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Abstract. We analyze the effect of full vertical transmission in several epi-

demic models involving infectious diseases that cause sterilization in the in-

fected hosts. Under certain conditions on the parameters, we found that the
sterilization effect may prevent a susceptible extinction situation regardless

of how large the infection rate may be. This effect is studied under several

functional forms for the infection transmission term in order to assess its ro-
bustness. The implication in pest control measures is also discussed.

1. Introduction

Overpopulation and invasive species such as foxes, rabbits and mice have
become critical issues in some areas. Several methods of pest control, such
as hunting and increasing mortality through disease and poisoning, have
proved inefficient and inhumane [7]. An alternative to these methods is
the introduction of a sterilizing pathogen to the pest population. For ex-
ample, researchers in Australia have studied the effects of using the ster-
ilizing pathogens canine herpesvirus-1 in foxes, myxoma virus in rabbits,
and murine cytomegalovirus and ectromelia virus in mice to control pest
populations. The study found that high rates of sterility were necessary to
significantly impact the pest population sizes [5].

The introduction of additional transmission pathways may also increase
the effectiveness of the sterilizing pathogens. Altizer and Augustine [4] have
shown that vertical, in addition to horizontal, transmission widens the range
of the parameters within which the sterilizing pathogen can successfully con-
trol the pest population. For this reason, we include vertical transmission,
as this property will likely increase the effectiveness of a sterilizing pathogen.
In our models we assume complete vertical transmission, as this feature is
ideal for persistence of the infection.
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Vertical transmission represents the ability of an infectious disease to pass
from mother to a newborn. Various infectious diseases have such ability and
the probability of vertical transmission varies depending on the infectious
agent and/or the possibility of treatment. For example, HIV vertical trans-
mission can be reduced if the mother undergoes aggressive anti-retroviral
treatment [2]. Although assuming complete vertical transmission may be
unrealistic for many diseases, several infections display very high rates of
vertical transmission. For example, hepatitis B in humans is passed from
parent to offspring at a rate of 70% to 90% [8]. While studying the trans-
mission of nucleopolyhedrovirus in insects, Kukan et al [6] found that the
offspring of insects with the virus were likely to have the infection as well.

A general simple model that included vertical transmission and isolation
from reproduction was studied by Maxin et. al in [3]. The most important
result of that research relates to full vertical transmission when all newborn
from infected individuals become infected at birth. Typically this causes
the existence of an additional susceptible extinction equilibrium where the
disease invades the entire population. Under some conditions on isolation
rates, a susceptible extinction can be avoided with arbitrarily large infection
rate. From the point of view of a human infection, this result can be seen as
a positive outcome (between an endemic and a totally infected population).
However, the effect of isolation from reproduction and vertical transmission
can also be analyzed in a context where the goal is in fact the reduction of
the total population.

L.Berec and D. Maxin studied a basic one-sex model where a pest pop-
ulation is deliberately infected with a sterilizing pathogen as a measure of
pest control [1]. In their paper the authors focused on the possibility that
sterile individuals can actually live longer and be able to further spread the
sterilizing disease in the population, thus creating a double impact in their
pest control ability.

In this paper our purpose is two-fold. First we want to verify the robust-
ness of the result obtained in [3] by analyzing a pest-control model with
three different types of transmission terms: standard incidence, mass-action
incidence and asymptotic incidence. Thus, in all one-sex models the trans-
mission is modeled by

φ(N)
SI

N

where φ(N) can be β (standard incidence), βN (mass-action incidence) or
βN
c+N (asymptotic incidence). We also investigate a similar two-sex model
where the infection rate is replaced by a mating function, appropriate for a
pathogen that is sexually transmitted. Our objective is to investigate the
impact of introducing a sterilizing pathogen with vertical transmission to
control pest populations.

The pest control effectiveness will be defined as in [1]

E = 1− N∗

K

with N∗ being the total population at a stable equilibrium and K is the
carrying capacity of the pest population without any control measure. Thus
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E = 0 will correspond to no reduction effect while E = 1 means that the
pest population goes extinct.

