Ėdouard Lucas:

The theory of recurrent sequences is an inexhaustible mine which contains all the properties of numbers; by calculating the successive terms of such sequences, decomposing them into their prime factors and seeking out by experimentation the laws of appearance and reproduction of the prime numbers, one can advance in a systematic manner the study of the properties of numbers and their application to all branches of mathematics.

Enumerating Orderings on Matched Product Graphs

Amir Barghi ${ }^{1}$ \& Daryl DeFord ${ }^{2}$
${ }^{1}$ Department of Mathematics and Statistics Saint Michael's College - Colchester, VT
${ }^{2}$ Department of Mathematics and Statistics Washington State University - Pullman, WA

Permutation Patterns Valparaiso University
 June 21, 2022

Outline

(1) Combinatorial Motivation
(2) Graph Stirling Numbers
(3) Planarity for Matched Path Products (Square Permutations)
(4) Enumeration on Graph Products
(5) Path Decompositions of Paths (???)

Warmup Problem (Honsberger)

Warmup Question

A classroom has 5 rows of 5 desks per row. The teacher requires that each pupil to change his seat by going either to the seat in front, the one behind, the one to his left, or the one to his right (of course not all these options are possible to all students). In how many ways can the students rearrange themselves?

Warmup Problem (Honsberger)

Warmup Question

A classroom has 5 rows of 5 desks per row. The teacher requires that each pupil to change his seat by going either to the seat in front, the one behind, the one to his left, or the one to his right (of course not all these options are possible to all students). In how many ways can the students rearrange themselves?

Answer

Zero.

Warmup Problem Solution

Generalizations

More interesting problem

Warmup Question II

A classroom has 5 rows of 5 desks per row. The teacher allows each pupil to change his seat by going either to the seat in front, the one behind, the one to his left, or the one to his right or to remain in place. In how many ways can the students rearrange themselves?

More interesting problem

Warmup Question II

A classroom has 5 rows of 5 desks per row. The teacher allows each pupil to change his seat by going either to the seat in front, the one behind, the one to his left, or the one to his right or to remain in place. In how many ways can the students rearrange themselves?

Answer

19,114,420

More interesting problem

Warmup Question II

A classroom has 5 rows of 5 desks per row. The teacher allows each pupil to change his seat by going either to the seat in front, the one behind, the one to his left, or the one to his right or to remain in place. In how many ways can the students rearrange themselves?

Answer

19,114,420

Definition (Graph Factorial)

The factorial of a graph G is the number of ways to decompose the vertices of G into a collection of disjoint cycles.

Example

Chess Moves

Warmup Question III

A classroom has m rows of n desks per row. The teacher allows each pupil to change his seat by going either moving like a given set of chess pieces or to remain in place. In how many ways can the students rearrange themselves?

Knight Rearrangements

Knight's Tour

- 8×8 Knight's Tour (Hamiltonian Cycles)
- 26,534,728,821,064 1,2

[^0]
Knight's Tour

- 8×8 Knight's Tour (Hamiltonian Cycles)
- 26,534,728,821,064 ${ }^{1,2}$
- 8×8 Knight's Graph Factorial
-8,121,130,233,753,702,400

[^1]
Stirling Numbers for Arbitrary Graphs

Definition

Let G be a graph. The k th Stirling number of the first kind for G, denoted by $\left[\begin{array}{l}G \\ k\end{array}\right]$, is the number of vertex-disjoint partitions of G into k cycles, where 1-cycles and 2-cycles are allowed and cycles of order three or higher have two orientations. The graphical factorial G ! is then $\sum_{k}\left[\begin{array}{l}G \\ k\end{array}\right]$.

Simple Graph Families

Theorem (D. 2014 ${ }^{1}$)

Let $n, m \in \mathbb{N}$. Then
(1) $K_{n}!=n!$;
(2) $P_{n}!=f_{n+1}$;
(3) $C_{n}!=f_{n+1}+f_{n-1}+2$, for $n \geq 3$;

Theorem (B. 2018²)

Let $n, m, k \in \mathbb{N}$. Then
(1) $\left[\begin{array}{c}K_{n} \\ k\end{array}\right]=\left[\begin{array}{l}n \\ k\end{array}\right]$;
(2) $\left[\begin{array}{c}P_{n} \\ k\end{array}\right]=\binom{k}{n-k}$;
(3) $\left[\begin{array}{c}C_{n} \\ k\end{array}\right]=\binom{k-1}{n-k}+2\binom{k-1}{n-k-1}$ and $\left[\begin{array}{c}C_{n} \\ 1\end{array}\right]=2$, for $n \geq 3$ and $k \geq 2$;
1^{1} D. DeFord, Seating rearrangements of arbitrary graphs, Involve, (2014).
2 A. Barghi, Stirling numbers of the first kind for graphs, Australasian Journal of Combinatorics, (2018).

