(rB+cB)
(rG+cG) , D =

Γ(αG)β
αG
G

Γ(αB)β
αB
B

, and
k0 be defined by Thm. 7. Then:

1. R′(k) ≥ 0 when k ≤ k0.

2. R′(k) ≤ 0 when k ≥ k0.

3. R′′(k) < 0.

Proof: (1) and (2) can be easily proved by changing the equal sign in Thm. 7
to ≥ and ≤, respectively. To derive the (3), we take the second derivative of
R(k) with respect to k:

∂2R(k)

∂k2
=− PB(rB + cB)

( 1
βB

)αB

Γ(αB)

(
−1

βB
kαB−1e

−k
βB + (αB − 1)kαB−2e

−k
βB

)
+ PG(rG + cG)

( 1
βG

)αG

Γ(αG)

(
−1

βG
kαG−1e

−k
βG + (αG − 1)kαG−2e

−k
βG

)
Considering the local maximum, for which R′′(k) < 0 we look at:

1

βG
kαG−1

0 e
−k0
βG +(1−αG)kαG−2

0 e
−k0
βG < CD

(
1

βB
kαB−1

0 e
−k0
βB + (1− αB)kαB−2

0 e
−k0
βB

)
1

βG
kαG−1

0 + (1− αG)kαG−2
0 < CD

(
1

βB
kαB−1

0 + (1− αB)kαB−2
0

)
e

−k0
βB

+
k0
βG

kαG−1
0

(
1

βG
+ (1− αG)k−1

0

)
< CD

(
1

βB
+ (1− αB)k−1

0

)
kαB−1

0 e
−k0
βB

+
k0
βG

kαG−αB0 e
−k0
βB

+
k0
βG

(
1

βG
+ (1− αG)k−1

0

)
< CD

(
1

βB
+ (1− αB)k−1

0

)
And since e

−k0
βB

+
k0
βG = CD then:

1

βG
+ (1− αG)k−1

0 <
1

βB
+ (1− αB)k−1

0

1

βG
− αG
k0

<
1

βB
− αB
k0

αG − αB >
−k0

βB
+
k0

βG

αG −
k0

βG
> αB −

k0

βB

µG − k0

βG
>
µB − k0

βB
�
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5 Maximized Profit Value
In this section, we will discuss the three possible relations k0 can have to the

minimum and maximum creditworthiness score.
Theorem 9: Let R(k) be defined for k ∈ [y∗min, y

∗
max], and k0 be defined by

Theorem 1. The maximization of R(k) can be broken into three cases.

1. If k0 ≤ y∗min, then R(k) is maximal when k∗ = y∗min. If y∗min is small
enough, then R(y∗min) ≈ PG · rG − PB · cB .

2. If k0 ≥ y∗max, then R(k) is maximal when k∗ = y∗max. If y∗max is big
enough, then R(y∗max) ≈ PB · rB − PG · cG.

3. If y∗min < k0 < y∗max, then R(k) is maximal when k∗ = k0 with

R(k0) =PB · (rB + cB) · (1− F (k0))

− PG · (rG + cG) · (1− F (k0)) + PG · rG − PB · cB

Proof:

1. Since k ∈ [k1, k2], if k0 ≤ k1, then k0 ≤ k. By Theorem 2 (2), R′(k) ≤
0. Hence, R(k) is a decreasing function over k ∈ [k1, k2], and then the
maximum of R(k) occurs at k = k1.
R(k) = PG · (rG + cG) · TPk − PB · (rB + cB) · FPk + PB · rB − PG · cG.
As k → −∞, TPk → 1 and FPk → 1, so

R(k)→ PGrG + PGcG − PBrB − PBcB + PBrB − PGcG
→ PGrG − PBcB

2. Since k ∈ [k1, k2], if k0 ≥ k2, then k0 ≥ k. By Theorem 2 (1), R′(k) ≥ 0.
Hence, R(k) is an increasing function over k ∈ [k1, k2], and then the
maximum of R(k) occurs at k = k2.
As k →∞, TPk → 0 and FPk → 0, so R(k)→ PBrB − PGcG

3. If k1 < k0 < k2, then, by Theorem 2, R(k) is maximal at k = k0. �

The same argument holds for the Normal-Normal case where σG 6= σB and the
two different Gamma-Gamma cases.

