Descents on nonnesting multipermutations

Sergi Elizalde
Dartmouth College

Permutation Patterns 2022
Valparaiso University

Descents and plateaus

Definition

Let $\pi=\pi_{1} \pi_{2} \ldots \pi_{m}$ be a sequence of positive integers.
We say that $i \in[m-1]$ is a

- descent if $\pi_{i}>\pi_{i+1}$,

Descents and plateaus

Definition

Let $\pi=\pi_{1} \pi_{2} \ldots \pi_{m}$ be a sequence of positive integers.
We say that $i \in[m-1]$ is a

- descent if $\pi_{i}>\pi_{i+1}$,
- plateau if $\pi_{i}=\pi_{i+1}$,

Descents and plateaus

Definition

Let $\pi=\pi_{1} \pi_{2} \ldots \pi_{m}$ be a sequence of positive integers.
We say that $i \in[m-1]$ is a

- descent if $\pi_{i}>\pi_{i+1}$,
- plateau if $\pi_{i}=\pi_{i+1}$,
- weak descent if $\pi_{i} \geq \pi_{i+1}$.

Descents and plateaus

Definition

Let $\pi=\pi_{1} \pi_{2} \ldots \pi_{m}$ be a sequence of positive integers.
We say that $i \in[m-1]$ is a

- descent if $\pi_{i}>\pi_{i+1}$,
- plateau if $\pi_{i}=\pi_{i+1}$,
- weak descent if $\pi_{i} \geq \pi_{i+1}$.
$\operatorname{des}(\pi)=$ number of descents of π
$\operatorname{plat}(\pi)=$ number of plateaus of π
$\operatorname{wdes}(\pi)=\operatorname{des}(\pi)+\operatorname{plat}(\pi)=$ number of weak descents of π

Descents and plateaus

Definition

Let $\pi=\pi_{1} \pi_{2} \ldots \pi_{m}$ be a sequence of positive integers.
We say that $i \in[m-1]$ is a

- descent if $\pi_{i}>\pi_{i+1}$,
- plateau if $\pi_{i}=\pi_{i+1}$,
- weak descent if $\pi_{i} \geq \pi_{i+1}$.
$\operatorname{des}(\pi)=$ number of descents of π
$\operatorname{plat}(\pi)=$ number of plateaus of π
$\operatorname{wdes}(\pi)=\operatorname{des}(\pi)+\operatorname{plat}(\pi)=$ number of weak descents of π

> Example
> $\operatorname{des}(36522131)=$ $\operatorname{plat}(36522131)=$
> $\operatorname{wdes}(36522131)=$

Descents and plateaus

Definition

Let $\pi=\pi_{1} \pi_{2} \ldots \pi_{m}$ be a sequence of positive integers.
We say that $i \in[m-1]$ is a

- descent if $\pi_{i}>\pi_{i+1}$,
- plateau if $\pi_{i}=\pi_{i+1}$,
- weak descent if $\pi_{i} \geq \pi_{i+1}$.
$\operatorname{des}(\pi)=$ number of descents of π
$\operatorname{plat}(\pi)=$ number of plateaus of π
$\operatorname{wdes}(\pi)=\operatorname{des}(\pi)+\operatorname{plat}(\pi)=$ number of weak descents of π

> Example
> $\operatorname{des}(36 \cdot 5 \cdot 22 \cdot 13 \cdot 1)=$
> $\operatorname{plat}(36522131)=$
> $\operatorname{wdes}(36522131)=$

Descents and plateaus

Definition

Let $\pi=\pi_{1} \pi_{2} \ldots \pi_{m}$ be a sequence of positive integers.
We say that $i \in[m-1]$ is a

- descent if $\pi_{i}>\pi_{i+1}$,
- plateau if $\pi_{i}=\pi_{i+1}$,
- weak descent if $\pi_{i} \geq \pi_{i+1}$.
$\operatorname{des}(\pi)=$ number of descents of π
$\operatorname{plat}(\pi)=$ number of plateaus of π
$\operatorname{wdes}(\pi)=\operatorname{des}(\pi)+\operatorname{plat}(\pi)=$ number of weak descents of π

> Example
> $\operatorname{des}(36 \cdot 5 \cdot 22 \cdot 13 \cdot 1)=4$
> $\operatorname{plat}(36522131)=$
> $w \operatorname{des}(36522131)=$

Descents and plateaus

Definition

Let $\pi=\pi_{1} \pi_{2} \ldots \pi_{m}$ be a sequence of positive integers.
We say that $i \in[m-1]$ is a

- descent if $\pi_{i}>\pi_{i+1}$,
- plateau if $\pi_{i}=\pi_{i+1}$,
- weak descent if $\pi_{i} \geq \pi_{i+1}$.
$\operatorname{des}(\pi)=$ number of descents of π
$\operatorname{plat}(\pi)=$ number of plateaus of π
$\operatorname{wdes}(\pi)=\operatorname{des}(\pi)+\operatorname{plat}(\pi)=$ number of weak descents of π

```
Example
des}(36\cdot5\cdot22\cdot13\cdot1)=
plat(3652.2131) =
wdes(36522131) =
```


Descents and plateaus

Definition

Let $\pi=\pi_{1} \pi_{2} \ldots \pi_{m}$ be a sequence of positive integers.
We say that $i \in[m-1]$ is a