Obstructions and Observations

- For arbitrary graphs enumeration is $\# P$ complete by reduction to matrix permanent
- Problem of convertible matrices $\operatorname{det}\left(A^{\prime}\right)=\operatorname{per}(A)$ raised by Pòlya (1913). Progress and combinatorial characterizations Beineke and Harary (1966), Little (1975), Vazarani and Yannakakis (1988). Excellent survey Kuperberg (1998). Resolved by Robertson, Seymour, and Thomas (1999).
- Lots of interesting (combinatorially tractable) sequences from families of graphs e.g. W_{n} as $n \rightarrow \infty$
- Distributions over larger families e.g. Trees/Forests on n nodes

Obstructions and Observations

- For arbitrary graphs enumeration is $\# P$ complete by reduction to matrix permanent
- Problem of convertible matrices $\operatorname{det}\left(A^{\prime}\right)=\operatorname{per}(A)$ raised by Pòlya (1913). Progress and combinatorial characterizations Beineke and Harary (1966), Little (1975), Vazarani and Yannakakis (1988). Excellent survey Kuperberg (1998). Resolved by Robertson, Seymour, and Thomas (1999).
- Lots of interesting (combinatorially tractable) sequences from families of graphs e.g. W_{n} as $n \rightarrow \infty$
- Distributions over larger families e.g. Trees/Forests on n nodes
- .. but then what?!?

Obstructions and Observations

- For arbitrary graphs enumeration is $\# P$ complete by reduction to matrix permanent
- Problem of convertible matrices $\operatorname{det}\left(A^{\prime}\right)=\operatorname{per}(A)$ raised by Pòlya (1913). Progress and combinatorial characterizations Beineke and Harary (1966), Little (1975), Vazarani and Yannakakis (1988). Excellent survey Kuperberg (1998). Resolved by Robertson, Seymour, and Thomas (1999).
- Lots of interesting (combinatorially tractable) sequences from families of graphs e.g. W_{n} as $n \rightarrow \infty$
- Distributions over larger families e.g. Trees/Forests on n nodes
- .. but then what?!?
- Graph products

Supra-Adjacency

Disjoint Layers

Supra-Adjacency
M. Kivelä, A. Arenas, M. Barthelemy, James P. Gleeson, Y. Moreno, M. A. Porter, Multilayer networks, Journal of Complex Networks, (2014).

Matched Product

Definition (Matched Product)

Let $G_{1}, G_{2}, \ldots, G_{k}$ be an ordered list of graphs, each with n nodes and a common labeling of the nodes and let C be a graph with k ordered nodes. The matched product $C\left(G_{1}, G_{2}, \ldots, G_{k}\right)$ is the graph with node set $\bigcup V_{i}$ and two nodes v_{i}^{α} and v_{j}^{β} in $\longrightarrow\left(G_{1}, G_{2}, \ldots, G_{k}\right)$ are connected if and only if either
(1) $c_{\alpha} \sim c_{\beta}$ and $i=j$
(2) $\alpha=\beta$ and $v_{i}^{\alpha} \sim v_{j}^{\alpha}$
where c_{α} and c_{β} are nodes in C and v_{i}^{α} represents the copy of node i in G_{α}.

Example: Petersen Graph

Figure: $P_{2}\left(C_{5}, C_{5}\right)$

Relationship to Other Graph Products

Theorem

There are labelings of the graphs below such that the following hold:
(1) The cartesian product of G and H can be represented by $H(G, G, \ldots, G)$
(2) The rooted product of G and H can be represented by $H\left(G, E_{n}, E_{n}, \ldots, E_{n}\right)$
(3) The hierarchical product ${ }^{1,2}$ of G and H with subset $\left\{a_{i}\right\} \subset H$ can be represented by $H\left(G_{1}, G_{2}, \ldots, G_{k}\right)$ where

$$
G_{i}=\left\{\begin{array}{ll}
G & \text { if } i \in\left\{a_{i}\right\} \\
E_{n} & \text { otherwise }
\end{array} .\right.
$$

1 L. Barrièrea, C. Dalfóa, M. A. Fiola, M. Mitjanab, The generalized hierarchical product of graphs, Discrete Mathematics, (2009)
2 P. S. Skardal and K. Wash, Spectral properties of the hierarchical product of graphs, Physical Review E, (2016).

