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Abstract

Motzkin paths are integer lattice paths that use the steps U = (1, 1), L = (1, 0), andD = (1,−1) and

stay weakly above the line y = 0. We generalize Motzkin paths to allow for down steps with multiple

slopes and for various coloring schemes on the edges of the resulting paths. These colored, higher-order

Motzkin paths provide a general setting where specific coloring schemes yield sets that are in bijection

with many well-studied combinatorial objects. We develop bijections between various classes of colored,

higher-order Motzkin paths and certain subclasses of `-ary paths, including a generalization of Fine

paths, as well as certain subclasses of `-ary trees. All of this utilizes the language of proper Riordan

arrays, and we also include a series of results about the Riordan arrays whose entries enumerate sets

of generalized Motzkin paths.

1 Introduction

Integer lattice paths are well-studied objects in combinatorics. A (2-dimensional) lattice path of

length n is a sequence of n line segments s0, s1, s2, . . . , sn such that the end points of all segments have

integer coordinates, and the terminal point for si is the initial point for si+1, for all i. The line segments

making up these paths are called steps, and different types of steps can be used. If a point si begins at

(x0, y0) and ends at (x1, y1), then si has a step type (x1 − x0, y1 − y0). Different lattice paths can be

produced using different variations of step types, also known as step sets.

A Motzkin path of length n and height k is an integer lattice path from (0, 0) to (n, k) consisting

of up, level, and down steps from the step set {U = (1, 1), L = (1, 0), D = (1,−1)} and remaining weakly

above the x-axis. The set of all Motzkin paths of length n and height k is denoted Mn,k, and the

cardinality of this set is denoted |Mn,k| = Mn,k. The four Motzkin paths of length 3 and height 0 are

shown in Figure 1. For more background information of Motzkin paths, see Aigner [1] or Bernhart [3].
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Figure 1: All paths in M3,0. Note M3,0 = 4

Motzkin paths are relatively simple combinatorial objects, so we work with more complicated gener-

alizations. For x, y ≥ 0, an (x, y)-colored Motzkin path of length n and height k is an element of

Mn,k where each L step of height 0 has one of x colors and each level step of nonzero height has one

of y colors. The set of all (x, y)-colored Motzkin paths of length n and height k is denoted Mn,k(x, y),

and the cardinality of this set is denoted |Mn,k(x, y)| = Mn,k(x, y). Figure 2 shows the five (1, 2)-colored

paths of length 3 and height 0. Although the length and height of the paths is the same as in Figure 1,

the number of paths is greater because more types of level steps are allowed.

1 1 1 1

1 2

1

Figure 2: All paths in M3,0(1, 2). We indicate the color of a step with a number.

Notice that when (x, y) = (1, 1), there is one type of L step both on and off the x-axis. So,Mn,k(1, 1) =

Mn,k. Because all three allowable steps move to the right, Mn,k(x, y) = 0 if n < 0. Also Mn,k(x, y) = 0

when k < 0, since Motzkin paths must remain weakly above y = 0. Finally, Mn,k(x, y) = 0 when k > n,

since no step ascends farther than it moves to the right. It follows that Mn,k 6= 0 only if 0 ≤ n ≤ k.

This makes it natural to define the (x, y)-colored Motzkin triangle M(x, y), which is the infinite,

lower-triangular array whose (n, k)-entry (for 0 ≤ k ≤ n) is Mn,k(x, y), where the top, leftmost entry

corresponds to (n, k) = (0, 0). The first four nonzero rows of this triangle follow.

1

x 1

x2 + 1 x+ y 1

x3 + 2x+ y x2 + xy + y2 + 2 x+ 2y 1

Most entries of the (x, y)-colored Motzkin triangle depend on x and y, since these parameters affect

the number of allowable steps. However, the main diagonal entries count paths consisting entirely of

upsteps and thus are independent of x and y.

The following well-known proposition gives a recursion relation that can be used to compute the

(x, y)-colored Motzkin triangle.

Proposition 1.1. For all n ≥ 1,

Mn,k(x, y) =

Mn−1,k−1(x, y) + yMn−1,k(x, y) +Mn−1,k+1(x, y) if k ≥ 1,

xMn−1,0(x, y) +Mn−1,1(x, y) if k = 0.

Proof. Let P ∈ Mn,k(x, y). If P ends in a D step, then deleting the final step of P yields a unique

member of Mn−1,k+1(x, y). If P ends in U (which can only happen if k ≥ 1), then deleting the last step
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yields a unique member of Mn−1,k−1(x, y). If P ends in L, then deleting the final step of a path ending

in L yields a member of Mn−1,k(x, y), but in this case the correspondence is not bijective. Depending

on whether or not k = 0, there are either x or y paths in Mn,k(x, y) ending in L which are mapped to

a given path in Mn−1,k(x, y). Therefore, when k ≥ 1, Mn,k(x, y) includes Mn−1,k−1(x, y) paths ending

in U , Mn−1,k+1(x, y) paths ending in D, and yMn−1,k(x, y) paths ending in L. Meanwhile, Mn,0(x, y)

includes Mn,−1(x, y) = 0 paths ending in U , Mn,1(x, y) paths ending in D, and xMn,0(x, y) paths ending

in L. �

We are especially interested in Motzkin paths that end on the x-axis, which correspond to the leftmost

columns of our (x, y)-Motzkin triangles. The recursive relations of Proposition 1.1 may be used to compute

the sequences formed by the first columns of the (x, y)-colored Motzkin triangle, for various values of x

and y. Observe that many of our sequences correspond to the “Catalan-like” numbers studied by Aigner

[2]. Our results are displayed in Table 1.

y = 0 y = 1 y = 2 y = 3 y = 4

x = 0 A126120 Riordan #’s Fine #’s A1177641 A185132

x = 1 A001405 Motzkin #’s Cn A033321 -

x = 2 A054341 A005773 Cn+1 A007317 A033543

x = 3 A126931 A059738
(
2n+1
n+1

)
A002212 A064613

x = 4 - - A049027 A026378 A005572

Table 1: Sequences corresponding to the first column of the (x, y)-colored Motzkin triangle for various
values of x and y, where numbered entries correspond to OEIS [14] entries and a hyphen denotes the
absence of an entry on OEIS. Here Cn is the nth Catalan number.

