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Introduction

Èdouard Lucas:

The theory of recurrent sequences is an inexhaustible mine
which contains all the properties of numbers; by calculating the
successive terms of such sequences, decomposing them into their
prime factors and seeking out by experimentation the laws of
appearance and reproduction of the prime numbers, one can
advance in a systematic manner the study of the properties of
numbers and their application to all branches of mathematics.
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Warmup Problem (Honsberger)

Warmup Question

A classroom has 5 rows of 5 desks per row. The teacher requires that
each pupil to change his seat by going either to the seat in front, the one
behind, the one to his left, or the one to his right (of course not all these
options are possible to all students). In how many ways can the students
rearrange themselves?

Answer

Zero.
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Warmup Problem Solution
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Generalizations
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More interesting problem

Warmup Question II

A classroom has 5 rows of 5 desks per row. The teacher allows each pupil
to change his seat by going either to the seat in front, the one behind, the
one to his left, or the one to his right or to remain in place. In how
many ways can the students rearrange themselves?

Answer

19,114,420
Definition (Graph Factorial)

The factorial of a graph G is the number of ways to decompose the
vertices of G into a collection of disjoint cycles.
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Example

Original Cycle Decomposition
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Chess Moves

Warmup Question III

A classroom has m rows of n desks per row. The teacher allows each
pupil to change his seat by going either moving like a given set of chess
pieces or to remain in place. In how many ways can the students
rearrange themselves?
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Knight Rearrangements
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Knight’s Tour

• 8× 8 Knight’s Tour (Hamiltonian Cycles)

• 26,534,728,821,064 1,2

• 8× 8 Knight’s Graph Factorial

• 8,121,130,233,753,702,400

1 M. Löbbing and I. Wegener, The Number of Knight’s Tours Equals 33,439,123,484,294 Counting with Binary Decision Diagrams,
Electronic Journal of Combinatorics, (1996).

2 B. McKay, Knight’s Tours on an 8 × 8 Chessboard, Technical Report TR-CS-97-03, Australian National University, (1997).
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Stirling Numbers for Arbitrary Graphs

Definition

Let G be a graph. The kth Stirling number of the first kind for G,
denoted by

[
G
k

]
, is the number of vertex-disjoint partitions of G into k

cycles, where 1-cycles and 2-cycles are allowed and cycles of order three or
higher have two orientations. The graphical factorial G! is then

∑
k

[
G
k

]
.
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Simple Graph Families

Theorem (D. 20141)

Let n,m ∈ N. Then

1 Kn! = n!;

2 Pn! = fn+1;

3 Cn! = fn+1 + fn−1 + 2, for n ≥ 3;

Theorem (B. 20182)

Let n,m, k ∈ N. Then

1
[
Kn

k

]
=
[
n
k

]
;

2
[
Pn

k

]
=
(
k

n−k
)
;

3
[
Cn

k

]
=
(
k−1
n−k
)
+ 2
(
k−1

n−k−1
)

and
[
Cn

1

]
= 2, for n ≥ 3 and k ≥ 2;

1 D. DeFord, Seating rearrangements of arbitrary graphs, Involve, (2014).

2 A. Barghi, Stirling numbers of the first kind for graphs, Australasian Journal of Combinatorics, (2018).
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Obstructions and Observations

• For arbitrary graphs enumeration is #P complete by reduction to
matrix permanent

• Problem of convertible matrices det(A′) = per(A) raised by Pòlya
(1913). Progress and combinatorial characterizations Beineke and
Harary (1966), Little (1975), Vazarani and Yannakakis (1988).
Excellent survey Kuperberg (1998). Resolved by Robertson, Seymour,
and Thomas (1999).

• Lots of interesting (combinatorially tractable) sequences from families
of graphs e.g. Wn as n→∞

• Distributions over larger families e.g. Trees/Forests on n nodes

• .. but then what?!?