6 Examples
Now we will briefly discuss one example of a calculated threshold and its

corresponding simulation. We only include Case 4, Γ-Distribution with βG 6=
βB , here for brevity, although we will discuss the basic set up for the other three
cases as well. The other three pairs of simulations and calculations can be found
in the appendix. Each simulation followed the same procedure as outlined in
Section 2. Then we calculated the optimal threshold using the formulas derived
in Sections 3 & 4.

16



Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

rG $1,400 $1,400 $1,400 $1,400 $1,400 $1,400
rB $280 $280 $280 $280 $280 $280
cG $560 $560 $560 $560 $560 $560
cB $42 $1,680 $2,800 $4,900 $7,000 $105,000

Table 3: Different Cases for Revenue and Cost Values

6.1 Background
As seen in the paper by Chen, Das, and Gong [1], the cost revenue matrix

consists of six different cases along with consistent means and proportions for the
good and bad populations. These values were used by Chen et al [1]. We used
the values as theoretical values to calculate and simulate our optimal thresholds
regardless of their validity. For the calculations and simulations with the Normal
Distribution, we used the Case 2 values for rG, rB , cG, and cB along with
the Chen et al.’s values [1] for µG, µB , PG, and PB . For our calculations
and simulations with the Γ-Distribution, we again used the Case 2 values for
rG, rB , cG, and cB along with the Chen et al.’s values for PG, and PB . We
arbitrarily chose values for αG, αB , βG, and βB to create distributions with
reasonably realistic shapes. Since the Γ- Distribution’s support is only positive,
we must transform by adding the minimum y∗ value to get negative values.
Let X ∼ Γ(α, β), such that x > 0 and let Y ∗ be a psuedo-Γ distribution, such
that y∗ > y∗min. Y ∗ = X + Y ∗min transforms X such that it follows a psuedo-Γ
distribution such that X > Y ∗min and is the same distribution as Y ∗.

6.2 Case 4 Simulation
In each of the four simulations, we used a sample size of n = 20, 000 and

PG = P (Status = Good) = 0.735 and PB = P (Status = Bad) = 0.265 as seen
in the work done by Chen et al [1]. We simulated data and thresholds to find an
optimal threshold. To do so we randomly generated two sets of values for the
Good and Bad populations using the appropriate distributions and parameters.

For the Γ-Distribution case, we have arbitrarily chosen αG = 10
3 , αB = 5

2 ,
βG = 3, and βB = 2. These values satisfy our assumed inequality µG−k

βG
> µB−k

βB
.

With these distributions there is a good deal of overlap, so we can expect a high
TP and moderately high FP. All of the data lie in the interval [y∗min, y

∗
max] =

[0.144, 44.353].

6.3 Case 4 Calculations
Next, we calculated the optimal threshold. Note that for each of the four

cases, the value of C will not change as the variables it consists of remain
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Figure 1: Histograms of Y ∗
G ∼ Γ(αG = 3.33, βG = 3) and Y ∗

B ∼ Γ(αB = 2.5, βB = 2)

constant.

C =
PB
PG

(
rB + cB
rG + cG

)
=

0.265

0.735

(
280 + 1680

1400 + 560

)
= 0.361

Since we considered the case of two Γ-Distributions, our optimal threshold
is calculated by Thm. 7.

D =
Γ(αG)βαGG
Γ(αB)βαBB

=
Γ(10/3)310/3

Γ(5/2)25/2
= 14.3863

k0 =
(αB − αG)βGβB

βB − βG
W

(
(βB − βG)(CD)

−1
αB−αG

(αB − αG)βBβG

)

=
(5/2− 10/3)(3)(2)

2− 3
W

(
(2− 3)(0.361(14.3863))

−1
5/2−10/3

(5/2− 10/3)(3)(2)

)
= 3.547

Since k0 ∈ [y∗min, y
∗
max], by Thm. 8, k0 = k∗ and is our optimal threshold.

R(k∗) = PG · TPk∗(rG + cG)− PB · FPk∗(rB + cB) + PBrB − PGcG
= 0.735 · 0.922(1400 + 560)− 0.265 · 0.616(280 + 1680) + 0.265(280)− 0.735(520)

= 670.85

Evaluating R(k∗), we can see that the maximized profit for this example is
$670.85. Comparing our simulated data and calculated threshold, we can see
that the calculated threshold value does maximize the profit function.