- descent if $\pi_{i}>\pi_{i+1}$,
- plateau if $\pi_{i}=\pi_{i+1}$,
- weak descent if $\pi_{i} \geq \pi_{i+1}$.
$\operatorname{des}(\pi)=$ number of descents of π
$\operatorname{plat}(\pi)=$ number of plateaus of π
$\operatorname{wdes}(\pi)=\operatorname{des}(\pi)+\operatorname{plat}(\pi)=$ number of weak descents of π

```
Example
des}(36\cdot5\cdot22\cdot13\cdot1)=
plat(3652.2131) = 1
wdes(36522131) =
```


Descents and plateaus

Definition

Let $\pi=\pi_{1} \pi_{2} \ldots \pi_{m}$ be a sequence of positive integers.
We say that $i \in[m-1]$ is a

- descent if $\pi_{i}>\pi_{i+1}$,
- plateau if $\pi_{i}=\pi_{i+1}$,
- weak descent if $\pi_{i} \geq \pi_{i+1}$.
$\operatorname{des}(\pi)=$ number of descents of π
$\operatorname{plat}(\pi)=$ number of plateaus of π
$\operatorname{wdes}(\pi)=\operatorname{des}(\pi)+\operatorname{plat}(\pi)=$ number of weak descents of π

> Example
> $\operatorname{des}(36 \cdot 5 \cdot 22 \cdot 13 \cdot 1)=4$
> $\operatorname{plat}(3652 \cdot 2131)=1$
> $w \operatorname{des}(36522131)=4+1=5$

Eulerian polynomials

$\mathcal{S}_{n}=$ set of permutations of [n]

Eulerian polynomials

$\mathcal{S}_{n}=$ set of permutations of [n]
Definition (Eulerian polynomials)

$$
A_{n}(t)=\sum_{\pi \in \mathcal{S}_{n}} t^{\operatorname{des}(\pi)}
$$

Eulerian polynomials

$\mathcal{S}_{n}=$ set of permutations of [n]
Definition (Eulerian polynomials)

$$
A_{n}(t)=\sum_{\pi \in \mathcal{S}_{n}} t^{\operatorname{des}(\pi)}
$$

Example

$$
\begin{array}{lr}
A_{1}(t)=1 & 1 \\
A_{2}(t)=1+t & 12 \cdot, 2 \cdot 1 \\
A_{3}(t)=1+4 t+t^{2} & 123,13 \cdot 2,2 \cdot 13,23 \cdot 1,3 \cdot 12,3 \cdot 2 \cdot 1 \\
A_{4}(t)=1+11 t+11 t^{2}+t^{3} & \ldots
\end{array}
$$

Eulerian polynomials

$\mathcal{S}_{n}=$ set of permutations of [n]
Definition (Eulerian polynomials)

$$
A_{n}(t)=\sum_{\pi \in \mathcal{S}_{n}} t^{\operatorname{des}(\pi)}
$$

Example

$$
\begin{array}{lr}
A_{1}(t)=1 & 1 \\
A_{2}(t)=1+t & 12 \cdot, 2 \cdot 1 \\
A_{3}(t)=1+4 t+t^{2} & 123,13 \cdot 2,2 \cdot 13,23 \cdot 1,3 \cdot 12,3 \cdot 2 \cdot 1 \\
A_{4}(t)=1+11 t+11 t^{2}+t^{3} & \ldots
\end{array}
$$

These polynomials appear in work of Euler from 1755, and they satisfy

$$
\sum_{m \geq 0} m^{n} t^{m}=\frac{t A_{n}(t)}{(1-t)^{n+1}}
$$

Stirling permutations

Consider the multiset $[n] \sqcup[n]:=\{1,1,2,2, \ldots, n, n\}$.

Definition (Gessel-Stanley '78)

A Stirling permutation is a permutation of $[n] \sqcup[n]$ that avoids the pattern 212.

Stirling permutations

Consider the multiset $[n] \sqcup[n]:=\{1,1,2,2, \ldots, n, n\}$.

Definition (Gessel-Stanley '78)

A Stirling permutation is a permutation of $[n] \sqcup[n]$ that avoids the pattern 212.

In other words, if $\pi_{1} \pi_{2} \ldots \pi_{2 n}$ is a Stirling permutation, there do not exist $i<j<k$ such that $\pi_{i}=\pi_{k}>\pi_{j}$.

Stirling permutations

Consider the multiset $[n] \sqcup[n]:=\{1,1,2,2, \ldots, n, n\}$.

Definition (Gessel-Stanley '78)

A Stirling permutation is a permutation of $[n] \sqcup[n]$ that avoids the pattern 212.

In other words, if $\pi_{1} \pi_{2} \ldots \pi_{2 n}$ is a Stirling permutation, there do not exist $i<j<k$ such that $\pi_{i}=\pi_{k}>\pi_{j}$.
$\mathcal{Q}_{n}=$ set of Stirling permutations of $[n] \sqcup[n]$.

Stirling permutations

Consider the multiset $[n] \sqcup[n]:=\{1,1,2,2, \ldots, n, n\}$.

Definition (Gessel-Stanley '78)

A Stirling permutation is a permutation of $[n] \sqcup[n]$ that avoids the pattern 212.

