2-AVOIDANCE

Murray Elder, University of Technology Sydney Joint work with Yoong Kuan Goh PP2022

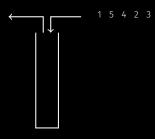
POP STACKS

Definition (Pop stack)

A pop stack operates as follows: either

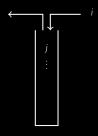
- push the next input token onto the stack
- pop the *entire contents* of the stack

Eg:



DETERMINISTIC POP STACK

A *deterministic* pop stack pushes if i < j, else pops entire contents of the stack:



MULTI-PASS POP STACKS: AKA K-POP STACKS

A permutation is *k-pass pop stack sortable* if it can be sorted using *k* passes through a deterministic pop stack.



Eg: 2-pass?

41352

· 3241

EXERCISE

Eg: 1-pass?

· 123

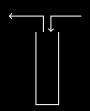
· 213

· 312

· 132

· 231

· 321



Theorem (Avis, Newborn 1981)

A permutation is 1-pass pop stack sortable if and only if it avoids 231, 312.

NOTATION

2-pass?

Recall: we showed p=41352 is 2-pass pop stack sortable, and q=3241 is not.

But *p* contains *q* ?!

NOTATION

A barred permutation is a permutation where some entries have bars on them.

Eg: $4\overline{1}32$. Let unbar $(4\overline{1}32) = 4132$ and removebar $(4\overline{1}32) = 432 \sim 321$.

A permutation p is said to avoid a barred pattern β if

• any subpermutation q of p with $q \sim \text{removebar}(\beta)$ is contained in a subpermutation r of p with $r \sim \text{unbar}(\beta)$.

Eg: 15243 avoids 4132

Eg: 52413 does not avoid 4132

Theorem (Pudwell, Smith¹)

A permutation is 2-pass pop stack sortable if and only if it avoids each of the following:

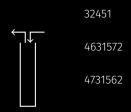
2341 3412 3421 4123 4231 4312 41352 41352

Claesson and Guðmundsson²: is there a

"useful permutation pattern characterization of the k-pop stack-sortable permutations" [for $k \ge 3$]?

¹Pudwell and Smith. Two-stack-sorting with pop stacks. Australasian Journal of Combinatorics, 2019.

²Claesson and Guðmundsson, Enumerating permutationssortable by *k* passes through a pop-stack. Sém. Lothar. Combin., 2018.



If we were to characterise 3-pop stack sortable permutations as those avoiding some list containing 4631572 and 4731562, then we would be mistaken:

4731562 does not avoid this list since it fails to avoid 4631572.

So we made a new definition.

2-AVOIDANCE

Let $F, G \subseteq S^{\infty}$. Let \sim denote "order-isomorphic".

Definition

A permutation p is said to 2-avoid (F, G) if

• if p_1 is a subpermutation of p with $p_1 \sim f \in F$, then p_1 is a subpermutation of p_2 of p and $p_2 \sim g \in G$.

We say that p_1 can be "saved" by some element of G.

Eg: p = 4731562 2-avoids ({32451}, {4631572, 4731562}).

2-PASS AGAIN

Theorem (Pudwell and Smith)

The set of 2-pass pop stack sortable permutations is equal to

$$Av_{B}\left(\left\{2341,3412,3421,4123,4231,4312,3241,4\overline{1}352,413\overline{5}2\right\}\right)$$

becomes

Theorem (Pudwell and Smith)

The set of 2-pass pop stack sortable permutations is equal to

 $Av_2(\{2341,3412,3421,4123,4231,4312,3241,4132\},\{41352\})$

Theorem (E, Goh 2021)

For each $k \in \mathbb{N}$, there exist finite sets F_k , G_k such that a permutation is k-pass pop stack sortable if and only if it 2-avoids (F_k , G_k).

 $F_3 = \{32451, \dots\}, G_3 = \{4631572, 4731562, \dots\}.$ (Actually the sets we construct are quite large)

We also give an algorithm to construct the sets F_k , G_k from F_{k-1} , G_{k-1} . See

https://www.combinatorics.org/ojs/index.php/eljc/article/view/v28i1p54/pdf

$$F = \{1\}, G = \{12, 21\}.$$
 Then $Av_2(F, G) = S^{\infty} \setminus \{1\}.$

This shows that the growth of (proper) 2-avoidance sets can be factorial (in contrast to ³),

Question: what growth rates are possible for 2-avoidance?

- · super-exponential but sub-factorial?
- · super-polynomial but sub-exponential? (in contrast to ⁴)

³Marcus and Tardos, Excluded permutation matrices and the Stanley-Wilf conjecture, J. Combin. Theory Ser. A 2004

⁴Kaiser and Klazar, On growth rates of closed permutation classes, EJC 2003

