Recursive maps for derangements and nonderangements

DARTMOUTH

Definitions

A derangement is a permutation $\sigma \in S_{n}$ such that for all $i \in[n]$,
$\sigma(i) \neq$
We denote by D_{n} the set of derangements on n elements, and let $d_{n}=\# D_{n}$. We denote by E_{n} the set of permutations of n elements with exactly one fixed point, and let $e_{n}=\# E_{n}$.

Recurrence relations

Two well-known recurrences for derangements are

$d_{n}=(n-1) d_{n-1}+(n-1) d_{n-2}$ (1) and $d_{n}=n d_{n-1}+(-1)^{n}$
(2)
with $d_{0}=1$ and $d_{1}=0$. It can also be shown that
$e_{n}=n d_{n}$

$$
\begin{aligned}
& \text { In view of equation (3), we can rewrite (1) as follows: } \\
& \qquad d_{n}=(n-1) d_{n-1}+
\end{aligned}
$$

$$
d_{n}=(n-1) d_{n-1}+e_{n-}
$$

Also, substituting (3) into (2), we obtain

$$
d_{n}=e_{n}+(-1)^{n}
$$

Bijections exhibiting recurrences

Notation

We make use of some notation provided in [2]: Given a permutation $\sigma \in S_{n}$ and $a \in[n]$, we denote by $\sigma \backslash a$ the permutation given by removing a from the cycle notation of σ.

Equation (3) can be proven via the map
$f_{n}:[n] \times D_{n-1} \rightarrow E_{n}$
with
$f_{n}^{-1}: E_{n} \rightarrow[n] \times D_{n-1}$
$(m, \sigma) \mapsto(m n) \sigma(m n)$,

$$
\tau \mapsto(a,(a n) \tau(a n) \backslash n),
$$

where a is the unique fixed point of τ. The map f_{n} constructs a permutation with exactly one fixed point by replacing m with n in the cycle notation of σ and fixing m if $m<n$ and one just appending the one-cycle (n). The map f_{n}^{-1} essentially swaps the fixed point of τ with n and then removes (n) to get a permutation in D
For $n>1$, equation (4) can be proven by exhibiting a bijection between D_{n} and
$\left([n-1] \times D_{n-1}\right) \cup E_{n-1}$. Let
$\varphi_{n}: D_{n} \rightarrow\left([n-1] \times D_{n-1}\right) \cup E_{n}$
$\varphi_{n}^{-1}:\left([n-1] \times D_{n-1}\right) \cup E_{n-1} \rightarrow D_{n}$

$$
\sigma \mapsto\left\{\begin{array}{llrl}
(\sigma(n), \sigma \backslash n) & \text { if } \sigma \backslash n \in D_{n-1} & \text { with } & (m, \sigma) \mapsto(n m) \sigma \\
\sigma \backslash n & \text { otherwise, } & \tau \mapsto(a n) \tau .
\end{array}\right.
$$

Removing n from the cycle notation of a derangement yields a permutation in E_{n-1} exactly when n was in a transposition in σ, so the first case of φ_{n} occurs exactly when n is not in a n was in a transposition in σ, so the first case of φ_{n} occurs exactly when n is not in a
transposition in σ. The inverse map φ_{n}^{-1} sends a pair (m, σ) to the permutation $(n m) \sigma$, which essentially adds n in the cycle notation of σ before m. In the second case, φ_{n}^{-1} sends elements $\tau \in E_{n-1}$ to the permutation obtained by inserting n into a cycle with the unique fixed point of τ. The proof of relation (2) is by induction using equation (1).

Obtaining new maps

We will use the map φ_{n} to obtain a bijection showing of the relation (5). This yields a map which is conjugate to the one presented in [2]; here we show how such a map can be deduced using the bijective proof of the two-term identity (4).