In other words, if $\pi_{1} \pi_{2} \ldots \pi_{2 n}$ is a Stirling permutation, there do not exist $i<j<k$ such that $\pi_{i}=\pi_{k}>\pi_{j}$.
$\mathcal{Q}_{n}=$ set of Stirling permutations of $[n] \sqcup[n]$.

Example

$$
13324421 \in \mathcal{Q}_{4}
$$

Stirling permutations

Consider the multiset $[n] \sqcup[n]:=\{1,1,2,2, \ldots, n, n\}$.

Definition (Gessel-Stanley '78)

A Stirling permutation is a permutation of $[n] \sqcup[n]$ that avoids the pattern 212.

In other words, if $\pi_{1} \pi_{2} \ldots \pi_{2 n}$ is a Stirling permutation, there do not exist $i<j<k$ such that $\pi_{i}=\pi_{k}>\pi_{j}$.
$\mathcal{Q}_{n}=$ set of Stirling permutations of $[n] \sqcup[n]$.

```
Example
\(13324421 \in \mathcal{Q}_{4}, \quad 312321 \notin \mathcal{Q}_{3}\).
```


Stirling permutations

Consider the multiset $[n] \sqcup[n]:=\{1,1,2,2, \ldots, n, n\}$.

Definition (Gessel-Stanley '78)

A Stirling permutation is a permutation of $[n] \sqcup[n]$ that avoids the pattern 212.

In other words, if $\pi_{1} \pi_{2} \ldots \pi_{2 n}$ is a Stirling permutation, there do not exist $i<j<k$ such that $\pi_{i}=\pi_{k}>\pi_{j}$.
$\mathcal{Q}_{n}=$ set of Stirling permutations of $[n] \sqcup[n]$.

Example

$13324421 \in \mathcal{Q}_{4}, \quad 312321 \notin \mathcal{Q}_{3}$.

We have $\left|\mathcal{Q}_{n}\right|=(2 n-1) \cdot(2 n-3) \cdots \cdots 3 \cdot 1$, since every permutation in \mathcal{Q}_{n} can be obtained by inserting $n n$ into one of the $2 n-1$ spaces of a permutation in \mathcal{Q}_{n-1}.

Stirling permutations

Let $S($,$) denote the Stirling numbers of the second kind.$
Theorem (Gessel-Stanley '78)

$$
\sum_{m \geq 0} S(m+n, m) t^{m}=\frac{t \sum_{\pi \in \mathcal{Q}_{n}} t^{\operatorname{des}(\pi)}}{(1-t)^{2 n+1}}
$$

Stirling permutations

Let $S($,$) denote the Stirling numbers of the second kind.$

Theorem (Gessel-Stanley '78)

$$
\sum_{m \geq 0} S(m+n, m) t^{m}=\frac{t \sum_{\pi \in \mathcal{Q}_{n}} t^{\operatorname{des}(\pi)}}{(1-t)^{2 n+1}}
$$

There is an extensive literature on the distribution of statistics on Stirling permutations and generalizations to other multisets [Brenti'89, Park'94, Bóna'08, Janson'08, Janson-Kuba-Panholzer'11, Haglund-Visontai'12].

Quasi-Stirling permutations

Definition (Archer-Gregory-Pennington-Slayden '19)

A quasi-Stirling permutation is a permutation of the multiset $[n] \sqcup[n]$ that avoids the patterns 1212 and 2121.

Quasi-Stirling permutations

Definition (Archer-Gregory-Pennington-Slayden '19)

A quasi-Stirling permutation is a permutation of the multiset $[n] \sqcup[n]$ that avoids the patterns 1212 and 2121.

Equivalently, there do not exist $i<j<k<\ell$ with $\pi_{i}=\pi_{k}$ and $\pi_{j}=\pi_{\ell}$.

Quasi-Stirling permutations

Definition (Archer-Gregory-Pennington-Slayden '19)

A quasi-Stirling permutation is a permutation of the multiset $[n] \sqcup[n]$ that avoids the patterns 1212 and 2121.

Equivalently, there do not exist $i<j<k<\ell$ with $\pi_{i}=\pi_{k}$ and $\pi_{j}=\pi_{\ell}$. $\overline{\mathcal{Q}}_{n}=$ set of quasi-Stirling permutations of $[n] \sqcup[n]$.

Quasi-Stirling permutations

Definition (Archer-Gregory-Pennington-Slayden '19)

A quasi-Stirling permutation is a permutation of the multiset $[n] \sqcup[n]$ that avoids the patterns 1212 and 2121.

Equivalently, there do not exist $i<j<k<\ell$ with $\pi_{i}=\pi_{k}$ and $\pi_{j}=\pi_{\ell}$.
$\overline{\mathcal{Q}}_{n}=$ set of quasi-Stirling permutations of $[n] \sqcup[n]$.

Example

$4431152253 \in \overline{\mathcal{Q}}_{5}$,

Quasi-Stirling permutations

Definition (Archer-Gregory-Pennington-Slayden '19)

A quasi-Stirling permutation is a permutation of the multiset $[n] \sqcup[n]$ that avoids the patterns 1212 and 2121.