2. The general one-sex model

(1)



dS
dt = bS − Φ(N) SN (If + Is)− (d+ d1N)S,

dIf
dt = (1− σ)bIf + (1− σ)Φ(N) SN (If + Is)− (d+ d1N)If ,

dIs
dt = σbIf + σΦ(N) SN (If + Is)− (d+ d1N)Is.

Where

N = S + If + Is and Φ(N) is a general transmission term.

We let if =
If
N , is = Is

N and rewrite the model in terms of proportions
and the total population:

(2)



dif
dt = (is − σ)bif + (1− σ)Φ(N)(1− if − is)(if + is),

dis
dt = σbif − (1− is)bis + σΦ(N)(1− is − if )(if + is),

dN
dt = [b(1− is)− (d+ d1N)]N

We analyze the model by substituting Φ(N) with the standard incidence,
mass-action incidence and asymptotic incidence transmission terms. We
then return to the model in the general case.

3. The one-sex model with standard incidence transmission

The model introduced in [1] is

(3)



dS
dt = bS − β S

N (If + Is)− (d+ d1N)S,

dIf
dt = (1− σ)bIf + (1− σ)β S

N (If + Is)− (d+ d1N)If ,

dIs
dt = σbIf + σβ S

N (If + Is)− (d+ d1N)Is.

Where

N = S + If + Is.

The meaning of the variables and parameters is as follows

• S, If and Is are the susceptible, infected fertile and sterile individuals
respectively
• b: the per-capita birth rate
• β: infection rate
• σ: the probability of sterilization at the moment of infection
• 0 < δ < 1: the reduction factor of the natural mortality of infected

sterile hosts
• δd+ d1N : the logistic mortality rate



4 D. MAXIN, A. BINGHAM, D. MOLITOR AND J. PATTYSON

We let δ = 1, if =
If
N , is = Is

N and rewrite the model in terms of propor-
tions:

(4)


dif
dt = (is − σ)bif + (1− σ)β(1− if − is)(if + is),

dis
dt = σbif + (is − 1)bis + σβ(1− is − if )(if + is).

The model (4) has three steady states:

(̄if , īs) = (0, 0),

(̃if , ĩs) = (0, 1) and

(̂if , îs) = (1− σ, σ) .

Concerning this model we establish the following result:

Theorem 3.1.

• If β < bσ, then (̄if , īs) is locally asymptotically stable.

• (̃if , ĩs) is always unstable.

• If β > bσ then (̂if , îs) is locally asymptotically stable.

Proof. Denoting J(if , is) the Jacobian of (4) we have the following results
concerning its eigenvalues

• J(0, 0) has eigenvalues −b < 0 and −σb + β, which is negative if
β < bσ.
• J(0, 1) has eigenvalues b(−σ + 1) and b − β. The equilibrium point

will be unstable since b(1− σ) > 0.
• J (1− σ, σ) has eigenvalues−(1−σ)b < 0 and bσ−β which is negative

if β > bσ.

�

Now we will compute the total population limit at each of these equilib-
rium points. Notice first that the equation for N can be written as

N ′ = [b(1− y)− d− d1N ]N

which is an asymptotically autonomous differential equation whose limiting
equation is

N ′ = [b(1− y∗)− d− d1N ]N

where y∗ denotes the limit of y(t). Thus, according to the theorem above,
if y → 0 then N → K := b−d

d1
and the control effectiveness is E = 0.

Otherwise, if y → σ then the population either goes extinct or it approaches
a positive steady state which is decreasing with σ. We summarize these
results below

• if β < bσ then N∗ = K

• if β > bσ and b(1− σ) > d then N∗ = b(1−σ)−d
d1

• if β > bσ and b(1− σ) < d then N∗ = 0

Remark 3.1. We note here that in the last case we have disease induced
extinction. This, of course, is due to sterility of infected hosts since the
disease is assumed without additional mortality.
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Below we provide a contour plot of various levels of control effectiveness that
can be achieved for a range of β and σ values.

Figure 1. The control effectiveness E is plotted in respect to the
parameters σ and β. The black contour lines represent given con-
trol effectiveness values. Blue denotes a control effectiveness closer
to one, while yellow denotes a control effectiveness closer to zero.
We let b = 1.2, d = 1 and d1 = 0.01. The red curve marks the
boundary b(1− σ) = d, which separates the susceptible extinction
state and the endemic state. The green curve marks the boundary
β = bσ, below which exists the disease free state.

