Continuity of the major index on involutions

Eli Bagno, Jerusalem College of Technology

Joint work with Yisca Kares, Bar Ilan University.

Permutation patterns, Valparaiso University, Indiana. June 2020

Table of Contents

- Background
 - Involutions and Young diagrams
 - Young tableaux
 - Descent and major index for permutations
 - Descent and major index for tableaux
 - The RSK correspondence
 - Conjugacy classes of involutions
 - Continuity inside each diagram
 - Minimal gap inside each diagram
- Continuity of the major index
 - The algorithm
 - Double stair
 - Domino
 - Some more details

きょうきょう

・ 同 ト ・ ヨ ト ・ ヨ ト

Background

Definition

- S_n is the symmetric group on n elements.
- An involution is an element $\tau \in S_n$ such that $\tau^2 = \epsilon$.
- I_n is the set of all involutions in S_n .

イロト 不得 トイヨト イヨト

Background

Definition

- S_n is the symmetric group on n elements.
- An involution is an element $\tau \in S_n$ such that $\tau^2 = \epsilon$.
- I_n is the set of all involutions in S_n .

Definition

- A Young diagram is a finite collection of cells in the plane, arranged in left-justified rows, such that the row lengths are increasing.
- The sequence listing the numbers of cells in each row gives a partition λ of a non-negative integer n. The Young diagram is said to be of shape λ.
- λ' is the transpose of λ .

イロト イヨト イヨト イヨト

Examples

2

Young Tableaux

Definition

- A Young tableau is a filling of a young diagram by the numbers 1,..., n.
- A tableau is **standard** if the numbers are increasing through rows and columns.

∃ ► < ∃ ►</p>

Young Tableaux

Definition

- A Young tableau is a filling of a young diagram by the numbers 1,..., n.
- A tableau is **standard** if the numbers are increasing through rows and columns.

Definition

For a shape λ , let $SYT(\lambda)$ be the set of standard Young tableaux of shape λ .

Example									
1	4	5	6	5		6			
2	7	9							
3									
8									

・ 同 ト ・ ヨ ト ・ ヨ ト

・ロト ・ 同ト ・ ヨト ・ ヨト

Descent and major index for permutations

DefinitionFor
$$\pi \in S_n$$
 $Des(\pi) = \{i \in [n-1] \mid \pi(i) > \pi(i+1)\}$ $maj(\pi) = \sum_{i \in Des(\pi)} i$

э

・ 同 ト ・ ヨ ト ・ ヨ ト

Descent and major index for permutations

Definition
For
$$\pi \in S_n$$

 $Des(\pi) = \{i \in [n-1] \mid \pi(i) > \pi(i+1)\}$
 $maj(\pi) = \sum_{i \in Des(\pi)} i$

Example

 $Des(3176245) = \{1, 3, 4\}$ maj(3176245) = 1 + 3 + 4 = 8

э

Descent and major index for tableaux

Definition

The descent set of T is

 $(T) := \{i \mid i+1 \text{ appears in a lower row of } T \text{ than } i\}.$

Definition

Define also the *major index* of a standard Young tableau T by

$$maj(T) = \sum_{i \in Des(T)} i.$$

Example

・ 同 ト ・ ヨ ト ・ ヨ ト

The RSK correspondence

The RSK maps each permutation $\pi \in S_n$ to a pair (P_{π}, Q_{π}) of standard Young tableaux of the same shape λ .

The RSK correspondence

The RSK maps each permutation $\pi \in S_n$ to a pair (P_{π}, Q_{π}) of standard Young tableaux of the same shape λ .

Fact

For each $\pi \in S_n$ one has

$$Q_{\pi}=P_{\pi^{-1}}.$$

4 A I

きょうきょう

くぼう くほう くほう

The RSK correspondence

The RSK maps each permutation $\pi \in S_n$ to a pair (P_{π}, Q_{π}) of standard Young tableaux of the same shape λ .

Fact

For each $\pi \in S_n$ one has

$$Q_{\pi}=P_{\pi^{-1}}.$$

RSK correspondence is *Des*-preserving and hence also *maj*- preserving bijection in the following sense.

The RSK correspondence

The RSK maps each permutation $\pi \in S_n$ to a pair (P_{π}, Q_{π}) of standard Young tableaux of the same shape λ .

Fact

For each $\pi \in S_n$ one has

$$Q_{\pi}=P_{\pi^{-1}}.$$

RSK correspondence is *Des*-preserving and hence also *maj*- preserving bijection in the following sense.