Definition

Define $\pi_{n} \in S_{n}$ to be the product of disjoint simple transpositions (12)(34) $\cdots(n-1 n)$ if n is even, and if n is odd, $\pi_{n}=(12)(34) \cdots(n-2 n-1)(n)$. Let Π_{n} denote the singleton set $\left\{\pi_{n}\right\}$ Define $\pi_{n, j}$ to be a permutation on $[n] \backslash[j-1]$ given by

Melanie Ferreri ${ }^{1}$
${ }^{1}$ Dartmouth College Based on Joint Work with Peter Doyle

Recursive maps
NotationLet A, B be disjoint sets. Given functions $f: A \rightarrow C$ and $g: B \rightarrow D$, we define $f \oplus g: A \cup B \rightarrow C \cup D$
$x \mapsto \begin{cases}f(x) & \text { if } x \in A \\ g(x) & \text { if } x \in B .\end{cases}$

Also, denote by () the empty permutation from \emptyset to \emptyset.
We will define a map α_{n} that takes $D_{n} \rightarrow E_{n} \cup \Pi_{n}$ if n is even, and if n is odd, $\alpha_{n}: D_{n} \cup \Pi_{n} \rightarrow E_{n}$. Here are the bases cases:
$\alpha_{0}: D_{0} \rightarrow E_{0} \cup \Pi_{0}$
and
$\alpha_{1}: D_{1} \cup \Pi_{1} \rightarrow E_{1}$

For $n>1$, we define the maps α_{n} and α_{n}^{-1} recursively. If n is even, $\alpha_{n}: D_{n} \rightarrow E_{n} \cup \Pi_{n}$ is a follows:

$$
\alpha_{n}: D_{n} \xrightarrow{\varphi_{n}}\left([n-1] \times D_{n-1}\right) \cup E_{n-1} \xrightarrow{\underline{1}_{(n-1] \times D_{n-1} \oplus \oplus_{n-1}^{-1}}}\left([n-1] \times D_{n-1}\right) \cup D_{n-1} \cup \Pi_{n-1}
$$

$$
\xrightarrow{g_{n}^{-1} \oplus \ell_{n}^{-1}}[n] \times D_{n-1} \cup \Pi_{n} \xrightarrow{f_{n} \oplus 1_{\Pi_{n}}} E_{n} \cup \Pi_{n}
$$

where $\ell_{n}: \Pi_{n} \rightarrow \Pi_{n-1}$ sends π_{n} to $\pi_{n} \backslash n=\pi_{n-1}$ and g_{n} is the map which takes an ordered pair (m, σ) and removes the first coordinate if $m=n$. If n is odd, we similarly define
$\alpha_{n}: D_{n} \cup \Pi_{n} \rightarrow E_{n}$ as follows
$\alpha_{n}: D_{n} \cup \Pi_{n} \xrightarrow{\varphi_{n} \oplus \ell_{n}}\left([n-1] \times D_{n-1}\right) \cup E_{n-1} \cup \Pi_{n-1} \xrightarrow{1_{n-1 \mid \times D_{n-1} \oplus \alpha_{n-1}^{-1}}[n-1] \times D_{n-1} \cup D_{n-1}, ~}$ $\xrightarrow{g_{n}^{-1}}[n] \times D_{n-1} \xrightarrow{f_{n}} E_{n}$.
The inverse maps are given by reversing the arrows.
Following through the recursive definitions of the maps, we can show how to directly obtain the image of α_{n} depending on two possible cases for the input derangement. Using this combinatoria "cycle-reversing" permutations. It follows that the combinatorial proof in [2] can be derived from the combinatorial proof for the identity (4). If we modify the map α_{n} and extend its domain to $D_{n} \cup E_{n}$, we obtain an involution on all of S_{n} which exchanges the elements of each subset except for π_{n}.

Definition of $\lambda_{n}: D_{n} \cup E_{n} \rightarrow D_{n} \cup E_{n}$

If $\sigma=\pi_{n}$, then λ_{n} sends σ to itself. If σ has any fixed point m, we add the 2 -cycle $(n+1 m)$. The $n+1$ is a placeholder and will be discarded after applying the map to σ. Let $N=n$ if $n+$ was not added as a placeholder, and otherwise let $N=n+1$. Then look at the cycle notation of σ, and find the smallest j such that

$$
\sigma=\delta \circ \pi_{N, j}
$$

for $\delta \in D_{j-1}$, having no copy of $\pi_{j-1, i}$ at the end. If there is no pattern of simple transpositions like this, we let $j=N+1$. Then the image of σ is as follows
Case 1 . If δ has $j-1$ in a 2 -cycle, we have
and its image is

$$
\sigma=(\cdots j-2 \cdots)(j-1 a) \circ \pi_{N, j}
$$

$\lambda_{n}(\sigma)=(\cdots j-2 a \cdots)(j-1 j) \circ \pi_{N, j+1}$
where any values above n are excluded from the cycle notation.
Case 2. If δ does not have $j-1$ in a 2 -cycle, we have

$$
\sigma=(\cdots j-1 a \cdots) \circ \pi_{N, j}
$$

and its image is

$$
\lambda_{n}(\sigma)=(\cdots j-1 \cdots)(j a) \circ \pi_{N, j+1} .
$$

Again, any values above n are excluded from the cycle notation. We can check that this defines an involution on $D_{n} \cup E_{n}$.