• Graph products
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Supra–Adjacency

Disjoint Layers Supra–Adjacency

M. Kivelä, A. Arenas, M. Barthelemy, James P. Gleeson, Y. Moreno, M. A. Porter, Multilayer networks, Journal of Complex

Networks, (2014).
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Matched Product

Definition (Matched Product)

Let G1, G2, . . . , Gk be an ordered list of graphs, each with n nodes and a
common labeling of the nodes and let C be a graph with k ordered nodes.

The matched product C (G1, G2, . . . , Gk) is the graph with node set⋃
Vi and two nodes vαi and vβj in C (G1, G2, . . . , Gk) are connected if

and only if either

1 cα ∼ cβ and i = j

2 α = β and vαi ∼ vαj
where cα and cβ are nodes in C and vαi represents the copy of node i in
Gα.
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Example: Petersen Graph

Figure: P2 (C5, C5)
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Relationship to Other Graph Products

Theorem

There are labelings of the graphs below such that the following hold:

1 The cartesian product of G and H can be represented by

H (G,G, . . . , G)

2 The rooted product of G and H can be represented by

H (G,En, En, . . . , En)

3 The hierarchical product1,2 of G and H with subset {ai} ⊂ H can be

represented by H (G1, G2, . . . , Gk) where

Gi =

{
G if i ∈ {ai}
En otherwise

.

1 L. Barrièrea, C. Dalfóa, M. A. Fiola, M. Mitjanab, The generalized hierarchical product of graphs, Discrete Mathematics, (2009).

2 P. S. Skardal and K. Wash, Spectral properties of the hierarchical product of graphs, Physical Review E, (2016).
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Property Preservation

Proposition

1 Let G1, G2, . . . , Gk and C be Eulerian graphs then any labeling of

C (G1, G2, . . . , Gk) is Eulerian.

2 Let (G1, G2, . . . , Gk) and C have Hamiltonian cycles. Then

C (G1, G2, . . . , Gk) is Hamiltonian.

Proof.

1 A graph is Eulerian if each vertex has even degree. Since the Gi and
C are Eulerian each vertex in the product has even degree.

2 Label the nodes in (G1, G2, . . . , Gk) arbitrarily and let
(a1, a2, . . . , ak) be a Hamiltonian cycle in C. Starting at an arbitrary
vertex in Ga1 traverse the cycle in Ga1 and then travel along the
edge to Ga2 . The hypotheses guarantee that we can continue to
traverse each layer, ending at a copy of the original node on Gak .
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Labeling Matters!

Cylinder Graph Petersen Graph

Figure: Two labelings of P2 (C5, C5)
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Planarity Result

Proposition (Planarity)

Let G and H be connected graphs on n nodes. There exists a labeling so

that of P2 (G,H) is planar if and only if G and H are outerplanar1.

Figure: A labeling of P2 (P5, P5) that is not planar.

1 G. Chartrand, and F. Harary, Planar permutation graphs , Annales de l’Institut Henri Poincar B, (1967).
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Permutations of Pn

Theorem

Let π ∈ Sn. Then P2 (Pn, Pn) with labelings (1, 2, 3, . . . , n) and

(π(1), π(2), π(3), . . . , π(n)) is planar if and only if π is a square
permutation. There are 2(n+ 2)4n−2 − 4(2n− 5)

(
2n−6
n−3

)
such

permutations.

Proof.

A permutation is square if every point is a record (its consecutive–minima
polygon has at most 4 ‘sides’). If π is square construct directly from
diagram. If π is not square, there exists a vertex 2 < k < n− 1 such that
contracting the edges between 1, . . . , k − 1 and k + 1, . . . , n is isomorphic
to K3,3.
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Permutation Examples

Figure: (3,1,4,5,2) Figure: (5,2,3,4,1)
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More Questions:

• Enumeration over relabelings:
• Planarity
• Factorial
• Chromatic Number
• etc.

• Products that are planar for all labelings

P2 (Sn, Pn) and P2 (Sn, Sn)

• Products that are isomorphic for all labelings

P2 (Kn, G) and P2 (Sn, Cn)

• Products that are never isomorphic for any pair of labelings
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Comb Graph Factorials

Gn Gn!