Fact

For every permutation $\pi \in S_n$,

$$Des(P_{\pi}) = Des(\pi^{-1})$$
 and $Des(Q_{\pi}) = Des(\pi)$.

ヘロト ヘ戸ト ヘヨト ヘヨト

イロト イボト イヨト イヨト

Restriction to involutions

Fact

• Note that π is an involution if and only if $P_{\pi} = Q_{\pi}$.

э

くぼう くほう くほう

Restriction to involutions

Fact

- Note that π is an involution if and only if $P_{\pi} = Q_{\pi}$.
- By restricting the RSK to I_n we get a *Des* preserving bijection from I_n to the set of standard Young tableaux of order n, SYT(n).

Example

Let $\pi = 2143 \in I_4$. Then		
	$P_{\pi} = Q_{\pi} = \boxed{\begin{array}{c c} 1 & 3 \\ 2 & 4 \end{array}}$	
L	$Des(\pi) = \{1,3\} = Des(Q_{\pi})$	

Conjugacy classes of involutions

Simple Facts

Conjugacy classes in S_n are determined by their cycle structures, which are partitions of n.

・ 同 ト ・ ヨ ト ・ ヨ ト

Conjugacy classes of involutions

Simple Facts

- Conjugacy classes in S_n are determined by their cycle structures, which are partitions of n.
- On The conjugacy classes of involutions in S_n are of the form (2^k, 1^r) such that 0 ≤ r ≤ n, 0 ≤ k ≤ n/2 and 2k + r = n.

Theorem (Schützenberger 77')

An involution $\pi \in I_n$ has r fixed points if and only if P_{π} has r columns of odd length.

・ロト ・回ト ・ヨト ・ ヨト

Conjugacy classes of involutions

Simple Facts

- Conjugacy classes in S_n are determined by their cycle structures, which are partitions of n.
- Observe The conjugacy classes of involutions in S_n are of the form (2^k, 1^r) such that 0 ≤ r ≤ n, 0 ≤ k ≤ $\frac{n}{2}$ and 2k + r = n.
- In other words, conjugacy classes of involutions are determined by the number of fixed points.

Theorem (Schützenberger 77')

An involution $\pi \in I_n$ has r fixed points if and only if P_{π} has r columns of odd length.

・ロト ・ 一下・ ・ ヨト・

3

10 / 26

The set $D_n(r)$

Definition

- The set of Young diagrams of size *n* having exactly *r* odd columns will be denoted by $D_n(r)$.
- The set of standard Young tableaux of shapes taken from $D_n(r)$ is denoted $SYT_n(r)$.

In summary...

Theorem

Let C_{μ} be the conjugacy class of the partition $\mu = (2^k, 1^r)$. Then the restriction of the RSK correspondence

$$R: C_{\mu} \rightarrow SYT_n(r)$$

is a bijection which preserves the major index, i.e. for each $\pi \in C_{\mu}$ we have $maj(\pi) = maj(R(\pi))$.

・ 同 ト ・ ヨ ト ・ ヨ ト

12 / 26

・ロト ・四ト ・ヨト ・ヨト

Auxiliary numbers

Definition

For a shape $\lambda = (\lambda_0, \lambda_1, \dots, \lambda_u)$, let

$$b(\lambda)=\sum_{i=0}^{u}i\lambda_{i}.$$

Eli Bagno and Yisca Kares Continuity of the major index on involutions

э

Auxiliary numbers

Definition

For a shape $\lambda = (\lambda_0, \lambda_1, \dots, \lambda_u)$, let

$$b(\lambda) = \sum_{i=0}^{u} i\lambda_i.$$

Fact

The numbers $b(\lambda)$, $(b(\lambda'))$ can be easily calculated by writing for each *i* the number *i* inside each square of row (column) *i* of λ and adding up the numbers to get the rows (columns) sum respectively.

通 ト イ ヨ ト イ ヨ ト

Auxiliary numbers

Definition

For a shape $\lambda = (\lambda_0, \lambda_1, \dots, \lambda_u)$, let

$$b(\lambda) = \sum_{i=0}^{u} i\lambda_i.$$

Fact

The numbers $b(\lambda)$, $(b(\lambda'))$ can be easily calculated by writing for each *i* the number *i* inside each square of row (column) *i* of λ and adding up the numbers to get the rows (columns) sum respectively.

