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Descents and plateaus

Definition

Let π = π1π2 . . . πm be a sequence of positive integers.
We say that i ∈ [m − 1] is a

descent if πi > πi+1,

plateau if πi = πi+1,

weak descent if πi ≥ πi+1.

des(π) = number of descents of π
plat(π) = number of plateaus of π
wdes(π) = des(π) + plat(π) = number of weak descents of π

Example

des() =

4

plat() =

1

wdes(36522131) =

4 + 1 = 5
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Eulerian polynomials

Sn = set of permutations of [n]

Definition (Eulerian polynomials)

An(t) =
∑
π∈Sn

tdes(π)

Example

A1(t) = 1 1

A2(t) = 1 + t 12·, 2·1
A3(t) = 1 + 4t + t2 123, 13·2, 2·13, 23·1, 3·12, 3·2·1
A4(t) = 1 + 11t + 11t2 + t3 . . .

These polynomials appear in work of Euler from 1755, and they satisfy∑
m≥0

mntm =
t An(t)

(1− t)n+1
.
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Stirling permutations

Consider the multiset [n] t [n] := {1, 1, 2, 2, . . . , n, n}.

Definition (Gessel–Stanley ’78)

A Stirling permutation is a permutation of [n] t [n] that avoids the pattern
212.

In other words, if π1π2 . . . π2n is a Stirling permutation, there do not exist
i < j < k such that πi = πk > πj .

Qn = set of Stirling permutations of [n] t [n].

Example

13324421 ∈ Q4, 312321 /∈ Q3.

We have |Qn| = (2n − 1) · (2n − 3) · · · · · 3 · 1, since every permutation in
Qn can be obtained by inserting nn into one of the 2n − 1 spaces of a
permutation in Qn−1.
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Stirling permutations

Let S( , ) denote the Stirling numbers of the second kind.

Theorem (Gessel–Stanley ’78)∑
m≥0

S(m + n,m) tm =
t
∑

π∈Qn
tdes(π)

(1− t)2n+1
.

There is an extensive literature on the distribution of statistics on Stirling
permutations and generalizations to other multisets [Brenti’89, Park’94,
Bóna’08, Janson’08, Janson–Kuba–Panholzer’11, Haglund–Visontai’12].
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Quasi-Stirling permutations

Definition (Archer–Gregory–Pennington–Slayden ’19)

A quasi-Stirling permutation is a permutation of the multiset [n] t [n] that
avoids the patterns 1212 and 2121.

Equivalently, there do not exist i < j < k < ` with πi = πk and πj = π`.

Qn = set of quasi-Stirling permutations of [n] t [n].

Example

4431152253 ∈ Q5, 312321 /∈ Q3.

4 4 3 1 1 5 2 2 5 3 3 1 2 3 2 1

They are in bijection with labeled noncrossing matchings. It follows that

|Qn| = n!Catn =
(2n)!

(n + 1)!
.
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Descents on quasi-Stirling permutations

Theorem (E. ’21)

The number of π ∈ Qn with des(π) = n − 1 is equal to (n + 1)n−1.

This had been conjectured by Archer–Gregory–Pennington–Slayden ’19.

More generally, consider the generating function

Q(t, z) =
∑
n≥0

∑
π∈Qn

tdes(π)
zn

n!
,

which counts quasi-Stirling permutations by the number of descents.

Theorem (E. ’21)

Q(t, z) =
1− t

1− te(1−t)zQ(t,z)
.

There is a generalization that also keeps track of the number of plateaus
and extends to the multiset with k copies of each number in [n].
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Nonnesting permutations

Definition

A nonnesting permutation (or canon permutation) is a permutation of the
multiset [n] t [n] that avoids the patterns 1221 and 2112.

Equivalently, there do not exist i < j < k < ` with πi = π` and πj = πk .

Cn = set of nonnesting permutations of [n] t [n].

Example

3532521414 ∈ C5, 312321 /∈ C3.

3 5 3 2 5 2 1 4 1 4 3 1 2 3 2 1

They are in bijection with labeled nonnesting matchings, so again

|Cn| = n!Catn =
(2n)!

(n + 1)!
.
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3532521414 ∈ C5,

312321 /∈ C3.

3 5 3 2 5 2 1 4 1 4 3 1 2 3 2 1

They are in bijection with labeled nonnesting matchings, so again

|Cn| = n!Catn =
(2n)!

(n + 1)!
.
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Nonnesting permutations

A permutation π of [n] t [n] is nonnesting iff the subsequence of first
copies of each entry coincides with the subsequence of second copies.