Proposition

Let $\sigma \in D_{n} \cup E_{n}$, with $\sigma \neq \pi_{n}$. If $\sigma \in D_{n}$, then $\lambda_{n}(\sigma) \in E_{n}$. If $\sigma \in E_{n}$, then $\lambda_{n}(\sigma) \in D_{n}$. Also,

Examples $(n=5)$
$\lambda_{5}((12)(3)(45))$: First we change it to $(12)(36)(45)$, adding the 6 as a placeholder. Then $j=7$, so $j-1=6$, which is in a 2 -cycle. It gets sent to (12)(345).

$\lambda_{5}((1234)(5)): j=5$, so $j-1=4$, which is not in a 2 -cycle. This gets sent to (15)(234

, which is in a 2 -cycle. This gets sent to (1234)(5)

An involution on S_{n}

From the recursive maps, we obtained a combinatorial description of α_{n} that was then extended to λ_{n}, which fixes π_{n} and exchanges the other elements of D_{n} and E_{n}. Using this, we can define a map on the entire symmetric group

$$
\begin{aligned}
\Lambda_{n}: S_{n} & \rightarrow S_{n} \\
\quad \sigma & \mapsto \begin{cases}\sigma & \text { if } \sigma \notin D_{n} \cup E_{n} \\
\lambda_{n}(\sigma) & \text { otherwise, }\end{cases}
\end{aligned}
$$

which is an involution on S

Nonderangements

Definition

Let \bar{D}_{n} denote $S_{n} \backslash D_{n}$, the set of nonderangements of $[n]$. Similarly let \bar{E}_{n} denote $S_{n} \backslash E_{n}$, the set of permutations of $[n]$ which do not have exactly one fixed point.
Having found the bijection $\alpha_{n}: D_{n} \rightarrow E_{n}\left(\pm \Pi_{n}\right)$, we can use the method of subtracting maps described in [1] to obtain a map

$$
\bar{\alpha}_{n}: \bar{D}_{n} \rightarrow \bar{E}_{n}\left(\mp \Pi_{n}\right)
$$

The map is given by subtracting α_{n} from the identity on S_{n}. We begin with $\sigma \in \bar{D}_{n}$. If $\sigma \in \bar{E}_{n}$ as well, that means σ has at least 2 fixed points. So σ is already in \bar{E}_{n}, so when applying the identity, σ lands where we want it to land. So we can just map σ to itself. Otherwise, $\sigma \notin \bar{E}_{n}$, which means $\sigma \in E_{n}$. In this case, we apply α_{n}^{-1} to obtain some permutation $\sigma^{\prime} \in D_{n} \subseteq \frac{E_{n}}{E_{n}}$

Description of the nonderangement map

In summary, the description of $\bar{\alpha}_{n}$ is as follows:

$$
\begin{aligned}
\bar{\alpha}_{n}: \bar{D}_{n} & \rightarrow \bar{E}_{n}\left(\mp \Pi_{n}\right) \\
\sigma & \mapsto \begin{cases}\sigma & \text { if } \sigma \in \bar{E}_{n} \\
\alpha_{n}^{-1}(\sigma) & \text { if } \sigma \in E_{n} .\end{cases}
\end{aligned}
$$

With the special case where $\sigma=\pi_{n}$, we only have that $\pi_{n} \in \bar{D}_{n}$ when n is odd. In this case, π_{n} gets sent to itself and we have $\bar{E}_{n} \cup \Pi_{n}$ as the image of $\bar{\alpha}_{n}$. If n is even, then $\pi_{n} \in \bar{E}_{n}$ since π_{n} is a derangement. However, there is nothing in \bar{D}_{n} that maps to π_{n}, so in this case the image of $\bar{\alpha}_{n}$ is $\bar{E}_{n} \backslash \Pi_{n}$.

References

D. Doyle. Let's reinvent subtraction. 2021
(S. Elizalde. A simple bijective proof of a familiar derangement recurrence. 2020. arXiv: 2005 11312 [math. C0]
. J. B. Remmel. A note on a recursion for the number of derangements. 1983