< 同 > < 三 > < 三 >

14/26

Continuity and extreme values inside each diagram

Theorem (Billey, Kovalinka, Swanson)

Let λ be a Young diagram. Then we have:

$$m(\lambda) := Min\{maj(T) \mid T \in SYT(\lambda)\} = b(\lambda).$$

$$M(\lambda) := Max\{maj(T) \mid T \in SYT(\lambda)\} = \binom{n}{2} - b(\lambda').$$

Moreover, every value between $m(\lambda)$ and $M(\lambda)$ appears at least once except in the case when λ is a rectangle with at least two rows and columns, in which case the values $m(\lambda) + 1$ and $M(\lambda) - 1$ are missing.

Extreme values over $D_n(r)$

Theorem (B,K 21')

Let n = 2k + r.

- The minimum value of the major index on $D_n(r)$ is k. It is attained by the diagram $\lambda = (n k, k)$.
- Of The maximum value of the major index on D_n(r) is ⁿ₂ ^r₂. It is attained by the odd hook λ = (r, 1^{2k}) = (n 2k, 1^{2k}).

Example

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・

Minimal gap inside each diagram

Theorem (B,K 21')

1 Let $n \ge 6$ and let $\lambda \vdash n$ such that $\lambda \ne (1^n)$ and $\lambda \ne (n)$. Then

$$M(\lambda) - m(\lambda) \ge 4.$$

(2) if $\lambda = (a^b)$ is a rectangle then

$$M(\lambda) - m(\lambda) \ge 6.$$

э

Our main result

Theorem

Let $\mu = (2^k, 1^r)$ be a partition of n and let C_{μ} be the corresponding conjugacy class of involutions in S_n . Then

- If $r \neq 0$ then the major index on C_{μ} attains all values between k and $\binom{n}{2} \binom{r}{2}$.
- If r = 0 then it attains all the values above excluding k + 1 and $\binom{n}{2} 1$.

Moreover, any other value outside this range is not attained.

Example							
Conj. class with 3 fixed points:	Conj. class without fixed points:						
	< 日 > < 酉 > < 直 > < 直 > < 直 > < 直 > のへの						

• Traverse $D_n(r)$, starting with $\lambda^0 = (n - k, k)$, which attains the minimum value, k, of maj over $D_n(r)$ which is k.

э

・ 同 ト ・ ヨ ト ・ ヨ ト

• Traverse $D_n(r)$, starting with $\lambda^0 = (n - k, k)$, which attains the minimum value, k, of maj over $D_n(r)$ which is k.

э

・ 同 ト ・ ヨ ト ・ ヨ ト

• Traverse $D_n(r)$, starting with $\lambda^0 = (n - k, k)$, which attains the minimum value, k, of maj over $D_n(r)$ which is k.

• End with the odd hook diagram $\lambda^e = (n - 2k, 1^{2k})$, attaining the maximum value of *maj* over $D_n(r)$ which is $\binom{n}{2} - \binom{r}{2}$.

くぼう くほう くほう

• Traverse $D_n(r)$, starting with $\lambda^0 = (n - k, k)$, which attains the minimum value, k, of maj over $D_n(r)$ which is k.

• End with the odd hook diagram $\lambda^e = (n - 2k, 1^{2k})$, attaining the maximum value of maj over $D_n(r)$ which is $\binom{n}{2} - \binom{r}{2}$.

The algorithm Cont.

• The algorithm traverses the set $D_n(r)$ in such a way that in each step one or two squares of a diagram $\lambda \in D_n(r)$ are transferred to a new place to obtain a diagram $\nu \in D_n(r)$ such that

$$M(\lambda) \ge m(\nu)$$

where $M(\lambda)$ $(m(\nu))$ is the maximum (minimum) value of maj on $SYT(\lambda)$ $(SYT(\nu))$, respectively

The algorithm Cont.

• The algorithm traverses the set $D_n(r)$ in such a way that in each step one or two squares of a diagram $\lambda \in D_n(r)$ are transferred to a new place to obtain a diagram $\nu \in D_n(r)$ such that

$$M(\lambda) \ge m(\nu)$$

where $M(\lambda)$ $(m(\nu))$ is the maximum (minimum) value of maj on $SYT(\lambda)$ $(SYT(\nu))$, respectively

• We exclude the hooks from the discussion here. Odd hooks are our final cases while even hooks are treated separately.