4. The one-sex model with mass-action incidence

(5)



dS
dt = bs− βS(If + Is)− (d+ d1N)S,

dIf
dt = (1− σ)bIf + (1− σ)βS(If + Is)− (d+ d1N)If ,

dIs
dt = σbIf + σβS(If + Is)− (d+ d1N)Is.

Where N = S + If + Is.
The model has four steady states.

(S̄, Īf , Īs) = (0, 0, 0),



6 D. MAXIN, A. BINGHAM, D. MOLITOR AND J. PATTYSON

(S̃, Ĩf , Ĩs) = (K, 0, 0) ,

(Ŝ, Îf , Îs) =

(
0,

(1− σ)[b(1− σ)− d]

d1
,
σ[b(1− σ)− d]

d1

)
and

(S∗, I∗f , I
∗
s ) =

(
bσd1 − β[b(1− σ)− d]

β2
,
(1− σ)[β(b− d)− bσd1]

β2
,
σ[β(b− d)− bσd1]

β2

)
.

Below we provide the theorem concerning the local stability conditions of
these equilibrium points.

Theorem 4.1.

• If b < d then the extinction equilibrium is locally asymptotically stable
and no intervention is necessary (i.e. the host population goes extinct
due to low reproduction rate).

• If β < σb
K , then the disease free equilibrium (S̃, Ĩf , Ĩs) is asymptoti-

cally stable and the control effectiveness is E = 0.
• If d < b(1 − σ) and β > σbd1

b(1−σ)−d , then the equilibrium (Ŝ, Îf , Îs)

is feasible, asymptotically stable and the control effectiveness is E =
σb
b−d .

• If either

(1− σ)b < d < b and β >
σbd1

b− d
or

(1− σ)b > d and

(
σbd1

b− d
< β <

σbd1

(1− σ)b− d

)
then (S∗, I∗F , IS∗) exists, is stable and has control effectiveness E =

1− σb
βK .

Proof.

• J(0, 0, 0) has eigenvalues −d, b− d and −d+ b(1− σ), which are all
negative when b < d.

• J
(
S̃, Ĩf , Ĩs

)
has eigenvalues −b, d− b and β(b−d)−σbd1

d1
, which are all

negative when b > d and β < σb
K .

• J
(
Ŝ, Îf , Îs

)
has eigenvalues−b(1−σ), d−(1−σ)b and [−(1−σ)b+d]β+σbd1

d1
.

The equilibrium is feasible when b(1−σ) > d and all eigenvalues are
negative when

d < b(1− σ) and β >
σbd1

b(1− σ)− d
• Finally we notice that there are two alternative feasibility conditions

for the interior equilibrium (S∗, I∗f , I
∗
s ): first when

d > b(1− σ) and β >
σbd1

b− d
or when



CONTROLLING PEST POPULATIONS WITH STERILIZING PATHOGENS AND VERTICAL TRANSMISSION7

d < b(1− σ) and
σbd1

b− d
< β <

σbd1

(1− σ)b− d
We show now that the interior equilibrium is locally asymptotically
stable whenever it exists in the biological feasible region defined
above:
J
(
S∗, I∗f , I

∗
s

)
has eigenvalues −βd−σbd1β and the roots of the following

quadratic equation in λ

(−β2)λ2 − (βbσd1)λ+ {[(1− σ)b− d]β − σbd1}[(b− d)β − σbd1]

It is straightforward to verify that the sum of the two roots is negative
and the product is positive under the feasibility conditions which
implies that all eigenvalues have negative real part.

�

Remark 4.1. The first feasibility condition provides a region in the pa-
rameter space where the endemic equilibrium is stable with an unbounded
infection rate β. Moreover, from the expression of the control effectiveness
we conclude that, at the endemic equilibrium, while a higher infection rate
β provides a better reduction of the host population, a larger sterilization σ
is in fact detrimental since E actually decreases with σ. This is because, the
endemic equilibrium is stable only when the “source” rates into the fertile
infected population, b(1 − σ) and (1 − σ)β have an upper bound. In other
words, If has a lower replacement rate than Is.
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Below we provide again a contour plot with various values of the control
effectiveness that illustrate this theorem.