See Appendices B & C for more example simulations and calculations re-
spectively.
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Figure 2: Simulated Data with Optimal Threshold k∗ for the case where αG = 3.33, αB =
2.5, βG = 3, and βB = 2

7 Conclusion
Throughout the financial sector, at banks and other lenders, it is necessary

for institutions to assess the credit applications and analyze the risk of each
case, in the form of creditworthiness, in order for the institution to maximize
profit. By considering at the Profit Function, we are able to derive a formula
for the optimal creditworthiness threshold values that maximize profit that can
be easily altered for changes in cost, revenue, and population assumptions.

We were able to find optimal creditworthiness threshold values for three
different distributions with varying assumptions. In addition to these three
distributions, we also explored threshold values for Student’s t distribution and
mixed distributions, such as the Good population being distributed Normal and
the Bad being distributed Γ. Closed form expressions do not exist for these cases.

Future directions to the research of an optimal creditworthiness threshold
could include running simulations to approximate the creditworthiness value at
which the profit is maximized when the populations are different distributions.
The research could also be expanded beyond the financial application by modi-
fying the Profit Function to applications in other fields.
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Appendix

A Location of k0 with respect to µG & µB

A.1 Case 1: Normal with σG = σB

Let k∗ = k0 be the optimal threshold given in Theorem 1. Then

1. If lnC ≤ − (µG−µB)2

2σ2 , then k0 ≤ µB .

2. If lnC ≥ (µG−µB)2

2σ2 , then k0 ≥ µG.

3. If − (µG−µB)2

2σ2 < lnC < (µG−µB)2

2σ2 , then µB < k0 < µG.

Proof:

1. If lnC ≤ − (µG−µB)2

2σ2 , then σ2 lnC
µG−µB + µG+µB

2 ≤ µB .
Given k0 = σ2 lnC

µG−µB + µG+µB
2 , then k0 ≤ µB .

2. If lnC ≥ (µG−µB)2

2σ2 , then σ2 lnC
µG−µB + µG+µB

2 ≥ µG.
Given k0 = σ2 lnC

µG−µB + µG+µB
2 , then k0 ≥ µG.

3. If (µG−µB)2

2σ2 < lnC < (µG−µB)2

2σ2 ,
then σ2 lnC

µG−µB + µG+µB
2 > µB and σ2 lnC

µG−µB + µG+µB
2 < µG.

Therefore, when k0 = σ2 lnC
µG−µB + µG+µB

2 , then µB < k0 < µG. �

A.2 Case 2: Normal with σG 6= σB

Let k∗ = k0 be the optimal threshold given in Theorem 3. Then

1. If lnC ≤ 2µGµB−µ2
G−µ

2
B

2m2σ2 − lnm, then k0 ≤ µB .
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2. If lnC ≥ µ2
G+µ2

B−2µGµB
2σ2 − lnm, then k0 ≥ µG.

3. If 2µGµB−µ2
G−µ

2
B

2m2σ2 − lnm < lnC <
µ2
G+µ2

B−2µGµB
2σ2 − lnm, then µB < k0 <

µG.

Proof:

1. If lnC ≤ 2µGµB−µ2
G−µ

2
B

2m2σ2 − lnm, then

µ2
G + µ2

B − 2µGµB ≤ −2m2σ2 lnCm

m2µ2
B + µ2

B − 2µGµB ≤ m2µ2
B − µ2

G − 2m2σ2 lnCm

−
(
(µG − µB)2 − (m2µB − µG)2

)
m2 − 1

≤ m2µ2
B − µ2

G − 2m2σ2 lnCm

(µG − µB)2 ≥ (m2µB − µG)2 − (m2 − 1)(m2µ2
B − µ2

G − 2m2σ2 lnCm)

µBm
2 − µB ≥ m2µB − µG

+
√

(m2µB − µG)2 − (m2 − 1)(m2µ2
B − µ2

G − 2m2σ2 lnCm)

µB ≥
1

m2 − 1
((m2µB − µG)

+
√

(µG −m2µB)2 − (m2 − 1)(m2µ2
B − µ2

G − 2σ2m2 lnCm) )

Given

k0 =
(m2µB − µG) +

√
(µG −m2µB)2 − (m2 − 1)(m2µ2

B − µ2
G − 2σ2m2 lnCm)

m2 − 1

then k0 ≤ µB .