1.1 Higher-Order Motzkin Paths

Our primary results concern a further generalization of colored Motzkin paths. An order-m Motzkin

path of length n and height k is an integer lattice path from (0, 0) to (n, k) that uses the step set

{U = (1, 1), L = D0 = (1, 0), D1 = (1,−1), . . . , Dm = (1,−m)} and stays weakly above the x-axis. The

set of all order-m Motzkin paths of length n and height k is denotedMm
n,k, and the cardinality of this set

is denoted |Mm
n,k| = Mm

n,k. Notice that when m = 1, the step set becomes {(1, 1), (1, 0), (1,−1)}, meaning

M1
n,k =Mn,k.

We also allow colorings of higher-order Motzkin paths. For ~x = (x0, x1, ..., xm−1) and ~y = (y0, y1, ..., ym−1),

an (~x, ~y)-colored, order-m Motzkin path is an element ofMm
n,k where Di steps that end on the x-axis

have one of xi colors, and Di steps that end above the x-axis have one of yi colors for all 0 ≤ i < m.

Hence, the only steps which are not colorable are U steps and maximal down steps Dm. Figure 3 shows

the twelve order-2 paths of length 3, height 0, and coloring ~x = (1, 2), ~y = (3, 3).
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Figure 3: All paths in M2
3,0(~x, ~y) with ~x = (1, 2), ~y = (3, 3).

Observe that our higher-order Motzkin numbers are distinct from the “higher-rank” Motzkin numbers

studied by Mansour, Schork and Sun [8], or Sapounakis and Tsikouras [11]. In particular, we don’t allow

for multiple types of up steps as in Mansour, Schork and Sun.

As with order-1 Motzkin paths, Mm
n,k(~x, ~y) = 0 unless 0 ≤ n ≤ k. Thus we can also define triangles

for colored, higher-order Motzkin paths. The (~x, ~y)-colored, order-m Motzkin triangle Mm(~x, ~y) is

the infinite, lower-triangular array whose (n, k) entry is Mm
n,k(~x, ~y). The entries of this triangle can be

calculated recursively, via a method that directly generalizes from Proposition 1.1.

Proposition 1.2. For all n ≥ 1,

Mm
n,k(~x, ~y) =

Mm
n−1,k−1(~x, ~y) + y0M

m
n−1,k(~x, ~y) + . . .+ ym−1M

m
n−1,k+m−1(~x, ~y) +Mm

n−1,k+m(~x, ~y) k ≥ 1,

x0M
m
n−1,0(~x, ~y) + x1M

m
n−1,1(~x, ~y) + . . .+ xm−1M

m
n−1,m−1(~x, ~y) +Mm

n−1,m(~x, ~y) k = 0.

Proof. This proof proceeds similarly to that of Proposition 1.1. Let P ∈ Mm
n,k(x, y). If P ends in Dm,

then deleting the final step of P yields a unique member ofMm
n−1,k+m(x, y). If P ends in U (which again

can only occur if k ≥ 1), the deleting the final step yields a unique member of Mm
n−1,k−1(x, y). If P

ends in Di for any 0 ≤ i < m, then deleting the final step yields a member of Mm
n−1,k+i(x, y), but again,

this is not a bijective procedure. Depending on whether or not k = 0, there are either xi or yi paths in

Mm
n,k(x, y) ending in Di which are mapped to a given path in Mm

n−1,k+i(x, y). When k ≥ 1, Mm
n,k(x, y)

consists of Mm
n−1,k−1(x, y) paths ending in U , Mm

n−1,k+m(x, y) paths ending in Dm, and yiM
m
n−1,k+i(x, y)

paths ending in Di for 0 ≤ i < m. Meanwhile Mn,0(x, y) consists of Mm
n,−1(x, y) = 0 paths ending in U ,

Mm
n,m(x, y) paths ending in Dm, and xiM

m
n,0(x, y) paths ending in Di for 0 ≤ i < m. �

Proposition 1.2 can be used to quickly generate elements of the Mm(~x, ~y) Motzkin triangle. We

utilized the recursive relations of Proposition 1.2 to compute the sequences formed by the first columns

of the (~x, ~y)-colored, order-m Motzkin triangle for various values of ~x and ~y. Our results are displayed in

Tables 3 through 6, located in Appendix A.
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1.2 Proper Riordan Arrays

Many of our results require the language of proper Riordan arrays to describe the recursive relations

within infinite, lower triangular arrays such as Mm(~x, ~y). A proper Riordan array is an infinite,

lower triangular array defined by a pair of formal power series, (d(t), h(t)), where d(0) 6= 0, h(0) = 0,

and h′(0) 6= 0 such that the (n, k)-entry is dn,k = [tn]d(t)(h(t))k. By convention, [tn]p(t) denotes the

coefficient of the nth-degree term in the power series p(t). See Rogers [10] or Merlini, Rogers, Sprugnoli,

and Verri [9] for background information on Riordan arrays. For specific Riordan arrays of a type similar

to what we study, see the Catalan triangle of Shapiro [12] or the “Catalan-like” triangles of Aigner [2].

For a proper Riordan array (d(t), h(t)), we define the A-sequence and Z-sequence to be the se-

quences whose generating functions A(t) and Z(t) satisfy

h(t) = tA(h(t)) (1)

d(t) =
d(0)

1− tZ(h(t))
. (2)

The A-sequence of a proper Riordan array is determined solely by the power series h(t), and vice versa.

The following well-known result relates proper Riordan arrays to the recursion relations in Propositions

1.1 and 1.2.

Proposition 1.3. A proper Riordan array whose (n, k)-entry is dn,k has A- and Z-sequences

A(t) = a0 + a1t + a2t
2 + . . . and Z(t) = z0 + z1t + z2t

2 + . . . if and only if the values dn,k follow the

recursion relation

dn,k =

a0dn−1,k−1 + a1dn−1,k + a2dn−1,k+1 + . . . k ≥ 1

z0dn−1,0 + z1dn−1,1 + z2dn−1,2 + . . . k = 0.

The following corollary is a quick consequence of Propositions 1.2 and 1.3.