Figure 2. The control effectiveness E is plotted in respect to the
parameters σ and β. The black contour lines represent given con-
trol effectiveness values. Blue denotes a control effectiveness closer
to one, while yellow denotes a control effectiveness closer to zero.
We let b = 6, d = 1 and d1 = 0.01. The red curve marks the
boundary b(1− σ) = d, which separates the susceptible extinction
state and the endemic state. The green curve marks the boundary

β = b(1−σ)
K , below which exists the disease free state.

5. The one-sex model with asymptotic incidence

(6)



dS
dt = bS − β S(If+Is)

c+N − (d+ d1N)S,

dIf
dt = (1− σ)bIf + (1− σ)β

S(If+Is)
c+N − (d+ d1N)If ,

dIs
dt = σbIf + σβ

S(If+Is)
c+N − (d+ d1N)Is.

Where
N = S + If + Is and c > 0.

The system of equations has four steady states.

(S̄, Īf , Īs) = (0, 0, 0),
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(S̃, Ĩf , Ĩs) = (K, 0, 0) ,

(Ŝ, Îf , Îs) =

(
0,

(1− σ)[(1− σ)b− d]

d1
,
σ[(1− σ)b− d]

d1

)
and (S∗, I∗f , I

∗
s ) with

S∗ =
c{σb[cd1 − d+ b(1− σ)] + β[d− b(1− σ)]}

(σb− β)2

I∗f =
(1− σ)c[(b− d)β − (cd1 + b− d)σb]

(σb− β)2

I∗s =
cσ[(b− d)β − (cd1 + b− d)σb]

(σb− β)2
.

Concerning the stability of these equilibria we establish the following the-
orem

Theorem 5.1.

• If b < d, then the equilibrium (S̄, Īf , Īs) is locally asymptotically sta-
ble and the host population dies out. In the following cases we assume
b > d.
• If β < (b−d+cd1)σb

b−d , then (S̃, Ĩf , Ĩs) is locally asymptotically stable and
the control effectiveness is E = 0.

• If d < (1 − σ)b and β > [(1−σ)b+cd1−d]σb
(1−σ)b−d , then

(
Ŝ, Îf , Îs

)
exists, is

locally stable and the control effectiveness is E = σb
b−d

• If either

b(1− σ) < d and β >
bσ(b− d+ cd1)

b− d
or

b(1− σ) > d and
bσ(b− d+ cd1)

b− d
< β <

bσ[b(1− σ)− d+ cd1]

b(1− σ)− d
then (S∗, I∗f , I

∗
s ) is feasible, locally stable and the control effectiveness

is E = 1− cbσd1
(−bσ+β)(b−d) .

Proof.

• J(S̄, Īf , Īs) has three eigenvalues: −d, b− d and (1− σ)b− d, which
are all negative when b < d.

• J(S̃, Ĩf , Ĩs) has three eigenvalues: −b, d − b and β(b−d)−bσ(b−d+cd1)
b−d+cd1

,
which are all negative when

β <
(b− d+ cd1)σb

b− d
• J(Ŝ, Îf , Îs) is feasible when b(1 − σ) > d. J(Ŝ, Îf , Îs) has three

eigenvalues: −(1− σ)b, d− (1− σ)b and

β[d− b(1− σ)] + σb[b(1− σ)− d+ cd1]

b(1− σ)− d+ cd1
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which are all negative when

b(1− σ) > d and β >
[b(1− σ)− d+ cd1]σb

b(1− σ)− d
• (S∗, I∗f , I

∗
s ) exists when

b(1− σ) < d and β >
bσ(b− d+ cd1)

b− d
or

b(1− σ) > d and
bσ(b− d+ cd1)

b− d
< β <

bσ[cd1 − d+ b(1− σ)]

b(1− σ)− d
The characteristic equation of J(S∗, I∗f , I

∗
s ) has three eigenvalues:

λ1 = d1σbc+d(β−σb)
σb−β and λ2 and λ3, the roots of

(β−σb)βλ2+σbcd1βλ+[(b−d+cd1)σb−β(b−d)]{[d−b(1−σ)−cd1]σb+β[b(1−σ)−d]}
First notice that, from the lower bound on β at the existence condi-
tions, it follows that β > bσ. This ensures that λ1 is negative. From
the quadratic above, we also conclude that

λ2 + λ3 < 0 and λ2λ3 > 0

under the existence conditions. Thus all eigenvalues have negative
real parts.