We denote this subsequence by σ(π).

Example

π = 3532521414 ∈ C5,

σ(π) = 35214 ∈ S5

.

Our goal is to count nonnesting permutations with respect to the number
of descents and plateaus. Consider the polynomials

Cn(t, u) =
∑
π∈Cn

tdes(π)uplat(π).

Even though |Cn| = |Qn|, we have
∑
π∈Cn

tdes(π) 6=
∑
π∈Qn

tdes(π).
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Dyck paths and Narayana numbers

Let Dn be the set of lattice paths from (0, 0) to (n, n) with steps
e = (1, 0) and n = (0, 1) that do not go above the diagonal y = x .

A peak of D ∈ Dn is an occurrence of en.

A peak is called a low peak if it touches the
diagonal, and a high peak otherwise.

Let lpea(D) and hpea(D) denote the
number of low peaks and high peaks of D,
respectively.

Let
Nn(t, u) =

∑
D∈Dn

thpea(D)ulpea(D).

The coefficients of Nn(t, t) are the Narayana numbers 1
n

(n
k

)( n
k−1
)
.∑

n≥0
Nn(t, u)zn =

1

1 + (1 + t − 2u)z +
√

1− 2(1 + t)z + (1− t)2z2
.
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Main result

Recall:

Cn(t, u) =
∑
π∈Cn

tdes(π)uplat(π),

An(t) =
∑
π∈Sn

tdes(π),

Nn(t, u) =
∑
D∈Dn

thpea(D)ulpea(D).

Theorem (E. ’22)

Cn(t, u) = An(t)Nn(t, u).

Example

C3(t, u) = u3 + (1 + 2u + 4u3)t + (5 + 8u + u3)t2 + (5 + 2u)t3 + t4

=
(
1 + 4t + t2

) (
u3 + (1 + 2u)t + t2

)
.
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Consequences

Since both An(t) and Nn(t, t) are palindromic, so is their product Cn(t, t).

Example

C3(t, t) = t + 7t2 + 14t3 + 7t4 + t5 = (1 + 4t + t2)(t + 3t2 + t3).

Corollary

The distribution of weak descents on Cn is symmetric: for all r ,

|{π ∈ Cn : wdes(π) = r}| = |{π ∈ Cn : wdes(π) = 2n − r}|.

Similarly, since Nn(t, 1) is palindromic, so is An(t)Nn(t, 1) = Cn(t, 1).

Corollary

The distribution of descents on Cn is symmetric: for all r ,

|{π ∈ Cn : des(π) = r}| = |{π ∈ Cn : des(π) = 2n − 2− r}|.

We have bijective proofs but they are surprisingly complicated!
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A refinement

Partition the set Cn according to the permutation σ ∈ Sn given by the first
copy of each entry:

Cσn = {π ∈ Cn : σ(π) = σ}

Example

3532521414 ∈ C352145

Let
Cσn (t, u) =

∑
π∈Cσn

tdes(π)uplat(π).

Theorem

For all σ ∈ Sn,
Cσn (t, u) = tdes(σ)Nn(t, u).

Summing over σ ∈ Sn, we obtain our main theorem.
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About the proofs

Using the standard bijection between nonnesting matchings and Dyck
paths, we can represent a nonnesting permutation π ∈ Cn as a Dyck path
D(π) in a grid whose rows and columns are labeled by σ(π):

2 5 2 5 3 1 6 3 7 4 1 6 7 4π = D(π)

σ(π) = 2
2

5

5

3

3

1

1

6

6

7

7

4

4

Plateaus of π correspond to low peaks of D(π).
But what do descents correspond to?

In the special case that σ(π) = 12 . . . n, descents of π correspond to high
peaks of D(π), proving that C 12...n

n (t, u) = Nn(t, u).

In general, for each fixed σ ∈ Sn, we get a different Dyck path statistic.
We prove that they all have a (shifted) Narayana distribution.
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Generalizations

Our main result generalizes to permutations that have k copies of each
number in [n], for any given k .

However, there are different ways to generalize the definition of
nonnesting.

Instead of the requiring that they avoid 1221 and 2112, the “correct”
generalization is the one that arises from the canon interpretation.

Example

353325215241414

In the proof for the general case, the role of Dyck paths is played by
standard Young tableaux of rectangular shape.
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Thank you

S.E., Descents on nonnesting multipermutations, arXiv:2204.00165.
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