Corollary 1.4. Let m ∈ N, and let ~x = 〈x0, x1, x2, . . . , xm−1〉 and ~y = 〈y0, y1, y2, . . . , ym−1〉 be vectors

with nonnegative integer components. Then Mm(~x, ~y) is a Riordan array with A- and Z-sequences

A(t) = 1 + y0t+ y1t
2 + . . .+ ym−1t

m + tm+1,

Z(t) = x0 + x1t+ x2t
2 + . . .+ xm−1t

m−1 + tm.

It’s important to note that if two proper Riordan arrays have identical A- and Z-sequences and the

same (0, 0)-entry, then they generate identical triangles. So, if two different sets of lattice paths correspond

to infinite, lower triangular arrays which share an A- and Z-sequence and have the same (0, 0)-entry, then

the cardinality of the two sets of (n, k)-paths is the same for any (n, k).

1.3 Outline of Paper

The remaining sections of this paper proceed as follows. Section 2 contains some basic results about

colored, higher-order Motzkin paths. Included is a theorem regarding the binomial transformation of
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sequences counted by colored, higher-order Motzkin paths. In Section 3, we prove that the number of

generalized `-ary paths create a Riordan array similar to Motzkin paths. From this, we show bijective

correspondences between certain sets of colored, higher-order Motzkin paths and sets of generalized `-ary

paths. In Section 4, we prove that similar correspondences exist between generalized Motzkin paths and

a generalization of Fine paths. Section 5 discusses a new group of `-ary paths such that peaks can only

exist at certain heights. And finally, in section 6, we prove a bijection between Motzkin paths and trees,

a commonly studied combinatorial object.

2 Generalized Motzkin Number Identities

Before proceeding to our main results about specific coloring schemes, we prove several identities which

hold for more generic colorings of higher-order Motzkin paths. Our first result in this category concerns

the row-sums of the (~x, ~x)-colored, order-m Motzkin triangle.

Theorem 2.1. Let n, k ≥ 0, m ≥ 1, and ~x = 〈x0, x1, . . . , xm〉 have nonnegative integer components.

Then the sum of the entries in the nth row of the (~x, ~x)-colored, order-m Motzkin triangle is Mm
n,0(〈x0 +

1, x1, . . . , xm〉, ~x). That is,

n∑
k=0

Mm
n,k(~x, ~x) = Mm

n,0(〈x0 + 1, x1, . . . , xm〉, ~x). (3)

Proof. We construct a bijection between the set S of (~x, ~x)-colored, order-m Motzkin paths of length n

(and unspecified height), which has cardinality
n∑
k=0

Mm
n,k(~x, ~x), andMm

n,0(〈x0+1, x1, . . . , xm〉, ~x). Paths in

Mm
n,0(〈x0 + 1, x1, . . . , xm〉, ~x) have one additional color available for level steps on the x-axis. Let P ∈ S

have height k. Then P contains exactly k up steps which are “visible” from the right, meaning that

horizontal rays extending from any of these up steps in the positive x-direction do not intersect another

step of the path. See Figure 4 for an example. Replacing these visible up steps with level steps of the

new color yields a unique P ′ ∈Mm
n,0(〈x0 + 1, x1, . . . , xm〉, ~x).

Note that this process is invertible. Given P ′ ∈Mm
n,0(〈x0+1, x1, . . . , xm〉, ~x) with k level steps steps of

the final color on the x-axis, replacing all such level steps with U steps yields a unique P ∈Mm
n,k(~x, ~x). �

1
1

1

1

⇐⇒
1

1
1

2 2 1

Figure 4: An example of the bijection in the proof of Theorem 2.1. A member of M2
10,2(〈1, 2〉, 〈1, 2〉)

corresponds to a member of M2
10,0(〈2, 2〉, 〈1, 2〉) which has 2 2-colored L steps on the x-axis.

Our next result concerns the binomial transforms of the sequences formed by the columns of colored,

higher-order Motzkin triangles. Recall that the binomial transform of a sequence {a0, a1, a2, . . .} is the
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unique sequence {b0, b1, b2, . . .} which satisfies

bn =

n∑
i=0

(
n

i

)
ai.

The order-1 case of the following result is well-known. We generalize the argument to account for paths

of any order m ≥ 1.

Theorem 2.2. Let m ≥ 1 and k ≥ 0, and let ~x = 〈x0, x1, x2, . . . , xm〉 and ~y = 〈y0, y1, y2, . . . , ym〉 be

vectors with nonnegative integer components. The binomial transform of the kth column of Mm
n,k(~x, ~y) is

the kth column of Mm
n,k(〈x0 + 1, x1, . . . xm−1〉, 〈y0 + 1, y1, . . . ym−1〉). That is,

n∑
α=0

(
n

α

)
Mm
i,k(~x, ~y) = Mm

n,k(〈x0 + 1, x1, . . . , xm−1〉, 〈y0 + 1, y1, . . . , ym−1〉). (4)

Proof. Partition Mm
n,k(〈x0 + 1, x1, . . . , xm−1〉, 〈y0 + 1, y1, . . . , ym−1〉) into subsets S1, S2, . . ., Sn−k such

that P ∈ Mm
n,k(〈x0 + 1, x1, . . . , xm−1〉, 〈y0 + 1, y1, . . . , ym−1〉) is in Sα if and only if P has exactly α

D0 steps of the final color. For each 0 ≤ α ≤ n − k, we define the map φα : Sα → Mm
n−α,k(~x, ~y)

which simply deletes these D0 steps. Clearly φα is surjective, but not injective. There are exactly
(
n
α

)
paths in Sα which φα maps to any particular Q ∈ Mm

n−α,k(~x, ~y). See Figure 5 for an example. It

follows that Mm
n,k(〈x0 + 1, x1, . . . , xm−1〉, 〈y0 + 1, y1, . . . , ym−1〉) =

n−k∑
α=0

|Sα| =
n−k∑
α=0

(
n

α

)
Mm
n−α,k(~x, ~y) =

n∑
α=0

(
n

α

)
Mm
α,k(~x, ~y). �

1

2 2

1

2

2 1

2

1 2

2 1 2

2 2 1

1 2 2

Figure 5: An example of the map from the proof of Theorem 2.2. A member ofM2,1(1, 1) is shown on the
left; the

(
4
2

)
= 6 paths from M4,1(2, 2) which are sent to it under φ2 are shown on the right.
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Unlike the previous two theorems, the theorem below does not appear to generalize from order-1

Motzkin paths to higher-order paths. However, we include it here as the identity does not seem to be

noted anywhere else in the literature.