Equivalently, there do not exist $i<j<k<\ell$ with $\pi_{i}=\pi_{k}$ and $\pi_{j}=\pi_{\ell}$.
$\overline{\mathcal{Q}}_{n}=$ set of quasi-Stirling permutations of $[n] \sqcup[n]$.

Example

$4431152253 \in \overline{\mathcal{Q}}_{5}, \quad 312321 \notin \overline{\mathcal{Q}}_{3}$.

Quasi-Stirling permutations

Definition (Archer-Gregory-Pennington-Slayden '19)

A quasi-Stirling permutation is a permutation of the multiset $[n] \sqcup[n]$ that avoids the patterns 1212 and 2121.

Equivalently, there do not exist $i<j<k<\ell$ with $\pi_{i}=\pi_{k}$ and $\pi_{j}=\pi_{\ell}$.
$\overline{\mathcal{Q}}_{n}=$ set of quasi-Stirling permutations of $[n] \sqcup[n]$.

Example

$$
4431152253 \in \overline{\mathcal{Q}}_{5}, \quad 312321 \notin \overline{\mathcal{Q}}_{3} .
$$

They are in bijection with labeled noncrossing matchings.

Quasi-Stirling permutations

Definition (Archer-Gregory-Pennington-Slayden '19)

A quasi-Stirling permutation is a permutation of the multiset $[n] \sqcup[n]$ that avoids the patterns 1212 and 2121.

Equivalently, there do not exist $i<j<k<\ell$ with $\pi_{i}=\pi_{k}$ and $\pi_{j}=\pi_{\ell}$.
$\overline{\mathcal{Q}}_{n}=$ set of quasi-Stirling permutations of $[n] \sqcup[n]$.

Example

$$
4431152253 \in \overline{\mathcal{Q}}_{5}, \quad 312321 \notin \overline{\mathcal{Q}}_{3} .
$$

They are in bijection with labeled noncrossing matchings. It follows that

$$
\left|\overline{\mathcal{Q}}_{n}\right|=n!\text { Cat }_{n}=\frac{(2 n)!}{(n+1)!} .
$$

Descents on quasi-Stirling permutations

Theorem (E. '21)

The number of $\pi \in \overline{\mathcal{Q}}_{n}$ with $\operatorname{des}(\pi)=n-1$ is equal to $(n+1)^{n-1}$.
This had been conjectured by Archer-Gregory-Pennington-Slayden '19.

Descents on quasi-Stirling permutations

Theorem (E. '21)

The number of $\pi \in \overline{\mathcal{Q}}_{n}$ with $\operatorname{des}(\pi)=n-1$ is equal to $(n+1)^{n-1}$.
This had been conjectured by Archer-Gregory-Pennington-Slayden '19.
More generally, consider the generating function

$$
\bar{Q}(t, z)=\sum_{n \geq 0} \sum_{\pi \in \overline{\mathcal{Q}}_{n}} t^{\operatorname{des}(\pi)} \frac{z^{n}}{n!},
$$

which counts quasi-Stirling permutations by the number of descents.

Descents on quasi-Stirling permutations

Theorem (E. '21)

The number of $\pi \in \overline{\mathcal{Q}}_{n}$ with $\operatorname{des}(\pi)=n-1$ is equal to $(n+1)^{n-1}$.
This had been conjectured by Archer-Gregory-Pennington-Slayden '19.
More generally, consider the generating function

$$
\bar{Q}(t, z)=\sum_{n \geq 0} \sum_{\pi \in \overline{\mathcal{Q}}_{n}} t^{\operatorname{des}(\pi)} \frac{z^{n}}{n!}
$$

which counts quasi-Stirling permutations by the number of descents.

Theorem (E. '21)

$$
\bar{Q}(t, z)=\frac{1-t}{1-t e^{(1-t) z \bar{Q}(t, z)}}
$$

Descents on quasi-Stirling permutations

Theorem (E. '21)

The number of $\pi \in \overline{\mathcal{Q}}_{n}$ with $\operatorname{des}(\pi)=n-1$ is equal to $(n+1)^{n-1}$.
This had been conjectured by Archer-Gregory-Pennington-Slayden '19.
More generally, consider the generating function

$$
\bar{Q}(t, z)=\sum_{n \geq 0} \sum_{\pi \in \overline{\mathcal{Q}}_{n}} t^{\operatorname{des}(\pi)} \frac{z^{n}}{n!}
$$

which counts quasi-Stirling permutations by the number of descents.

Theorem (E. '21)

$$
\bar{Q}(t, z)=\frac{1-t}{1-t e^{(1-t) z \bar{Q}(t, z)}} .
$$

There is a generalization that also keeps track of the number of plateaus and extends to the multiset with k copies of each number in $[n]$.

Nonnesting permutations

Definition

A nonnesting permutation (or canon permutation) is a permutation of the multiset $[n] \sqcup[n]$ that avoids the patterns 1221 and 2112.

Nonnesting permutations

Definition

A nonnesting permutation (or canon permutation) is a permutation of the multiset $[n] \sqcup[n]$ that avoids the patterns 1221 and 2112.

Equivalently, there do not exist $i<j<k<\ell$ with $\pi_{i}=\pi_{\ell}$ and $\pi_{j}=\pi_{k}$.