Property Preservation

Proposition

(1) Let $G_{1}, G_{2}, \ldots, G_{k}$ and C be Eulerian graphs then any labeling of $C\left(G_{1}, G_{2}, \ldots, G_{k}\right)$ is Eulerian.
(2) Let $\left(G_{1}, G_{2}, \ldots, G_{k}\right)$ and C have Hamiltonian cycles. Then $C\left(G_{1}, G_{2}, \ldots, G_{k}\right)$ is Hamiltonian.

Proof.

(1) A graph is Eulerian if each vertex has even degree. Since the G_{i} and C are Eulerian each vertex in the product has even degree.
(2) Label the nodes in ($G_{1}, G_{2}, \ldots, G_{k}$) arbitrarily and let $\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ be a Hamiltonian cycle in C. Starting at an arbitrary vertex in $G_{a_{1}}$ traverse the cycle in $G_{a_{1}}$ and then travel along the edge to $G_{a_{2}}$. The hypotheses guarantee that we can continue to traverse each layer, ending at a copy of the original node on $G_{a_{k}}$.

Labeling Matters!

Figure: Two labelings of $P_{2}\left(C_{5}, C_{5}\right)$

Planarity Result

Proposition (Planarity)

Let G and H be connected graphs on n nodes. There exists a labeling so that of $P_{2}(G, H)$ is planar if and only if G and H are outerplanar ${ }^{1}$.

[^2]

Planarity Result

Proposition (Planarity)

Let G and H be connected graphs on n nodes. There exists a labeling so that of $P_{2}(G, H)$ is planar if and only if G and H are outerplanar ${ }^{1}$.

Figure: A labeling of $P_{2}\left(P_{5}, P_{5}\right)$ that is not planar.

${ }^{1}$ G. Chartrand, and F. Harary, Planar permutation graphs, Annales de I'Institut Henri Poincar B, (1967).

Permutations of P_{n}

Theorem

Let $\pi \in S_{n}$. Then $P_{2}\left(P_{n}, P_{n}\right)$ with labelings $(1,2,3, \ldots, n)$ and $(\pi(1), \pi(2), \pi(3), \ldots, \pi(n))$ is planar if and only if π is a square permutation. There are $2(n+2) 4^{n-2}-4(2 n-5)\binom{2 n-6}{n-3}$ such permutations.

Proof.

A permutation is square if every point is a record (its consecutive-minima polygon has at most 4 'sides'). If π is square construct directly from diagram. If π is not square, there exists a vertex $2<k<n-1$ such that contracting the edges between $1, \ldots, k-1$ and $k+1, \ldots, n$ is isomorphic to $K_{3,3}$.

Permutation Examples

Figure: $(3,1,4,5,2)$

Figure: $(5,2,3,4,1)$

More Questions:

- Enumeration over relabelings:
- Planarity
- Factorial
- Chromatic Number
- etc.
- Products that are planar for all labelings

$$
P_{2}\left(S_{n}, P_{n}\right) \text { and } P_{2}\left(S_{n}, S_{n}\right)
$$

- Products that are isomorphic for all labelings

$$
P_{2}\left(K_{n}, G\right) \text { and } P_{2}\left(S_{n}, C_{n}\right)
$$

- Products that are never isomorphic for any pair of labelings

Comb Graph Factorials

G_{n}		$G_{n}!$
P_{2}	$\left(E_{n}, E_{n}\right)$	2^{n}
P_{2}	$\left(P_{n}, E_{n}\right)$	L_{n}
P_{2}	$\left(S_{n}, E_{n}\right)$	$2^{n+1}+n 2^{n}$
P_{2}	$\left(C_{n}, E_{n}\right)$	$2 L_{n-1}+2 L_{n-2}+4$
P_{2}	$\left(K_{n}, E_{n}\right)$	$\sum_{\ell}\binom{n}{\ell}(n-\ell)!$
P_{2}	$\left(C_{n}, C_{n}\right)$	$6+4(-1)^{n}+(2+\sqrt{3})^{n}+(2-\sqrt{3})^{n}$ $+(1+\sqrt{2})^{n}+(1-\sqrt{2})^{n}$

The Pell numbers, L_{n}, are defined by $L_{0}=1, L_{1}=2$, and $L_{n}=2 L_{n-1}+L_{n-2}$.

