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Background

Definition
Sn is the symmetric group on n elements.
An involution is an element τ ∈ Sn such that τ 2 = ϵ.
In is the set of all involutions in Sn.

Definition
A Young diagram is a finite collection of cells in the plane, arranged in
left-justified rows, such that the row lengths are increasing.
The sequence listing the numbers of cells in each row gives a partition λ of a
non-negative integer n. The Young diagram is said to be of shape λ.
λ′ is the transpose of λ.
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Examples

Example

λ =

λ = (4, 3, 1, 1)

λ′ =

λ′ = (4, 2, 2, 1)
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Young Tableaux

Definition
A Young tableau is a filling of a young diagram by the numbers 1, . . . , n.
A tableau is standard if the numbers are increasing through rows and
columns.

Definition
For a shape λ, let SYT (λ) be the set of standard Young tableaux of shape λ.

Example

1 4 5 6
2 7 9
3
8
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Descent and major index for permutations

Definition
For π ∈ Sn

Des(π) = {i ∈ [n − 1] | π(i) > π(i + 1)}

maj(π) =
∑

i∈Des(π)

i

Example

Des(3176245) = {1, 3, 4}

maj(3176245) = 1 + 3 + 4 = 8
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Descent and major index for tableaux

Definition
The descent set of T is

(T ) := {i | i + 1 appears in a lower row of T than i}.

Definition
Define also the major index of a standard Young tableau T by

maj(T ) =
∑

i∈Des(T )

i .

Example

1 4 5 6
2 7 9
3
8

A standard tableau of shape

T ∈ SYT (λ = (4, 3, 1, 1)), Des(T ) = {1, 2, 6, 7}, maj(T ) = 1 + 2 + 6 + 7 = 16
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The RSK correspondence

The RSK maps each permutation π ∈ Sn to a pair (Pπ, Qπ) of standard Young
tableaux of the same shape λ.

Fact

For each π ∈ Sn one has
Qπ = Pπ−1 .

RSK correspondence is Des-preserving and hence also maj- preserving bijection in
the following sense.

Fact
For every permutation π ∈ Sn,

Des(Pπ) = Des(π−1) and Des(Qπ) = Des(π).
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Restriction to involutions

Fact
Note that π is an involution if and only if Pπ = Qπ.

By restricting the RSK to In we get a Des− preserving bijection from In to
the set of standard Young tableaux of order n, SYT (n).

Example
Let π = 2143 ∈ I4. Then

Pπ = Qπ = 1 3
2 4

Des(π) = {1, 3} = Des(Qπ)
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Conjugacy classes of involutions

Simple Facts
1 Conjugacy classes in Sn are determined by their cycle structures, which are

partitions of n.

2 The conjugacy classes of involutions in Sn are of the form (2k , 1r ) such that
0 ≤ r ≤ n, 0 ≤ k ≤ n

2 and 2k + r = n.
3 In other words, conjugacy classes of involutions are determined by the

number of fixed points.

Theorem (Schützenberger 77’)
An involution π ∈ In has r fixed points if and only if Pπ has r columns of odd
length.
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The set Dn(r)

Definition
The set of Young diagrams of size n having exactly r odd columns will be
denoted by Dn(r).
The set of standard Young tableaux of shapes taken from Dn(r) is denoted
SYTn(r).

Example (D5(1))

(5): (2,1,1,1):

(4,1): (3,2): (2,2,1):

(1)
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In summary...

Theorem
Let Cµ be the conjugacy class of the partition µ = (2k , 1r ). Then the restriction
of the RSK correspondence

R : Cµ → SYTn(r)

is a bijection which preserves the major index, i.e. for each π ∈ Cµ we have
maj(π) = maj(R(π)).
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Auxiliary numbers

Definition
For a shape λ = (λ0, λ1, . . . , λu), let

b(λ) =
u∑

i=0
iλi .

Fact
The numbers b(λ), (b(λ′)) can be easily calculated by writing for each i the
number i inside each square of row (column) i of λ and adding up the numbers to
get the rows (columns) sum respectively.

Example

λ = 0 1 2 3
0 1 2
0 1

, λ′ = 0 0 0 0
1 1 1
2 2
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Continuity and extreme values inside each diagram

Theorem (Billey, Kovalinka, Swanson)
Let λ be a Young diagram. Then we have:

m(λ) := Min{maj(T ) | T ∈ SYT (λ)} = b(λ).