2. If lnC ≥ µ2
G+µ2

B−2µGµB
2σ2 − lnm, then

2m2µGµB −m2
(
µ2
G + µ2

B

)
≥ −2m2σ2 lnCm

m2µ2
B − µ2

G − 2m2σ2 lnCm ≤ −
(
µ2
G(m2 + 1)− 2m2µGµB

)(
−
(
µ2
G(m2 + 1)− 2m2µGµB

))
≤ −(m2 − 1)

(
m2µ2

B − µ2
G − 2m2σ2 lnCm

)
m2 (µG − µB) ≤

√
(m2µB − µG)2 − (m2 − 1)(m2µ2

B − µ2
G − 2m2σ2 lnCm)

µGm
2 − µG ≤ m2µB − µG

+
√

(m2µB − µG)2 − (m2 − 1)(m2µ2
B − µ2

G − 2m2σ2 lnCm)

µG ≤
1

m2 − 1
((m2µB − µG)

+
√

(µG −m2µB)2 − (m2 − 1)(m2µ2
B − µ2

G − 2σ2m2 lnCm) )
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Given

k0 =
(m2µB − µG) +

√
(µG −m2µB)2 − (m2 − 1)(m2µ2

B − µ2
G − 2σ2m2 lnCm)

m2 − 1

then k0 ≥ µG.

3. If

2µGµB − µ2
G − µ2

B

2m2σ2
− lnm < lnC <

µ2
G + µ2

B − 2µGµB
2σ2

− lnm

then

(m2µB − µG) +
√

(µG −m2µB)2 − (m2 − 1)(m2µB − µ2
G − 2σ2m2 lnCm)

m2 − 1
> µB

and

(m2µB − µG) +
√

(µG −m2µB)2 − (m2 − 1)(m2µB − µ2
G − 2σ2m2 lnCm)

m2 − 1
< µG

Therefore, when

k0 =
(m2µB − µG) +

√
(µG −m2µB)2 − (m2 − 1)(m2µB − µ2

G − 2σ2m2 lnCm)

m2 − 1

then µB < k0 < µG. �

A.3 Case 3: Γ with βG = βB

Let k∗ = k0 be the optimal threshold given in Theorem 5. Then

1. If ln(CD) ≤ ln(µB) (αG − αB), then k0 ≤ µB .

2. If ln(CD) ≥ ln(µG) (αG − αB), then k0 ≥ µG.

3. If ln(µB) (αG − αB) < ln(CD) < ln(µG) (αG − αB), then µB < k0 < µG.

Proof:

1. If ln(CD) ≤ ln(µB) (αG − αB), then (CD)
1

αG−αB ≤ µB .
Given k0 = (CD)

1
αG−αB , then k0 ≤ µB .

2. If ln(CD) ≥ ln(µG) (αG − αB), then (CD)
1

αG−αB ≥ µG.
Given k0 = (CD)

1
αG−αB , then k0 ≥ µG.

3. If ln(µB) (αG − αB) < ln(CD) < ln(µG) (αG − αB),
then (CD)

1
αG−αB > µB and (CD)

1
αG−αB < µG.

Therefore, given k0 = (CD)
1

αG−αB , then µB < k0 < µG. �
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B Extra Simulations

B.1 Case 1: Normal with σG = σB

Figure 3: Histograms of Y ∗
G ∼ N(µG = 1.1867, σ2

G = 0.125) and Y ∗
B ∼ N(µB = 0.5628, σ2

B =
0.125)

In the first Normal Distribution case where σG = σB = σ, we have arbitrarily
chosen σ = 0.25. With this relatively small standard deviation, we can see that
the distributions of the good and bad populations only overlap in their tails,
so the optimal threshold should be able to separate the distributions from each
other and we can expect a high TP and low FP. All of our data lie in the interval
[y∗min, y

∗
max] = [−0.410, 2.077]. Refer to C.1 for the calculation.

B.2 Case 2: Normal with σG 6= σB

Figure 4: Histograms of Y ∗
G ∼ N(µG = 1.1867, σ2

G = 0.25) and Y ∗
B ∼ N(µB = 0.5628, σB =

1.02)

In the second Normal Distribution case where σG 6= σB , we have arbitrarily
chosen m = 0.5 and σ = 1.0, where σG = mσ = 0.5 and σB = σ = 1.0.
Since nearly the entire Good population lies within the upper tail of the Bad
population, we do not expect that the optimal threshold to be able to perfectly
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separate the distributions. There should be high TP and moderately high FP
proportions. And all of the data lie in the interval [y∗min, y

∗
max] = [−3.340, 4.628].