Nonnesting permutations

Definition

A nonnesting permutation (or canon permutation) is a permutation of the multiset $[n] \sqcup[n]$ that avoids the patterns 1221 and 2112.

Equivalently, there do not exist $i<j<k<\ell$ with $\pi_{i}=\pi_{\ell}$ and $\pi_{j}=\pi_{k}$. $\mathcal{C}_{n}=$ set of nonnesting permutations of $[n] \sqcup[n]$.

Nonnesting permutations

Definition

A nonnesting permutation (or canon permutation) is a permutation of the multiset $[n] \sqcup[n]$ that avoids the patterns 1221 and 2112.

Equivalently, there do not exist $i<j<k<\ell$ with $\pi_{i}=\pi_{\ell}$ and $\pi_{j}=\pi_{k}$. $\mathcal{C}_{n}=$ set of nonnesting permutations of $[n] \sqcup[n]$.

```
Example
3532521414 \in\mathcal{C}
```


Nonnesting permutations

Definition

A nonnesting permutation (or canon permutation) is a permutation of the multiset $[n] \sqcup[n]$ that avoids the patterns 1221 and 2112.

Equivalently, there do not exist $i<j<k<\ell$ with $\pi_{i}=\pi_{\ell}$ and $\pi_{j}=\pi_{k}$. $\mathcal{C}_{n}=$ set of nonnesting permutations of $[n] \sqcup[n]$.

```
Example
3532521414\in\mathcal{C}
```


Nonnesting permutations

Definition

A nonnesting permutation (or canon permutation) is a permutation of the multiset $[n] \sqcup[n]$ that avoids the patterns 1221 and 2112.

Equivalently, there do not exist $i<j<k<\ell$ with $\pi_{i}=\pi_{\ell}$ and $\pi_{j}=\pi_{k}$. $\mathcal{C}_{n}=$ set of nonnesting permutations of $[n] \sqcup[n]$.

```
Example
\(3532521414 \in \mathcal{C}_{5}, \quad 312321 \notin \mathcal{C}_{3}\).
```


Nonnesting permutations

Definition

A nonnesting permutation (or canon permutation) is a permutation of the multiset $[n] \sqcup[n]$ that avoids the patterns 1221 and 2112.

Equivalently, there do not exist $i<j<k<\ell$ with $\pi_{i}=\pi_{\ell}$ and $\pi_{j}=\pi_{k}$.
$\mathcal{C}_{n}=$ set of nonnesting permutations of $[n] \sqcup[n]$.
Example
$3532521414 \in \mathcal{C}_{5}, \quad 312321 \notin \mathcal{C}_{3}$.

They are in bijection with labeled nonnesting matchings, so again

$$
\left|\mathcal{C}_{n}\right|=n!\text { Cat }_{n}=\frac{(2 n)!}{(n+1)!}
$$

Nonnesting permutations

A permutation π of $[n] \sqcup[n]$ is nonnesting iff the subsequence of first copies of each entry coincides with the subsequence of second copies.

```
Example
\pi=3532521414\in\mathcal{C}
```


Nonnesting permutations

A permutation π of $[n] \sqcup[n]$ is nonnesting iff the subsequence of first copies of each entry coincides with the subsequence of second copies.

We denote this subsequence by $\sigma(\pi)$.
Example
$\pi=3532521414 \in \mathcal{C}_{5}, \quad \sigma(\pi)=35214 \in \mathcal{S}_{5}$.

Nonnesting permutations

A permutation π of $[n] \sqcup[n]$ is nonnesting iff the subsequence of first copies of each entry coincides with the subsequence of second copies.

We denote this subsequence by $\sigma(\pi)$.
Example
$\pi=3532521414 \in \mathcal{C}_{5}, \quad \sigma(\pi)=35214 \in \mathcal{S}_{5}$.

Our goal is to count nonnesting permutations with respect to the number of descents and plateaus. Consider the polynomials

$$
C_{n}(t, u)=\sum_{\pi \in \mathcal{C}_{n}} t^{\operatorname{des}(\pi)} u^{\mathrm{plat}(\pi)}
$$

Nonnesting permutations

A permutation π of $[n] \sqcup[n]$ is nonnesting iff the subsequence of first copies of each entry coincides with the subsequence of second copies.

We denote this subsequence by $\sigma(\pi)$.
Example
$\pi=3532521414 \in \mathcal{C}_{5}, \quad \sigma(\pi)=35214 \in \mathcal{S}_{5}$.

Our goal is to count nonnesting permutations with respect to the number of descents and plateaus. Consider the polynomials

$$
C_{n}(t, u)=\sum_{\pi \in \mathcal{C}_{n}} t^{\operatorname{des}(\pi)} u^{\mathrm{plat}(\pi)}
$$

Even though $\left|\mathcal{C}_{n}\right|=\left|\overline{\mathcal{Q}}_{n}\right|$, we have $\sum_{\pi \in \mathcal{C}_{n}} t^{\operatorname{des}(\pi)} \neq \sum_{\pi \in \overline{\mathcal{Q}}_{n}} t^{\operatorname{des}(\pi)}$.

Dyck paths and Narayana numbers

Let \mathcal{D}_{n} be the set of lattice paths from $(0,0)$ to (n, n) with steps $\mathrm{e}=(1,0)$ and $\mathrm{n}=(0,1)$ that do not go above the diagonal $y=x$.