�

Remark 5.1. In this case, we again have two alternative conditions of
existence for the endemic equilibrium. Under one set of conditions, the in-
fection rate can become arbitrarily large without causing susceptible extinc-
tion. Moreover, just like in the mass-action incidence we notice that, at the
endemic equilibrium, further increasing the sterilization rate σ is actually
detrimental toward improving the control effectiveness.
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Figure 3. The control effectiveness E is plotted in respect to the
parameters σ and β. The black contour lines represent given con-
trol effectiveness values. Blue denotes a control effectiveness closer
to one, while yellow denotes a control effectiveness closer to zero.
We let b = 1.2, d = 1, d1 = 0.1 and c = 5 The green curve marks

the boundaries b(1 − σ) = d and β = [(1−σ)b+cd1−d]σb
(1−σ)b−d , which

separate the susceptible extinction state, the bounded endemic
state and the unbounded endemic state. The black line marks
the boundary β = (b−d+cd1)σb

b−d , below which exists the disease free
state.

Remark 5.2. It is due to vertical transmission that we observe the inverse
correlation between the sterility rate σ and the control effectiveness E at the
endemic equilibrium. In the following theorems we show that this statement
is the case for both mass-action and asymptotic incidence.

Consider the original model (1) without vertical transmission. In propor-
tions,

(7)



dif
dt = (1− σ)Φ(N)(1− if − is)(if + is),

dis
dt = (1− is)bis + σΦ(N)(1− is − if )(if + is),

dN
dt = [b(1− is)− (d+ d1N)]N
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From Berec and Maxin’s Proposition 7 [1], we know that the endemic
equilibrium of (7) exists and is unique if and only if the reproductive number

R0 > 1, where R0 = Φ(K)
b .

Theorem 5.2. Under both mass-action incidence and asymptotic incidence
transmission, the total population N∗ at the endemic equilibrium is a de-
creasing function of the sterility rate σ.

Proof. Consider Φ(N) = βN . At the endemic equilibrium, the total popu-
lation

N∗ =
1

2d1β
([(1− σ)b− d]β + d1σb+

+

√
[d− b(1− σ)]2β2 + 2σbd1β[(1− σ)b+ d] + d1

2σ2b2
)
.

After a lengthy, but straightforward computation we found that dN∗

dσ is
negative whenever

β > d1 and β(b− d) > bd1.

These conditions follow immediately from R0 > 1, which, under mass-
action incidence, is β(b− d) > bd1.

Consider Φ(N) = βN
c+N . At the endemic equilibrium, the total population

N∗ =
1

(−β + σb)2d1
([(β − d− cd1)σ − β]b+ dβ+

+[{[β2 − (cd1 + d)2β + (cd1 − d)2]σ2 + (−β + d+ cd1)2βσ + β2}b2+

+[(β − d+ cd1)σ − β]2βdb+ d2β2]1/2
)
.

Similarly, we found that dN∗

dσ is negative whenever

β − cd1 − b > 0 and b2 − b(β − cd1 + d) + βd < 0.

These conditions follow immediately from R0 > 1, which, under asymp-
totic incidence, is β(b− d) > b(b− d+ cd1). �

6. The one-sex model with general transmission term Φ(N)

Recall models (1) and (2). The system of equations in model (2) has an
endemic state

(i∗f , i
∗
s, N

∗)

with

i∗f =

(
1− σ
σ

)[
1−

(
d+ d1N

∗

b

)]
i∗s = 1−

(
d+ d1N

∗

b

)
Φ(N∗) = bσ.
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Concerning the stability of the endemic equilibrium we establish the fol-
lowing theorem

Theorem 6.1. If Φ(N∗) = bσ has a solution, (1−i∗s)b−d
2d1

< N < b−d
d1

and
dΦ
dt (N∗) > 0, then (i∗f , i

∗
s, N

∗) is feasible and locally stable.