Refer to C.2 for the calculation.

B.3 Case 3: χ2 or Γ with βG = βB

Figure 5: Histograms of Y ∗
G ∼ χ2(νG = 4) and Y ∗

B ∼ χ2(νB = 3)

When working with the Γ Distribution case where βG = βB = 2, we have a
χ2 Distribution [2]. We have arbitrarily chosen two means, νG = µG = 4 and
νB = µB = 3, such that our assumption that µG > µB is true. With these
distributions, we can see that there is great deal of overlap and the threshold
will likely be unable to distinguish the two distributions. There should be high
TP and FP proportions. All of our data lie in the interval [y∗min, y

∗
max] =

[0.001, 21.984]. Refer to C.3 for the calculation.

24



C Extra Calculations

C.1 Case 1: Normal with σG = σB

First, we consider the case of two Normal distributions with equal variance,
so our optimal threshold is calculated by Thm. 1.

k0 =
σ2 lnC

µG − µB
+
µG + µB

2

=
0.252 ln 0.361

1.1867− 0.5628
+

1.1867 + 0.5628

2

= 0.773

Since k0 ∈ [y∗min, y
∗
max], by Thm. 2, k0 = k∗ and is our optimal threshold.

R(k∗) = PG · TPk∗(rG + cG)− PB · FPk∗(rB + cB) + PBrB − PGcG
= 0.735 · 0.951(1400 + 560)− 0.265 · 0.201(280 + 1680) + 0.265(280)− 0.735(520)

= 928.64

Evaluating R(k∗), we can see that the profit for this example is $928.64.
Combining our simulated data and calculated threshold, we can see that the
calculated threshold value does maximize the profit function.

Figure 6: Simulated Data with Optimal Threshold k∗ for Case 1, where σG = σB = 0.25

C.2 Case 2: Normal with σG 6= σB

Second, we consider the case of two Normal distributions with unequal vari-
ance, so our optimal threshold is calculated by Thm. 3.
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k0 =
(m2µB − µG) +

√
(µG −m2µB)2 − (m2 − 1)(m2µ2

B − µ2
G − 2σ2m2 lnCm)

m2 − 1

=
1

0.52 − 1
((0.52(0.5628)− 1.1867)

+
√

(1.1867− 0.52(0.5628))2 − (0.52 − 1)(0.52(0.56282)− 1.18672 − 22(0.52) ln(0.361(0.5))) )

= 0.248

Again, since k0 ∈ [y∗min, y
∗
max], by Thm. 4, k0 = k∗ and is our optimal

threshold.

R(k∗) = 0.735 · 0.970(1400 + 560)− 0.265 · 0.624(280 + 1680) + 0.265(280)− 0.735(520)

= 735.78

Evaluating R(k∗), we can see that the profit for this example is $735.78.
Combining our simulated data and calculated threshold, we can see that the
calculated threshold value does maximize the profit function.

Figure 7: Simulated Data with Optimal Threshold k∗ for Case 2, where σG = 0.5 and
σB = 1.0

C.3 Case 3: χ2 or Γ with βG = βB

Third, we consider the case of two χ2 distributions, so our optimal threshold
is calculated by Thm. 5.

D =
Γ(νG2 )

Γ(νB2 )
=

Γ( 4
2 )

Γ( 3
2 )

= 1.1284
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k0 = 2(CD)
2

νG−νB

= 2(.361(1.1284))
2

4−3

= 0.331

Again, since k0 ∈ [y∗min, y
∗
max], by Thm. 6, k0 = k∗ and is our optimal

threshold.

R(k∗) = 0.735 · 0.988(1400 + 560)− 0.265 · 0.954(280 + 1680) + 0.265(280)− 0.735(520)

= 589.96

Evaluating R(k∗), we can see that the profit for this example is $589.96.
Combining our simulated data and calculated threshold, we can see that the
calculated threshold value does maximize the profit function.

Figure 8: Simulated Data with Optimal Threshold k∗ for Case 3, where αG = 2, αB = 1.5,
and βG = βB = 2

27