Dyck paths and Narayana numbers

Let \mathcal{D}_{n} be the set of lattice paths from $(0,0)$ to (n, n) with steps $\mathrm{e}=(1,0)$ and $\mathrm{n}=(0,1)$ that do not go above the diagonal $y=x$.

A peak of $D \in \mathcal{D}_{n}$ is an occurrence of en.

Dyck paths and Narayana numbers

Let \mathcal{D}_{n} be the set of lattice paths from $(0,0)$ to (n, n) with steps $\mathrm{e}=(1,0)$ and $\mathrm{n}=(0,1)$ that do not go above the diagonal $y=x$.

A peak of $D \in \mathcal{D}_{n}$ is an occurrence of en.
A peak is called a low peak if it touches the diagonal,

Dyck paths and Narayana numbers

Let \mathcal{D}_{n} be the set of lattice paths from $(0,0)$ to (n, n) with steps $\mathrm{e}=(1,0)$ and $\mathrm{n}=(0,1)$ that do not go above the diagonal $y=x$.

A peak of $D \in \mathcal{D}_{n}$ is an occurrence of en.
A peak is called a low peak if it touches the diagonal, and a high peak otherwise.

Dyck paths and Narayana numbers

Let \mathcal{D}_{n} be the set of lattice paths from $(0,0)$ to (n, n) with steps $\mathrm{e}=(1,0)$ and $\mathrm{n}=(0,1)$ that do not go above the diagonal $y=x$.

A peak of $D \in \mathcal{D}_{n}$ is an occurrence of en.
A peak is called a low peak if it touches the diagonal, and a high peak otherwise.

Let Ipea(D) and hpea(D) denote the number of low peaks and high peaks of D, respectively.

Dyck paths and Narayana numbers

Let \mathcal{D}_{n} be the set of lattice paths from $(0,0)$ to (n, n) with steps $\mathrm{e}=(1,0)$ and $\mathrm{n}=(0,1)$ that do not go above the diagonal $y=x$.

A peak of $D \in \mathcal{D}_{n}$ is an occurrence of en.
A peak is called a low peak if it touches the diagonal, and a high peak otherwise.

Let Ipea (D) and hpea(D) denote the number of low peaks and high peaks of D, respectively.
Let

$$
N_{n}(t, u)=\sum_{D \in \mathcal{D}_{n}} t^{\mathrm{hpea}(D)} u^{\mathrm{lpea}(D)}
$$

Dyck paths and Narayana numbers

Let \mathcal{D}_{n} be the set of lattice paths from $(0,0)$ to (n, n) with steps $\mathrm{e}=(1,0)$ and $\mathrm{n}=(0,1)$ that do not go above the diagonal $y=x$.

A peak of $D \in \mathcal{D}_{n}$ is an occurrence of en.
A peak is called a low peak if it touches the diagonal, and a high peak otherwise.

Let Ipea (D) and hpea(D) denote the number of low peaks and high peaks of D, respectively.
Let

$$
N_{n}(t, u)=\sum_{D \in \mathcal{D}_{n}} t^{\text {hpea }(D)} u^{\operatorname{lpea}(D)}
$$

The coefficients of $N_{n}(t, t)$ are the Narayana numbers $\frac{1}{n}\binom{n}{k}\binom{n}{k-1}$.

Dyck paths and Narayana numbers

Let \mathcal{D}_{n} be the set of lattice paths from $(0,0)$ to (n, n) with steps $\mathrm{e}=(1,0)$ and $\mathrm{n}=(0,1)$ that do not go above the diagonal $y=x$.

A peak of $D \in \mathcal{D}_{n}$ is an occurrence of en.
A peak is called a low peak if it touches the diagonal, and a high peak otherwise.

Let Ipea(D) and hpea (D) denote the number of low peaks and high peaks of D, respectively.
Let

$$
N_{n}(t, u)=\sum_{D \in \mathcal{D}_{n}} t^{\text {hpea }(D)} u^{\operatorname{lpea}(D)}
$$

The coefficients of $N_{n}(t, t)$ are the Narayana numbers $\frac{1}{n}\binom{n}{k}\binom{n}{k-1}$.

$$
\sum_{n \geq 0} N_{n}(t, u) z^{n}=\frac{1}{1+(1+t-2 u) z+\sqrt{1-2(1+t) z+(1-t)^{2} z^{2}}}
$$

Main result

Recall:

$$
\begin{aligned}
C_{n}(t, u) & =\sum_{\pi \in \mathcal{C}_{n}} t^{\operatorname{des}(\pi)} u^{\operatorname{plat}(\pi)}, \\
A_{n}(t) & =\sum_{\pi \in \mathcal{S}_{n}} t^{\operatorname{des}(\pi)}, \\
N_{n}(t, u) & =\sum_{D \in \mathcal{D}_{n}} t^{\mathrm{hpea}(D)} u^{\mathrm{Ipea}(D)} .
\end{aligned}
$$