Theorem 2.3. For any integer x, n ≥ 0, Mn,0(x, x) = Mn,0(0, x) + xMn+1,0(0, x).

Proof. SinceMn,0(0, x) ⊆Mn,0(x, x), it suffices to show that S =Mn,0(x, x)−Mn,0(0, x) has cardinality

xMn+1,0(0, x). Every path in S has at least one L step on the x-axis, and is therefore of the form P1LP2,

where P1 is a generic subpath and P2 is a subpath with no L steps on the x-axis.

P1 P2

Every path inMn+1,0(0, x) is of the form UP1DP2, where P1 is an (x, x)-colored Motzkin path and P2 is

a (0, x)-colored Motzkin path.

P1

P2

This yields a natural correspondence between S andMn+1,0(0, x), which associates P1LP2 with UP1DP2.

P1 P2 ⇐⇒
P1

P2

This correspondence is x-to-1, since the L step in P1LP2 can be any of x colors. This means S has

cardinality xMn+1,0(0, x). Therefore Mn,0(x, x) = Mn,0(0, x) + xMn+1,0(0, x). �

3 `-ary Paths

Our first major result is about another common class of lattice paths called `-ary paths. Because they have

a smaller step set and are not colored, `-ary paths are simpler than generalized Motzkin paths. For any

` ≥ 2, an `-ary path is a lattice path which starts at (0,0), uses the step set {U = (1, 1), D`−1 = (1− `)}
and remains weakly above the x-axis. 2-ary paths, more commonly known as Dyck paths, are particularly

well-studied. See Hilton and Pedersen [7] and Heubach, Li and Mansour [6] for more information on `-

ary paths, including bijections between `-ary paths and other combinatorial objects. See Figure 6 for

examples of 2-ary paths and 3-ary paths. Note that an `-ary path is also a (~0,~0)-colored, order-(` − 1)

Motzkin path.

For ` ≥ 2, a generalized `-ary path is a lattice path starting at (0,0), using the step set {U =

(1, 1), D`−1 = (1− `)}, and remaining weakly above the line y = −a for some a ≥ 0. Note that a normal

`-ary path is a generalized `-ary path where a = 0. The following proposition states a known property of

`-ary paths which is shared by generalized `-ary paths.

Proposition 3.1. If (n, k) is a point on a generalized `-ary path, then n ≡ k mod `.
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Figure 6: Top row: the two 2-ary (Dyck) paths of length 4 and height 0. Bottom row: the three 3-ary
paths of length 6 and height 0. Note that all of these paths have semilength 2 and semiheight 0.

Proof. Let u be the number of up steps (1,1) before the point (n, k), and let d be the number of down

steps (1, 1− `) before the point (n, k). Then n = u+ d and

k= u+ d(1− `)

= u+ d− d`

= n− d`.

Since n and k differ by a multiple of `, clearly n ≡ k mod `. �

As a result of Proposition 3.1, we are interested exclusively in generalized `-ary paths with lengths and

heights which are multiples of `. The set of generalized `-ary paths of length `n and height `k remaining

weakly above y = −a is denoted by D`,an,k, and the cardinality of this set is denoted |D`,a
n,k| = D`,a

n,k. We say

that such paths have semilength n and semiheight k. See Figure 7 for an example.

Figure 7: The 5 paths in D3,1
2,0. These paths have semilength 2, but length 6.

It is known that for ` ≥ 2 and n ≥ 0, D`,0
n,0 is the nth `-Catalan number C`n = 1

(`−1)n−1
(
`n
n

)
. We

henceforth denote the generating function for these numbers by C`(t) =

∞∑
i=0

C`i t
i. This function satisfies

a fundamental identity which we will rely on for the proofs of Corollaries 3.5 and 4.4:

C`(t) = 1 + tC`(t)
`. (5)

Similar to the (x, y)-colored Motzkin triangle, we define an infinite, lower-triangular array D`,a whose

(n, k)-entry (for 0 ≤ k ≤ n) is D`,a
n,k. Note that the (n, k)-entry of this array is the number of paths with
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semilength n and semiheight k, not length n and height k.

In the following theorem, we show that D`,a is a proper Riordan array by finding its A- and Z-

sequences.

Theorem 3.2. For all integers ` ≥ 2 and 0 ≤ a < `, D`,a
n,k is a proper Riordan array with A- and

Z-sequences

A(t) = (1 + t)`,

Z(t) =
(1 + t)` − (1 + t)`−a−1

t
.

Proof. Let n and k be integers with n > 0 and 0 ≤ k ≤ n. Any member of D`,an,k has the form P1P2, where

P1 ∈ D`,an−1,j with some semiheight j ≥ 0 satisfying k − 1 ≤ j ≤ k + ` − 1, and P2 is a final subpath of

length ` which contains exactly j − k + 1 down steps. See Figure 8 for an example.

We’ll first consider the case where k ≥ 1. We know that P1 can be any of D`,a
n−1,j possible paths. Since

P2 ends at positive height, the up steps and down steps in P2 may appear in any order while remaining

weakly above the y = −a. Therefore P2 can be any of the
(

`
j−k+1

)
subpaths of length ` which contain

j − k + 1 down steps. This implies

D`,a
n,k =

k+`−1∑
j=k−1

(
`

j − k + 1

)
D`,a
n−1,j

=

(
`

0

)
D`,a
n−1,k−1 +

(
`

1

)
D`,a
n−1,k + . . .+

(
`

`

)
D`,a
n−1,k+`−1,

giving D`,a the A-sequence A(t) =
(
`
0

)
+
(
`
1

)
t+ . . .+

(
`
`

)
t` = (1 + t)`.