P2 (En, En) 2n

P2 (Pn, En) Ln

P2 (Sn, En) 2n+1 + n2n

P2 (Cn, En) 2Ln−1 + 2Ln−2 + 4

P2 (Kn, En)
∑
`

(
n
`

)
(n− `)!

P2 (Cn, Cn) 6 + 4(−1)n +
(
2 +
√
3
)n

+
(
2−
√
3
)n

+
(
1 +
√
2
)n

+
(
1−
√
2
)n

The Pell numbers, Ln, are defined by L0 = 1, L1 = 2, and Ln = 2Ln−1 + Ln−2.
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P2 (S9, P9)
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P2 (Sn, Pn)

Examples

P2 (Sn, Pn)! =2Ln+1 + (Lj−1 + Lj−2)Ln−j−1

+

n∑
j=1

[Lj−1 + 2Lj−2 + Ln−3]Ln−j

+2

 n∑
j=1

Ln−j +

n−1∑
j=1

[Lj−1 + Lj−2]

n∑
m=j+1

Ln−m


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P2 (G,H) Enumeration

n
̂

P2 (Cn, Sn)!
̂

P2 (Kn, Sn)! P2 (Pn,Kn)!
̂

P2 (Pn,Kn)! P2 (Cn,Kn)!

2 9 48 4 9 4

3 49 293 9 48 20

4 140 2022 49 345 121

5 394 15657 216 2994 589

6 1093 135044 1773 30957 4820

7 2986 1287813 12113 369132 35293

8 8056 13480938 128036 4996761 365633

9 21504 153879977 1172341 75625710 3525212

10 56889 1903771512 14885241 1265833149 43894725
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Star Enumeration

Definition

Let G be a graph. Define the m-star of G as the join of G and Em,
denoted by Sm(G), i.e., Sm(G) = G 1 Em.

Definition

Let G be a graph with n vertices. We denote the cardinality of the set of
all partitions of G into j vertex-disjoint directed and ordered paths by

〈
G
j

〉
,

where we call each part in of one these partitions a partitioning directed
path in G.

Theorem

Let G be a graph with n ≥ 2 vertices. If m ≤ n, then[
Sm(G)

2

]
= m

[
Sm−1(G)

1

]
+

[
m

2

]〈
G

m

〉
;

otherwise,
[
Sm(G)

2

]
= 0.
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Enumerative Schematic (Generic)

Em

G

µ1 µ2 · · · µm

π1 π2 · · · πm

Figure: A cyclic partition of Sm(G) into a single cycle
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Enumeration Schematic (Complete)

G1

· · ·

H2

Kn

· · ·

1-cycles in EmEm

G ' Sn,i

H1

Partitioning cycles with vertices in Em Partitioning cycles without vertices in Em

Figure: A cyclic partition of Sn,m
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Enumerative Schematic (Forests)

Em

F

µ1 µ2 · · · µi

π1 π2 · · · πl

· · ·

In a Cycle or Not? In a Cycle or Not? In a Cycle or Not?

1-cycles in Em
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Enumeration Examples

Theorem

If n,m ∈ N, then
[
Sm(Kn)

k

]
is equal to[

n

k −m

]
+
∑
i≥1

n∑
j=1

n−1∑
l=0

(
m

i

)[
n− j
l

]
j!

(
j − 1

i− 1

)[
i

k − (m− i+ l)

]
.

Theorem

Suppose m,n ∈ N. Let F be a forest of order n. Then, for k ≥ 2,[
Sm(F )

k

]
≤
[

F

k −m

]
+
∑
i≥1

mi 2k−(m−i)
〈

F

k − (m− i)

〉
.
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One last Extension...

Cooldown Question (Path Decompositions of Paths)

For fixed n, consider the permutations π determined by ordered path
decompositions of Pn. Can this set be characterized by pattern avoidance?
Example:

1 2 3 4 5 6
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The End!

Thanks!
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T-shaped Tetrominoes
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