Proof. (i∗f , i
∗
s, N

∗) exists when 1 > d+d1N
b .

The characteristic equation of J(i∗f , i
∗
s, N

∗) has three eigenvalues: λ1 =

−(1− i∗s)b and λ2 and λ3, the roots of

−σλ2 − σ[d+ 2d1N
∗ − (1− i∗s)b]λ− bN∗i∗s

df

dt
(N∗)(σ + i∗s).

The eigenvalues are negative when (1− i∗s)b < d+ 2d1N and dΦ
dt (N∗) > 0.

�

7. The two-sex model

(8)



S′f = βγf
SfSm

P − λSf (Im+Jm)
P − µ̄fSf ,

S′m = βγm
SfSm

P − λSm(If+Jf )
P − µ̄mSm,

I ′f = (1− σ)βγf
Sf Im+SmIf+If Im

P + (1− σ)λ
Sf (Im+Jm)

P − µ̄fIf ,

I ′m = (1− σ)βγm
Sf Im+SmIf+If Im

P + (1− σ)λ
Sm(If+Jf )

P − µ̄mIm,

J ′f = σβγf
Sf Im+SmIf+If Im

P + σλ
Sf (Im+Jm)

P − µ̄fJf ,

J ′m = σβγm
Sf Im+SmIf+If Im

P + σλ
Sm(If+Jf )

P − µ̄mJm.

Where

P = Sf + Sm + If + Im + Jf + Jm and µ̄ = µ+ bP.

We assume equal gender parameters: µf = µm = µ, γf = γm = 1
2 ,

Jf = Jm = J
2 , Sf = Sm = S

2 , and If = Im = I
2 . We then reduce the system

to three equations.

(9)



S′ = β S2

S+I+J − λ
S(I+J)
S+I+J − µ̄S,

I ′ = β(1− σ) I
2+2SI
S+I+J + λ(1− σ)S(I+J)

P − µ̄I,

J ′ = βσ I
2+2SI
S+I+J + λσ S(I+J)

P − µ̄J.

Where P=S+I+J.
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We let i = I
P , j = J

P and 1− i− j = S
P and rewrite the model in terms of

proportions.

(10)
i′ = βi[(1− σ)(2− i− 2j)− (1− j)2] + λ(1− σ)(1− i− j)(i+ j),

j′ = β[iσ(2− i− 2j)− j(1− j)2] + λσ(1− i− j)(i+ j).

The system of equations has four steady states.

(̄i, j̄) = (0, 0),

(̃i, j̃) = (0, 1) ,

(̂i, ĵ) = (1− σ, σ) and

(i∗, j∗) =

(
[β(2σ − 1)− λ](1− σ)

βσ2
,
β(2σ − 1)− λ

βσ

)
.

Theorem 7.1. Stability Conditions of Equilibria

• If λ < β(2σ−1) and σ > 1
2 , then the equilibrium (̄i, j̄) = (0, 0) exists,

is stable and has control effectiveness E = 0.
• The equilibrium (̃i, j̃) = (0, 1) is unstable whenever it exists.

• The equilibrium (̂i, ĵ) = (1− σ, σ) is stable whenever it exists and

has control effectiveness E = σ(2−σ)
β−µ .

• If λ > β(2σ−1), then the equilibrium (i∗, j∗) =
(

[β(2σ−1)−λ](1−σ)
βσ2 , β(2σ−1)−λ

βσ

)
exists and is unstable.