Next we consider the case where k = 0. There are still D`,a
n−1,j possibilities for P1, but now P2 must

have a down step in the last a + 1 steps to remain weakly above y = −a. This reduces the number of

possibilities for P2 to
(
`

j+1

)
−
(
`−a−1
j+1

)
. So, we have

D`,a
n,0 =

`−1∑
j=0

((
`

j + 1

)
−
(
`− a− 1

j + 1

))
D`,a
n−1,j

=

((
`

1

)
−
(
`− a− 1

1

))
D`,a
n−1,0 + . . .+

((
`

`

)
−
(
`− a− 1

`

))
D`,a
n−1,`−1.

This gives D`,a the Z-sequence

Z(t) =

((
`

1

)
−
(
`− a− 1

1

))
+

((
`

2

)
−
(
`− a− 1

2

))
t+ . . .+

((
`

`

)
−
(
`− a− 1

`

))
t`−1

=
(1 + t)` − (1 + t)`−a−1

t
.

�
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Figure 8: An example of the decomposition described in the proof of Theorem 3.2. Two paths in D3,0
4,0

are decomposed into two subpaths, P1 (black) and P2 (red). On the left, P1 has a semiheight j = 0, so
P1 ∈ D3,0

3,0 and P2 contains 1 down step. On the right, P1 has a semiheight j = 1, so P1 ∈ D3,0
3,1 and P2

contains 2 down steps.

We can use this knowledge of the structure of D`,a to prove a bijective correspondence between

generalized `-ary paths and colored, higher-order Motzkin paths.

Corollary 3.3. Let ` and a be integers with ` ≥ 2 and a ≥ 0. Let ~x = 〈x0, x1, x2, . . . , x`−2〉 and

~y = 〈y0, y1, y2, . . . , y`−2〉 where

xi =

(
`

i+ 1

)
−
(
`− a− 1

i+ 1

)
,

yi =

(
`

i+ 1

)
.

Then D`,a
n,k = M `−1

n,k (~x, ~y) for all 0 ≤ k ≤ n.

Proof. By Theorem 3.2, D`,a is a proper Riordan array with A- and Z-sequences A(t) = (1 + t)` and

Z(t) = (1+t)`−(1+t)`−a−1

t . By Corollary 1.4, the proper Riordan array M `−1(~x, ~y) has these same A- and

Z-sequences. Also, D`,a
0,0 = M `−1

0,0 (~x, ~y) = 1. It follows that D`,a and M `−1(~x, ~y) are identical arrays and

therefore that D`,a
n,k = M `−1

n,k (~x, ~y) for all 0 ≤ k ≤ n. �

Example 3.4. The table below shows the consequences of Corollary 3.3 for low values of `. The (`, a)-

entry is the pair of ordered (`−1)-tuples (~x, ~y) such that D`,a = M `−1(~x, ~y). Note that D`,a is only identical

to a colored, order-(`− 1) Motzkin triangle when 0 ≤ a < `. The OEIS [14] entries corresponding to the

first columns of these triangles are shown in Tables 3, 4, and 5 in the appendix.

a = 0 a = 1 a = 2 a = 3

` = 2 (1, 2) (2, 2) - -

` = 3

(
〈1, 2〉, 〈3, 3〉

) (
〈2, 3〉, 〈3, 3〉

) (
〈3, 3〉, 〈3, 3〉

)
-

` = 4

(
〈1, 3, 3〉, 〈4, 6, 4〉

) (
〈2, 5, 4〉, 〈4, 6, 4〉

) (
〈3, 6, 4〉, 〈4, 6, 4〉

) (
〈4, 6, 4〉, 〈4, 6, 4〉

)
Finally, we use the proper Riordan array identities (1) and (2) to deduce the power series d(t) and

h(t) which define D`,a. This gives generating functions for the values D`,a
n,k.

Corollary 3.5. Let a, `, n, and k be nonnegative integers with ` ≥ 2 and a < `. Then D`,a
n,k =

[tn]C`(t)
a+1(tC`(t)

`)k.
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Proof. By Theorem 3.2, we know D`,a is a proper Riordan array with A(t) = (1 + t)` and Z(t) =
(1+t)`−(1+t)`−a−1

t . Since D`,a is a proper Riordan array, there must exist power series d(t) and h(t) such

that D`,a
n,k = [tn]d(t)(h(t))k. These are the unique power series satisfying the identities h(t) = tA(h(t))

and d(t) = d(0)
1−tZ(h(t)) . They are d(t) = C`(t)

a+1 and h(t) = tC`(t)
`, since, using Equation (5),

tA(h(t)) = t(1 + tC`(t)
`)` = t(C`(t))

` = h(t),

and also

d(0)
1−tZ(h(t)) = C`(t)

a+1(0)

1−t (1+tC`(t)
`)`−(1+tC`(t)

`)`−a−1

tC`(t)
`

= 1

1−C`(t)
`−C`(t)

`−a−1

C`(t)
`

= 1
C`(t)

`−C`(t)
`+C`(t)

`−a−1

C`(t)
`

= 1
C`(t)

`−a−1

C`(t)
`

= C`(t)
`

C`(t)`−a−1 = C`(t)
a+1 = d(t).

�

4 Generalized Fine Paths

In the previous section, we relied on the recursive structure of the proper Riordan arrays defined by our

generalized `-ary paths to find a bijective correspondence to colored, higher-order Motzkin paths. In this

section, we will prove a similar result about a generalization of Fine paths rather than `-ary paths. A

Fine path is a 2-ary (Dyck) path without a subpath of the form UD1 ending on the x-axis. Sometimes

such subpaths are called hills. See Figure 9 for an example. For additional results regarding Fine paths,

see Deutsch and Shapiro [5].

Figure 9: The two paths on the left are Fine paths. The three paths on the right are not Fine paths.

In the literature, Fine paths are strictly defined as 2-ary paths. We extend the principle to the

generalized `-ary paths we define in the previous section, which use steeper down steps and also remain

weakly above lines other than the x-axis. As shown in Figure 10, when ` > 2, we can give more or

less strict definitions for what subpaths constitute generalized “hills” and are therefore not allowable in

generalized Fine paths.

Figure 10: The left path has no subpath which can reasonably be classified as a generalized “hill.” The
middle path has a subpath which may or may not be considered a hill, depending on how strictly a hill is
defined. The right path contains two hills even under the strictest possible definition of a hill.