Stirling Numbers for Graphs
Exciting Enumerations

$$
P_{2}\left(S_{9}, P_{9}\right)
$$

0

$$
P_{2}\left(S_{n}, P_{n}\right)
$$

Examples

$$
\begin{aligned}
P_{2}\left(S_{n}, P_{n}\right)! & =2 L_{n+1}+\left(L_{j-1}+L_{j-2}\right) L_{n-j-1} \\
& +\sum_{j=1}^{n}\left[L_{j-1}+2 L_{j-2}+L_{n-3}\right] L_{n-j} \\
& +2\left(\sum_{j=1}^{n} L_{n-j}+\sum_{j=1}^{n-1}\left[L_{j-1}+L_{j-2}\right] \sum_{m=j+1}^{n} L_{n-m}\right)
\end{aligned}
$$

$P_{2}(G, H)$ Enumeration

n	P_{2}	$\left(C_{n}, S_{n}\right)!$	P_{2}	$\left(K_{n}, S_{n}\right)$!	P_{2}	$\left(P_{n}, K_{n}\right)!$	P_{2}	$\left(P_{n}, K_{n}\right)$!	P_{2}	$\left(C_{n}, K_{n}\right)$!
2		9		48		4		9		4
3		49		293		9		48		20
4		140		2022		49		345		121
5		394		15657		216		2994		589
6		1093		135044		1773		30957		4820
7		2986		1287813		12113		369132		35293
8		8056		13480938		128036		4996761		365633
9		21504		53879977		1172341		5625710		3525212
10		56889		903771512		4885241		65833149		3894725

Star Enumeration

Definition

Let G be a graph. Define the m-star of G as the join of G and E_{m}, denoted by $S_{m}(G)$, i.e., $S_{m}(G)=G \bowtie E_{m}$.

Definition

Let G be a graph with n vertices. We denote the cardinality of the set of all partitions of G into j vertex-disjoint directed and ordered paths by $\left\langle\begin{array}{c}G \\ j\end{array}\right\rangle$, where we call each part in of one these partitions a partitioning directed path in G.

Theorem

Let G be a graph with $n \geq 2$ vertices. If $m \leq n$, then

$$
\left[\begin{array}{c}
S_{m}(G) \\
2
\end{array}\right]=m\left[\begin{array}{c}
S_{m-1}(G) \\
1
\end{array}\right]+\left[\begin{array}{c}
m \\
2
\end{array}\right]\left\langle\begin{array}{c}
G \\
m
\end{array}\right\rangle ;
$$

otherwise, $\left[\begin{array}{c}S_{m}(G) \\ 2\end{array}\right]=0$.

Enumerative Schematic (Generic)

Figure: A cyclic partition of $S_{m}(G)$ into a single cycle

Enumeration Schematic (Complete)

Enumerative Schematic (Forests)

Enumeration Examples

Theorem

If $n, m \in \mathbb{N}$, then $\left[\begin{array}{c}S_{m}\left(K_{n}\right) \\ k\end{array}\right]$ is equal to

$$
\left[\begin{array}{c}
n \\
k-m
\end{array}\right]+\sum_{i \geq 1} \sum_{j=1}^{n} \sum_{l=0}^{n-1}\binom{m}{i}\left[\begin{array}{c}
n-j \\
l
\end{array}\right] j!\binom{j-1}{i-1}\left[\begin{array}{c}
i \\
k-(m-i+l)
\end{array}\right]
$$

Theorem

Suppose $m, n \in \mathbb{N}$. Let F be a forest of order n. Then, for $k \geq 2$,

$$
\left[\begin{array}{c}
S_{m}(F) \\
k
\end{array}\right] \leq\left[\begin{array}{c}
F \\
k-m
\end{array}\right]+\sum_{i \geq 1} m^{\underline{i} 2^{k-(m-i)}}\left\langle\begin{array}{c}
F \\
k-(m-i)
\end{array}\right\rangle
$$

One last Extension...

Cooldown Question (Path Decompositions of Paths)

For fixed n, consider the permutations π determined by ordered path decompositions of \mathbb{P}_{n}. Can this set be characterized by pattern avoidance? Example:

The End!

Thanks!

T-shaped Tetrominoes

$4 \sqrt{4}$

[^0]: 1 M. Löbbing and I. Wegener, The Number of Knight's Tours Equals 33,439,123,484,294 Counting with Binary Decision Diagrams, Electronic Journal of Combinatorics, (1996).

 2 B. McKay, Knight's Tours on an 8×8 Chessboard, Technical Report TR-CS-97-03, Australian National University, (1997).

[^1]: 1 M. Löbbing and I. Wegener, The Number of Knight's Tours Equals $33,439,123,484,294$ Counting with Binary Decision Diagrams, Electronic Journal of Combinatorics, (1996).

 2 B. McKay, Knight's Tours on an 8×8 Chessboard, Technical Report TR-CS-97-03, Australian National University, (1997).

[^2]: ${ }^{1}$ G. Chartrand, and F. Harary, Planar permutation graphs, Annales de I'Institut Henri Poincar B, (1967).