(4回) (1日) (日) 日

Case I: Double stair

 $\lambda = (\lambda_1, \dots, \lambda_u, 0, \dots, 0)$ contains a consecutive sequence of rows of strictly descending length:

 $\lambda_i > \lambda_{i+1} > \lambda_{i+2} \ge 0.$

Case I: Double stair

 $\lambda = (\lambda_1, \dots, \lambda_u, 0, \dots, 0)$ contains a consecutive sequence of rows of strictly descending length:

 $\lambda_i > \lambda_{i+1} > \lambda_{i+2} \ge 0.$

• Take the maximal such sequence.

3

・ 同 ト ・ ヨ ト ・ ヨ ト

Case I: Double stair

 $\lambda = (\lambda_1, \dots, \lambda_u, 0, \dots, 0)$ contains a consecutive sequence of rows of strictly descending length:

 $\lambda_i > \lambda_{i+1} > \lambda_{i+2} > 0.$

- Take the maximal such sequence.
- This means that λ has columns of lengths i and i + 1.

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

Case I: Double stair

 $\lambda = (\lambda_1, \dots, \lambda_u, 0, \dots, 0)$ contains a consecutive sequence of rows of strictly descending length:

 $\lambda_i > \lambda_{i+1} > \lambda_{i+2} > 0.$

- Take the maximal such sequence.
- This means that λ has columns of lengths *i* and *i* + 1.
- Move the last square of row i to the end of row i + 2 (which might be empty) to form ν .

* (四) * (三) * (三) (三) (三)

Case I: Double stair

 $\lambda = (\lambda_1, \dots, \lambda_n, 0, \dots, 0)$ contains a consecutive sequence of rows of strictly descending length:

 $\lambda_i > \lambda_{i+1} > \lambda_{i+2} > 0.$

- Take the maximal such sequence.
- This means that λ has columns of lengths *i* and *i* + 1.
- Move the last square of row *i* to the end of row i + 2 (which might be empty) to form ν .
- The number of odd columns had not been changed. (columns of lengths i, i + 1 changed to columns of lengths i - 1, i + 2).

20 / 26

Another example

イロト イロト イヨト イヨト

2

21/26

A consecutive sequence of rows of strictly descending length does not exist.

• In this case there must exist some *i* such that $\lambda_i > \lambda_{i+1} = \lambda_{i+2}$

22 / 26

э

・ 同 ト ・ ヨ ト ・ ヨ ト …

A consecutive sequence of rows of strictly descending length does not exist.

• In this case there must exist some i such that $\lambda_i > \lambda_{i+1} = \lambda_{i+2}$

• Choose *i* to be maximal with respect to this property.

3

・ 同 ト ・ ヨ ト ・ ヨ ト

A consecutive sequence of rows of strictly descending length does not exist.

• In this case there must exist some i such that $\lambda_i > \lambda_{i+1} = \lambda_{i+2}$

- Choose *i* to be maximal with respect to this property.
- We must have $\lambda_{i-1} = \lambda_i$, otherwise this case was already treated earlier.

A consecutive sequence of rows of strictly descending length does not exist.

• In this case there must exist some i such that $\lambda_i > \lambda_{i+1} = \lambda_{i+2}$

- Choose *i* to be maximal with respect to this property.
- We must have $\lambda_{i-1} = \lambda_i$, otherwise this case was already treated earlier.
- This means that the squares at the end of rows i 1 and i form a vertical domino.

 If λ_i - λ_{i+1} = 1 then by the maximality of *i* we must have λ_i = 2. Transfer the domino to the end of the first column.

э

글 제 제 글 제

 If λ_i - λ_{i+1} = 1 then by the maximality of *i* we must have λ_i = 2. Transfer the domino to the end of the first column.

If λ_i − λ_{i+1} > 1, then we place that domino at the ends of rows i + 1 and i + 2.

Some more details

In order to prove that $M(\lambda) \ge m(\nu)$ We prove that either

$$0 \leq m(\nu) - m(\lambda) \leq 4$$

or

$$M(\nu) - M(\lambda) = 2$$

・ロト ・回ト ・ヨト ・ヨト

э

24 / 26

Example

How to conclude $M(\lambda) \ge m(\nu)$ from $0 \le m(\nu) - m(\lambda) \le 4$?

- In the picture below:

Blue part
$$= m(\nu) - m(\lambda) \le 4$$

Blue + middle part =
$$M(\lambda) - m(\lambda) \ge 4$$

We conclude:

Middle part
$$= M(\lambda) - m(\nu) \ge 0$$

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・

э

Thank you for your attention!!

< 同 > < 三 > < 三 >