Main result

Recall:

$$
\begin{aligned}
C_{n}(t, u) & =\sum_{\pi \in \mathcal{C}_{n}} t^{\operatorname{des}(\pi)} u^{\operatorname{plat}(\pi)}, \\
A_{n}(t) & =\sum_{\pi \in \mathcal{S}_{n}} t^{\operatorname{des}(\pi)} \\
N_{n}(t, u) & =\sum_{D \in \mathcal{D}_{n}} t^{\mathrm{hpea}(D)} u^{\mathrm{Ipea}(D)} .
\end{aligned}
$$

Theorem (E. '22)

$$
C_{n}(t, u)=A_{n}(t) N_{n}(t, u) .
$$

Main result

Recall:

$$
\begin{aligned}
C_{n}(t, u) & =\sum_{\pi \in \mathcal{C}_{n}} t^{\operatorname{des}(\pi)} u^{\operatorname{plat}(\pi)} \\
A_{n}(t) & =\sum_{\pi \in \mathcal{S}_{n}} t^{\operatorname{des}(\pi)} \\
N_{n}(t, u) & =\sum_{D \in \mathcal{D}_{n}} t^{\mathrm{hpea}(D)} u^{\mathrm{lpea}(D)} .
\end{aligned}
$$

Theorem (E. '22)

$$
C_{n}(t, u)=A_{n}(t) N_{n}(t, u)
$$

Example

$$
\begin{aligned}
C_{3}(t, u) & =u^{3}+\left(1+2 u+4 u^{3}\right) t+\left(5+8 u+u^{3}\right) t^{2}+(5+2 u) t^{3}+t^{4} \\
& =\left(1+4 t+t^{2}\right)\left(u^{3}+(1+2 u) t+t^{2}\right)
\end{aligned}
$$

Consequences

Since both $A_{n}(t)$ and $N_{n}(t, t)$ are palindromic, so is their product $C_{n}(t, t)$.

Example

$$
C_{3}(t, t)=t+7 t^{2}+14 t^{3}+7 t^{4}+t^{5}=\left(1+4 t+t^{2}\right)\left(t+3 t^{2}+t^{3}\right) .
$$

Consequences

Since both $A_{n}(t)$ and $N_{n}(t, t)$ are palindromic, so is their product $C_{n}(t, t)$.

Example

$$
C_{3}(t, t)=t+7 t^{2}+14 t^{3}+7 t^{4}+t^{5}=\left(1+4 t+t^{2}\right)\left(t+3 t^{2}+t^{3}\right) .
$$

Corollary

The distribution of weak descents on \mathcal{C}_{n} is symmetric: for all r,

$$
\left|\left\{\pi \in \mathcal{C}_{n}: \operatorname{wdes}(\pi)=r\right\}\right|=\left|\left\{\pi \in \mathcal{C}_{n}: \operatorname{wdes}(\pi)=2 n-r\right\}\right|
$$

Consequences

Since both $A_{n}(t)$ and $N_{n}(t, t)$ are palindromic, so is their product $C_{n}(t, t)$.

Example

$$
C_{3}(t, t)=t+7 t^{2}+14 t^{3}+7 t^{4}+t^{5}=\left(1+4 t+t^{2}\right)\left(t+3 t^{2}+t^{3}\right) .
$$

Corollary

The distribution of weak descents on \mathcal{C}_{n} is symmetric: for all r,

$$
\left|\left\{\pi \in \mathcal{C}_{n}: \operatorname{wdes}(\pi)=r\right\}\right|=\left|\left\{\pi \in \mathcal{C}_{n}: \operatorname{wdes}(\pi)=2 n-r\right\}\right| .
$$

Similarly, since $N_{n}(t, 1)$ is palindromic, so is $A_{n}(t) N_{n}(t, 1)=C_{n}(t, 1)$.

Corollary

The distribution of descents on \mathcal{C}_{n} is symmetric: for all r,

$$
\left|\left\{\pi \in \mathcal{C}_{n}: \operatorname{des}(\pi)=r\right\}\right|=\left|\left\{\pi \in \mathcal{C}_{n}: \operatorname{des}(\pi)=2 n-2-r\right\}\right|
$$

Consequences

Since both $A_{n}(t)$ and $N_{n}(t, t)$ are palindromic, so is their product $C_{n}(t, t)$.

Example

$$
C_{3}(t, t)=t+7 t^{2}+14 t^{3}+7 t^{4}+t^{5}=\left(1+4 t+t^{2}\right)\left(t+3 t^{2}+t^{3}\right)
$$

Corollary

The distribution of weak descents on \mathcal{C}_{n} is symmetric: for all r,

$$
\left|\left\{\pi \in \mathcal{C}_{n}: \operatorname{wdes}(\pi)=r\right\}\right|=\left|\left\{\pi \in \mathcal{C}_{n}: \operatorname{wdes}(\pi)=2 n-r\right\}\right|
$$

Similarly, since $N_{n}(t, 1)$ is palindromic, so is $A_{n}(t) N_{n}(t, 1)=C_{n}(t, 1)$.

Corollary

The distribution of descents on \mathcal{C}_{n} is symmetric: for all r,

$$
\left|\left\{\pi \in \mathcal{C}_{n}: \operatorname{des}(\pi)=r\right\}\right|=\left|\left\{\pi \in \mathcal{C}_{n}: \operatorname{des}(\pi)=2 n-2-r\right\}\right|
$$

We have bijective proofs but they are surprisingly complicated!