The appearance of these different types of hills at higher values of ` motivates the following extension

of the Fine condition to generalized `-ary paths. For 1 ≤ r < `, a generalized `-ary path is r-Fine if it

12



does not contain a subpath of the form U rD`−1 ending on the x-axis. Figure 11 shows two 4-ary paths,

of which one is 3-Fine and the other is not. Note that a traditional Fine path is a 1-Fine 2-ary path.

y = 0

y = −1

Figure 11: Left: 3-Fine path from F4,1,3
3,0 , right: not a 3-Fine path.

We will denote the r-Fine subset of D`,an,k by F `,a,rn,k , and its cardinality by |F `,a,rn,k | = F `,a,rn,k . The infinite,

lower-triangular array whose (n, k)-entry is F `,a,rn,k will be denoted by F `,a,r.

Theorem 4.1. Let `, a, and r be integers with ` ≥ 2, 0 ≤ a < `, and 1 ≤ r < `. Then F `,a,r is a Riordan

array with the following A- and Z-sequences:

A(t) = (1 + t)`,

Z(t) =
(1 + t)` − (1 + t)`−a−1

t
− (1 + t)`−r−1.

Proof. This proof proceeds similarly to that of Theorem 3.2. Let n and k be integers where n > 0 and

0 ≤ k ≤ n. As with generalized `-ary paths, any member of F `,a,rn,k has the form P1P2, where P1 ∈ F `,an−1,j
with some semiheight j ≥ 0 satisfying k − 1 ≤ j ≤ k + `− 1 and P2 is a final subpath of length ` which

contains exactly j − k + 1 down steps. Figure 12 shows an example.

Again, when k ≥ 1, all orderings of the steps in P2 are legal, so the A-sequence is A(t) =
(
`
0

)
+
(
`
1

)
t+

. . .+
(
`
`

)
t` = (1 + t)`.

Only the k = 0 case differs significantly from the analogous case for Theorem 3.2. We know that F

is one of F `,a,rn,j possible paths. The proof of Theorem 3.2 established that excluding the subpaths which

pass below y = −a leaves
(
`

j+1

)
−
(
`−a−1
j+1

)
possibilities for P2. Now we must also exclude the subpaths

which contain a return to the x-axis immediately preceded by the steps U rD`−1. By Proposition 3.1, such

a return must occur at the end of P2, since the x-coordinate of the point of return must be congruent to

0 modulo `. Therefore the illegal P2 subpaths that violate the r-Fine condition are the
(
`−r−1
j

)
subpaths

of length ` which end in the steps U rD`−1. Note that since all of these subpaths remain weakly above

y = −a, we have not already excluded any of them. Thus only
(
`

j+1

)
−
(
`−a−1
j+1

)
−
(
`−r−1
j

)
possibilities exist

for P2. It follows that

F `,a,rn,0 =
`−1∑
j=0

((
`

j + 1

)
−
(
`− a− 1

j + 1

)
−
(
`− r − 1

j

))
D`,a
n−1,j ,

which yields the Z-sequence

Z(t) =

((
`

1

)
−
(
`− a− 1

1

)
−
(
`− r − 1

0

))
+ . . .+

((
`

`

)
−
(
`− a− 1

`

)
−
(
`− r − 1

`− 1

))
t`−1
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=
(1 + t)` − (1 + t)`−a−1

t
− (1 + t)`−r−1.

�

Figure 12: An example of the decomposition from the proof of Theorem 4.1. A member of F4,1,1
4,1 , with

subpath P1 ∈ F4,1,1
3,0 shown in black and subpath P2 shown in red. Since a = 1, this path is allowed to pass

below the x-axis as long as it remains weakly above y = −1. Also note that with r = 1, no returns to the
x-axis can be preceded by UD`−1.

We can now prove a bijective correspondence between r-Fine paths and colored, higher-order Motzkin

paths, similar to the correspondence shown in Corollary 3.3.

Corollary 4.2. Let `, a, and r be integers with ` ≥ 2, 0 ≤ a < `, and 1 ≤ r < `. Let ~x =

〈x0, x1, x2, . . . , x`−2〉 and ~y = 〈y0, y1, y2, . . . , y`−2〉 where

xi =

(
`

i+ 1

)
−
(
`− a− 1

i+ 1

)
−
(
`− r − 1

i

)
,

yi =

(
`

i+ 1

)
.

Then F `,a,rn,k = M `−1
n,k (~x, ~y) for all 0 ≤ k ≤ n.

Proof. This proof echoes the proof of Corollary 3.3. By Theorem 4.1 and Corollary 1.4, we know that F `,a,r

and M `−1(~x, ~y) have the same A- and Z-sequences. We also know that F `,a,r0,0 = M `−1
0,0 (~x, ~y) = 1. Therefore

the two proper Riordan arrays are identical and have equivalent (n, k)-entries for all 0 ≤ k ≤ n. �

Example 4.3. The table below shows the consequences of Corollary 4.2 for low values of ` and a = 0.

The (`, r)-entry is the pair of ordered (`− 1)-tuples (~x, ~y) such that F `,0,r = M `−1(~x, ~y). Note that F `,0,r

is only identical to a colored, order-(` − 1) Motzkin triangle when 0 < r < `. (For any a, F `,a,r is only

equivalent to a colored, order-(` − 1) Motzkin triangle when 0 ≤ a < ` and 0 < r < `.) The OEIS

[14] entries corresponding to the first columns of these triangles are shown in Tables 3, 4, and 5 in the

appendix.
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r = 1 r = 2 r = 3

` = 2 (0, 2) - -

` = 3

(
〈0, 1〉, 〈3, 3〉

) (
〈0, 2〉, 〈3, 3〉

)
-

` = 4

(
〈0, 1, 2〉, 〈4, 6, 4〉

) (
〈0, 2, 3〉, 〈4, 6, 4〉

) (
〈0, 3, 3〉, 〈4, 6, 4〉

)
As in the previous section, we can apply identities (1) and (2) to find generating functions for the

values F `,a,rn,k .

Corollary 4.4. Let `, a, r, n, and k be nonnegative integers with ` ≥ 2 and a, r < `. Then F `,a,rn,k =

[tn] C`(t)
`

C`(t)`−a−1+tC`(t)2`−r−1 (tC`(t)
`)k.