Proof. • J (̄i, j̄) has eigenvalues λ1 = −β and λ2 = λ−β(2σ−1), which
are negative when λ < β(2σ − 1).
• J (̃i, j̃) has eigenvalues λ1 = 0 and λ2 = −λ, so the equilibrium is

unstable whenever it exists.
• J (̂i, ĵ) has eigenvalues λ1 = −β(1 − σ)2 and λ2 = −β(1 − σ)2 − λ,

which are always negative.
• (i∗, j∗) is feasible when (2σ − 1)β − λ > 0. J(i∗, j∗) has eigenvalues

λ1 = − [−(1−σ)β−λ]2

βσ2 and λ2 = [(2σ−1)β−λ][β(1−σ)2+λ]
βσ2 , one of which is

positive when the equilibrium is feasible.
�
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Figure 4. The bistability of the system in terms of i, the pro-
portion of infected fertile individuals and j, the proportion of the
infected sterile individuals. The green and red curves represent the
nullclines. The intersections of the nullclines represent equilibria,
two of which exhibit local stability and one which is unstable. We
let σ = 0.6, β = 0.4 and λ = 0.04.

Figure 5. The stability of the susceptible extinction equilibria in
terms of i, the proportion of infected fertile individuals and j, the
proportion of the infected sterile individuals. The green and red
curves represent the nullclines. We let σ = 0.4, β = 0.4 and
λ = 0.04.
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Figure 6. The stability of the susceptible extinction equilibria in
terms of i, the proportion of infected fertile individuals and j, the
proportion of the infected sterile individuals. The green and red
curves represent the nullclines. We let σ = 0.6, β = 0.4 and
λ = 0.8.

8. Conclusions

In the one-sex case, we noticed similar behavior between the models with
mass-action and asymptotic incidence transmission terms. Both models con-
tain stable endemic equilibria and, under certain conditions of the param-
eters, the infection rate can become arbitrarily large without causing sus-
ceptible extinction. However, this result did not hold under this standard
incidence model, which lacked an endemic equilibrium entirely. We investi-
gated the properties of the transmission term that lead to a stable endemic
equilibrium. Our analysis indicate that a transmission term dependent on
the total population will give a stable endemic equilibrium. This result sup-
ports our previous results that the models with mass-action incidence and
asymptotic incidence transmission terms have endemic equilibria since both
are dependent upon the total population. The model with a standard in-
cidence transmission term, however, does not give an endemic equilibrium
since the transmission term is independent of the population.

We also noticed similar behavior in control effectiveness between the mod-
els with mass-action and asymptotic incidence transmission terms. At the
susceptible extinction equilibrium, the control effectiveness increases with
the sterility rate and is independent of the infection rate. This result makes
sense biologically as increasing the infection rate in a population with no
susceptibles has no impact on the system. Therefore, the only way to re-
duce the population is to increase the proportion of the population that
become sterile upon infection.

At the endemic equilibrium we found that the control effectiveness in-
creases with the infection rate, but decreases with the sterility rate. We
showed that the latter is a result of vertical transmission. In our model,
pests can become sterile by infection through sexual transmission or when
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born from an infected parent. In order to optimize the control effectiveness
at the endemic equilibrium, we must consider both pathways. With a large
sterility rate, a smaller portion of infected individuals will reproduce, caus-
ing a decrease in the number of infected individuals in the population. This
decrease in the infected class leads to lower infection rates. An increased
infection rate improves the control effectiveness by increasing the population
of sterile individuals.

In the one-sex model with a standard incidence transmission term, the
control effectiveness behaves similarly at the susceptible extinction equilib-
rium, by increasing with the sterility rate and remaining independent of the
infection rate. However, the standard incidence model does not contain an
endemic equilibrium. The disease free equilibrium, in each case, has a con-
trol effectiveness value of zero, since the sterilizing pathogen dies out and
has no long-term effect on the host population.

In the two-sex model, the system showed bistability under certain condi-
tions of the parameters. The possibility of bistability between the disease
free equilibrium and the susceptible extinction equilibrium means that pest
control measures could be ineffective if the initial proportions of infected
individuals are too low. In a realistic introduction of a sterilizing pathogen
into a host population it is reasonable to assume that the initial proportions
of infected individuals will be low. Therefore, negating one of the condi-
tions under which bistability occurs will prevent the system from going to a
disease free state when the sterilizing pathogen is introduced.

For a more complete analysis, future research could include an investi-
gation of a more realistic version of the two-sex model in which the gender
parameters are not assumed to be equal. Another modification to explore is
the effect of partial vertical transmission, which is a common characteristic
of sexually transmitted diseases.
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