M(λ) := Max{maj(T ) | T ∈ SYT (λ)} =
(

n
2

)
− b(λ′).

Moreover, every value between m(λ) and M(λ) appears at least once except in
the case when λ is a rectangle with at least two rows and columns, in which case
the values m(λ) + 1 and M(λ) − 1 are missing.
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Extreme values over Dn(r)

Theorem (B,K 21’)
Let n = 2k + r .

1 The minimum value of the major index on Dn(r) is k. It is attained by the
diagram λ = (n − k, k).

2 The maximum value of the major index on Dn(r) is
(n

2
)

−
(r

2
)
. It is attained

by the odd hook λ = (r , 12k) = (n − 2k, 12k).

Example

Minimal value

Maximal value, Odd hook
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Minimal gap inside each diagram

Theorem (B,K 21’)
1 Let n ≥ 6 and let λ ⊢ n such that λ ̸= (1n) and λ ̸= (n). Then

M(λ) − m(λ) ≥ 4.

2 if λ = (ab) is a rectangle then

M(λ) − m(λ) ≥ 6.
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Our main result

Theorem
Let µ = (2k , 1r ) be a partition of n and let Cµ be the corresponding conjugacy
class of involutions in Sn. Then

If r ̸= 0 then the major index on Cµ attains all values between k and(n
2
)

−
(r

2
)
.

If r = 0 then it attains all the values above excluding k + 1 and
(n

2
)

− 1.
Moreover, any other value outside this range is not attained.

Example

Conj. class with 3 fixed points: Conj. class without fixed points:

Eli Bagno and Yisca Kares Continuity of the major index on involutions 17 / 26



Background Continuity of the major index The algorithm

The algorithm
Traverse Dn(r), starting with λ0 = (n − k, k), which attains the minimum
value, k, of maj over Dn(r) which is k.

Example

λ0 =

End with the odd hook diagram λe = (n − 2k, 12k), attaining the maximum
value of maj over Dn(r) which is

(n
2
)

−
(r

2
)

.

Example

λe =
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The algorithm Cont.

The algorithm traverses the set Dn(r) in such a way that in each step one or
two squares of a diagram λ ∈ Dn(r) are transferred to a new place to obtain
a diagram ν ∈ Dn(r) such that

M(λ) ≥ m(ν)

where M(λ) (m(ν)) is the maximum (minimum) value of maj on SYT (λ)
(SYT (ν)), respectively

We exclude the hooks from the discussion here. Odd hooks are our final
cases while even hooks are treated separately.
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Case I: Double stair
λ = (λ1, . . . , λu, 0, . . . , 0) contains a consecutive sequence of rows of strictly
descending length:

λi > λi+1 > λi+2 ≥ 0.

Take the maximal such sequence.
This means that λ has columns of lengths i and i + 1.
Move the last square of row i to the end of row i + 2 (which might be
empty) to form ν.
The number of odd columns had not been changed. (columns of lengths
i ,i + 1 changed to columns of lengths i − 1, i + 2).

λ = i
i + 1

=⇒ ν =
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Another example

λ =
i

i + 1

=⇒ ν =
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Case II: Remove a domino

A consecutive sequence of rows of strictly descending length does not exist.
In this case there must exist some i such that λi > λi+1 = λi+2

Example

λ =

Choose i to be maximal with respect to this property.
We must have λi−1 = λi , otherwise this case was already treated earlier.
This means that the squares at the end of rows i − 1 and i form a vertical
domino.

Eli Bagno and Yisca Kares Continuity of the major index on involutions 22 / 26
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1 If λi − λi+1 = 1 then by the maximality of i we must have λi = 2.
Transfer the domino to the end of the first column.

λ = i − 1
i
i

→ ν =

2 If λi − λi+1 > 1, then we place that domino at the ends of rows i + 1 and
i + 2.

λ = i − 1
i

i + 1

→ ν =
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Some more details

In order to prove that M(λ) ≥ m(ν) We prove that either

0 ≤ m(ν) − m(λ) ≤ 4

or
M(ν) − M(λ) = 2
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Example
How to conclude M(λ) ≥ m(ν) from 0 ≤ m(ν) − m(λ) ≤ 4 ?
- In the picture below:

Blue part = m(ν) − m(λ) ≤ 4

Blue + middle part = M(λ) − m(λ) ≥ 4

We conclude:
Middle part = M(λ) − m(ν) ≥ 0
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Thank you for your attention!!
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