Proof. Theorem 4.1 tells us that F `,a,r is a proper Riordan array with A(t) = (1 + t)` and Z(t) =
(1+t)`−(1+t)`−a−1

t − (1 + t)`−r−1. In proving Corollary 3.5 we already showed that h(t) = tA(h(t)) is

satisfied by h(t) = tC`(t)
`. Also, note that when d(t) = C`(t)

`

C`(t)`−a−1+tC`(t)2`−r−1 we have

d(0)
1−tZ(h(t)) =

C`
` (0)

C`−a−1
`

(0)+0C2`−r−1
`

(0)

1−t
(

(1+tC`(t)
`)`−(1+tC`(t)

`)`−a−1

tC`(t)
` −(1+tC`(t)`)`−r−1

)

= 1

1−t
(

(1+tC`(t)
`)`−(1+tC`(t)

`)`−a−1

tC`(t)
` −(1+tC`(t)`)`−r−1

) = 1

1−t
(

C`(t)
`−C`(t)

`−a−1

tC`(t)
` −C`(t)`−r−1

)

= 1

1−C`(t)
`−C`(t)

`−a−1

C`(t)
` +tC`(t)`−r−1

= 1

1−1+C`(t)
`−a−1

C`(t)
` +tC`(t)`−r−1

= 1
C`(t)

`−a−1+tC`(t)
2`−r−1

C`(t)
`

= C`(t)
`

C`(t)`−a−1+tC`(t)2`−r−1 = d(t).

�

Notice that a simpler generating function F`,r(t) for the sequence (F `,0,rn,0 )n=0,1,2,... which counts regular

`-ary paths of height 0 which satisfy the r-Fine condition can be derived by performing the substitution

a = 0 above:

F`,r(t) =
C`(t)

`

C`(t)`−0−1 + tC`(t)2`−r−1
=

C`(t)

1 + tC`(t)`−r
.

5 `-ary Paths with Peaks at Particular Heights

In this section we generalize the following identities noted by Callan [4]:

1. Dyck paths of semilength n with all peaks at even height are counted by the Riordan number

Rn = Mn,0(0, 1).
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2. Dyck paths of semilength n with all peaks at odd height are counted by the Motzkin number Mn−1.

Naturally, a peak is a subpath of the form UDi. The height of the peak is the height at which the U

step ends.

Lemma 5.1. Let `, a, n, and k be integers with ` ≥ 2, 0 ≤ a < `, and n, k ≥ 0. Let ~x = 〈x0, x1, x2, . . . , x`−2〉
where

xi =

1 if i < a,

0 if i ≥ a,

and let ~1 = 〈1, 1, . . . , 1〉. Then members of D`,an,k whose only peaks occur at heights congruent to 0 modulo

` are counted by M `−1
n,k (~x,~1).

Proof. We describe a bijection ψ which maps an `-ary path P ∈ D`,an,k whose only peaks occur at heights

congruent to 0 modulo ` to a member of M`−1
n,k (~x,~1). Consider P as a sequence of blocks of ` steps. By

Proposition 3.1, any U step followed by a D`−1 step in the middle of a block would constitute a peak at

a height which is not a multiple of `. Therefore every block is a subpath of the form Di
`−1U

`−i for some

0 ≤ i ≤ `. To obtain ψ(P ), replace each U ` block with U , and each Di
`−1U

`−i block (0 < i ≤ `) with

Di−1. An example is shown in Figure 13.

Note that ψ(P ) moves exactly 1 unit up, down, or sideways for every ` units moved in that direction

by P , and thus must remain weakly above the x-axis and end at the point (n, k). Furthermore, since P

remains weakly above the y = −a, P cannot contain a Di
`−1U

`−i block ending at height 0 for any i < a.

Therefore ψ(P ) cannot contain any Di step ending on the x-axis for i < a, so ψ(P ) ∈M`−1
n,k (~x,~1).

To prove ψ is a bijection, we’ll define its inverse ψ−1. Given a colored, higher-order Motzkin path

R ∈ M`−1
n,k (~x,~1), obtain ψ−1(R) by replacing each U with a U ` block, and each Di with a Di+1

`−1U
`−i−1

block. Observe that ψ−1(R) moves ` units in any direction for each 1 unit moved by R in that direction,

so ψ−1(R) ends at (`n, `k). Since R contains no U steps or Di steps with i < a which end on the x-axis,

ψ−1(R) does not contain any block which ends in more than a U steps to the x-axis. Therefore φ−10 (R)

remains weakly above y = −a. Finally, since no peaks occur in the middle of the Di
`−1U

`−i blocks of

ψ−1(R), the only peaks in ψ−1(R) must occur at lengths which are multiples of `, and thus, by Proposition

3.1, heights which are congruent to 0 modulo `.

We have shown that both ψ and ψ−1 are well-defined functions. It is obvious for any `-ary path

P of semilength n and semiheight k whose only peaks occur at heights congruent to 0 modulo ` that

ψ(ψ−1(P )) = P . Therefore ψ and ψ−1 are bijections. �

⇐⇒

Figure 13: An example of the bijection ψ from in Lemma 5.1. Note that the only peaks in the 3-ary path
on the right occur at heights which are multiples of 3.
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Theorem 5.2. Let `, n, h be integers with ` ≥ 2, n ≥ 1, and 0 ≤ h < `. Let ~x = 〈x0, x1, x2, . . . , x`−2〉
where

xi =

1 if i < h,

0 if i ≥ h.

Then members of D`,0n,0 whose peaks occur at heights congruent to h modulo ` are counted by M `−1
n−1,`−h−1(~x,

~1).

Proof. Every path P ∈ D`,0n,0 whose only peaks occur at heights congruent to h modulo ` is of the form

UhQD`−h
`−1 , where Q is a member of D`,hn,k whose only peaks occur at heights congruent to 0 modulo `. By

Lemma 5.1, Q could be any of M `−1
n−1,`−h−1(~x,

~1) possible paths. Hence there are also M `−1
n−1,`−h−1(~x,

~1)

possibilities for P . �

6 `-ary Trees

Previously, we have proven relations between higher-order Motzkin paths and other lattice paths. Now,

we prove a relation between higher-order Motzkin paths and another well-studied class of combinatorial

objects, `-ary trees. A rooted tree is a planar tree with a single distinguished root vertex. If an edge

exists between two vertices, the vertex closer to the root vertex is called the parent, and the vertex farther

from the root vertex is called the child. The outdegree |v| of a vertex v is the number of children v has.