A refinement

Partition the set \mathcal{C}_{n} according to the permutation $\sigma \in \mathcal{S}_{n}$ given by the first copy of each entry:

$$
\mathcal{C}_{n}^{\sigma}=\left\{\pi \in \mathcal{C}_{n}: \sigma(\pi)=\sigma\right\}
$$

A refinement

Partition the set \mathcal{C}_{n} according to the permutation $\sigma \in \mathcal{S}_{n}$ given by the first copy of each entry:

$$
\mathcal{C}_{n}^{\sigma}=\left\{\pi \in \mathcal{C}_{n}: \sigma(\pi)=\sigma\right\}
$$

Example
 $3532521414 \in \mathcal{C}_{5}^{35214}$

A refinement

Partition the set \mathcal{C}_{n} according to the permutation $\sigma \in \mathcal{S}_{n}$ given by the first copy of each entry:

$$
\mathcal{C}_{n}^{\sigma}=\left\{\pi \in \mathcal{C}_{n}: \sigma(\pi)=\sigma\right\}
$$

Example

$3532521414 \in \mathcal{C}_{5}^{35214}$
Let

$$
C_{n}^{\sigma}(t, u)=\sum_{\pi \in \mathcal{C}_{n}^{\sigma}} t^{\operatorname{des}(\pi)} u^{\operatorname{plat}(\pi)}
$$

A refinement

Partition the set \mathcal{C}_{n} according to the permutation $\sigma \in \mathcal{S}_{n}$ given by the first copy of each entry:

$$
\mathcal{C}_{n}^{\sigma}=\left\{\pi \in \mathcal{C}_{n}: \sigma(\pi)=\sigma\right\}
$$

Example

$3532521414 \in \mathcal{C}_{5}^{35214}$

Let

$$
C_{n}^{\sigma}(t, u)=\sum_{\pi \in \mathcal{C}_{n}^{\sigma}} t^{\operatorname{des}(\pi)} u^{\operatorname{plat}(\pi)}
$$

Theorem

For all $\sigma \in \mathcal{S}_{n}$,

$$
C_{n}^{\sigma}(t, u)=t^{\operatorname{des}(\sigma)} N_{n}(t, u)
$$

Summing over $\sigma \in \mathcal{S}_{n}$, we obtain our main theorem.

About the proofs

Using the standard bijection between nonnesting matchings and Dyck paths, we can represent a nonnesting permutation $\pi \in \mathcal{C}_{n}$ as a Dyck path $D(\pi)$ in a grid whose rows and columns are labeled by $\sigma(\pi)$:

About the proofs

Using the standard bijection between nonnesting matchings and Dyck paths, we can represent a nonnesting permutation $\pi \in \mathcal{C}_{n}$ as a Dyck path $D(\pi)$ in a grid whose rows and columns are labeled by $\sigma(\pi)$:

Plateaus of π correspond to low peaks of $D(\pi)$. But what do descents correspond to?

About the proofs

Using the standard bijection between nonnesting matchings and Dyck paths, we can represent a nonnesting permutation $\pi \in \mathcal{C}_{n}$ as a Dyck path $D(\pi)$ in a grid whose rows and columns are labeled by $\sigma(\pi)$:

Plateaus of π correspond to low peaks of $D(\pi)$. But what do descents correspond to?
In the special case that $\sigma(\pi)=12 \ldots n$, descents of π correspond to high peaks of $D(\pi)$, proving that $C_{n}^{12 \ldots n}(t, u)=N_{n}(t, u)$.

About the proofs

Using the standard bijection between nonnesting matchings and Dyck paths, we can represent a nonnesting permutation $\pi \in \mathcal{C}_{n}$ as a Dyck path $D(\pi)$ in a grid whose rows and columns are labeled by $\sigma(\pi)$:

Plateaus of π correspond to low peaks of $D(\pi)$.
But what do descents correspond to?
In the special case that $\sigma(\pi)=12 \ldots n$, descents of π correspond to high peaks of $D(\pi)$, proving that $C_{n}^{12 \ldots n}(t, u)=N_{n}(t, u)$.
In general, for each fixed $\sigma \in \mathcal{S}_{n}$, we get a different Dyck path statistic. We prove that they all have a (shifted) Narayana distribution.

Generalizations

Our main result generalizes to permutations that have k copies of each number in [n], for any given k.

Generalizations

Our main result generalizes to permutations that have k copies of each number in [n], for any given k.

However, there are different ways to generalize the definition of nonnesting.

Generalizations

Our main result generalizes to permutations that have k copies of each number in [n], for any given k.

However, there are different ways to generalize the definition of nonnesting.

Instead of the requiring that they avoid 1221 and 2112, the "correct" generalization is the one that arises from the canon interpretation.

Example

353325215241414

Generalizations

Our main result generalizes to permutations that have k copies of each number in [n], for any given k.

However, there are different ways to generalize the definition of nonnesting.

Instead of the requiring that they avoid 1221 and 2112, the "correct" generalization is the one that arises from the canon interpretation.

Example

353325215241414

In the proof for the general case, the role of Dyck paths is played by standard Young tableaux of rectangular shape.

Thank you

- S.E., Descents on nonnesting multipermutations, arXiv:2204.00165.