For any ` ∈ N, an `-ary tree is a rooted tree in which every vertex has an outdegree of at most `,

and each vertex’s children are ordered from “left” to “right.” The set of all `-ary trees with n edges is

denoted T `n , with cardinality |T `n | = T `n. An `-ary tree is called complete if every vertex has outdegree

0 or `. The set of all complete `-ary trees with n edges is denoted K`n, with cardinality |K`n| = K`
n. An

example of 2-ary (or more commonly, “binary”) trees is shown in Figure 14.

Figure 14: All 2-ary, or binary, trees with 3 edges. We draw rooted trees with their roots at the top.

The following two results are well-established. See Aigner [1] and Hilton and Pedersen [7] for proofs

of these standard results.

Proposition 6.1. Let ` ≥ 2 and n ≥ 0. Then T 2
n = Mn,0 and K`

n = C`n.

In our final theorem we show injective maps between `-ary trees for any ` ≥ 2 and order-(` − 1)

Motzkin paths.

Theorem 6.2. Let ` ≥ 2 and S ⊆ {0, 1, 2, . . . , `} be a set of allowable outdegrees for vertex in `-ary trees
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with 0, ` ∈ S. Let ~x = 〈x0, x1, . . . , x`−2〉 such that

xi =

1 if i+ 1 ∈ S,

0 if i+ 1 /∈ S.

Then M `−1
n,0 (~x, ~x) counts `-ary trees with n edges and every vertex of outdegree in S.

Proof. Let Y be the subset of T `n+1 whose members’ vertices have outdegrees in S. We describe an

injection σ : Y →M`−1
n,0 (~x, ~x). For a tree G ∈ Y , start at the end of the Motzkin path (n, 0) and perform

a pre-order traversal of G. At each vertex v visited, prepend a U step to the path if |v| = 0, or a D|v|−1

step if |v| > 0. Stop when the path reaches (0, 0) at the last pre-order vertex of G. See Figure 15 for

an example. Note that since every vertex in G has outdegree in S, the only Di steps in σ(G) will be for

i+ 1 ∈ S. Therefore σ(G) ∈M `−1
n,0 (~x, ~x). Since any two distinct trees will have corresponding vertices of

different outdegrees at some point in a pre-order traversal, σ is clearly injective.

We also describe an injection ρ : Y → T `n+1. Given P ∈ Y , execute the following procedure to obtain

the tree ρ(P ):

1. Begin at the first step of P . Create a root vertex.

2. If the end of P has been reached, then ρ(P ) is fully constructed, and the procedure ends here.

Otherwise, consider the next step of P . Assign the current vertex v an outdegree

|v| :=

0 if next step = U,

i+ 1 if next step = Di.

This is the number of children that v will have when the tree is fully constructed.

3. Backtrack through the tree to the nearest vertex that has fewer children than its assigned outdegree.

(This could be the current vertex.)

4. Add a child to the vertex backtracked to. Return to step 2 starting at this child.

Since Di cannot occur in P unless i+ 1 ∈ S, every vertex in ρ(P ) will have an outdegree in S. And since

ρ starts by creating a root vertex and then adding one addition vertex for every step in P , clearly ρ(P )

has n+ 1 vertices and therefore n edges. �

=⇒
Figure 15: An example of the map σ from Theorem 6.2.
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A Tables of Values

We developed a Java program that calculates the (~x, ~y)-colored, higher-order Motzkin triangle for user-

specified values of ~x and ~y using the recursive relation in Proposition 1.2. The following tables display

the OEIS [14] entries that correspond the main column sequences of the triangles calculated. Our code is

available upon request.

Table 2: The sequences formed by the of row sums of the (x, y)-colored, order-1 Motzkin triangle.

y = 0 y = 1 y = 2 y = 3 y = 4 y = 5

x = 0
(
n
bn
2
c
)

A002426 A026641 A126952 - -

x = 1 A000079 A005773 A000984 A126568 A227081 -

x = 2 A127358 A000244
(
2n+1
n+1

)
A026375 A133158 -

x = 3 A127359 A126932 A000302 A026378 A081671 -

x = 4 A127360 - A141223 - A005573 A098409

x = 5 - - - - A000400 A122898

Table 3: Main column sequences of the (〈x0, 0〉, 〈y0, 0〉-colored, order-2 Motzkin triangle.

y0 = 0 y0 = 1 y0 = 2

x0 = 0 - - -

x0 = 1 A076227 A071879 -

x0 = 2 - - -

Table 4: Main column sequences of the (〈x0, 1〉, 〈y0, 1〉-colored, order-2 Motzkin triangle.

y0 = 0 y0 = 1 y0 = 2

x0 = 0 A001005 - A303730

x0 = 1 - A036765 -

x0 = 2 - A159772 -
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Table 5: Main column sequences of the (〈x0, x1〉, 〈3, 3〉-colored, order-2 Motzkin triangle. Recall C3
n is the

nth 3-Catalan number.

x1 = 0 x1 = 1 x1 = 2 x1 = 3 x1 = 4

x0 = 0 - A089354 A023053 - -

x0 = 1 - - C3
n A121545 -

x0 = 2 - - A098746 A006013 -

x0 = 3 - - - C3
n+1 -

x0 = 4 - - - A047099 -

Table 6: Main column sequences of the (〈1, x1, x2〉, 〈4, 6, 4〉-colored, order-3 Motzkin triangle.

x2 = 2 x2 = 3 x2 = 4 x2 = 5

x1 = 2 - - - -

x1 = 3 - A002293 - -

x1 = 4 - - - -

x1 = 5 - - - -

21


	Introduction
	Higher-Order Motzkin Paths
	Proper Riordan Arrays
	Outline of Paper

	Generalized Motzkin Number Identities
	-ary Paths
	Generalized Fine Paths
	-ary Paths with Peaks at Particular Heights
	-ary Trees
	Tables of Values

