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Definitions
A derangement is a permutation σ ∈ Sn such that for all i ∈ [n],

σ(i) ̸= i.

We denote by Dn the set of derangements on n elements, and let dn = #Dn. We denote by En

the set of permutations of n elements with exactly one fixed point, and let en = #En.

Recurrence relations

Two well-known recurrences for derangements are

dn = (n− 1)dn−1 + (n− 1)dn−2 (1) and dn = ndn−1 + (−1)n (2)

with d0 = 1 and d1 = 0. It can also be shown that

en = ndn−1. (3)

In view of equation (3), we can rewrite (1) as follows:

dn = (n− 1)dn−1 + en−1. (4)

Also, substituting (3) into (2), we obtain

dn = en + (−1)n. (5)

Bijections exhibiting recurrences

Notation
We make use of some notation provided in [2]: Given a permutation σ ∈ Sn and a ∈ [n], we
denote by σ \ a the permutation given by removing a from the cycle notation of σ.

Equation (3) can be proven via the map

fn : [n]×Dn−1 → En

(m,σ) 7→ (mn)σ(mn),
with f−1

n : En → [n]×Dn−1

τ 7→ (a, (an)τ (an) \ n),
where a is the unique fixed point of τ . The map fn constructs a permutation with exactly one
fixed point by replacing m with n in the cycle notation of σ and fixing m if m < n, and otherwise
just appending the one-cycle (n). The map f−1

n essentially swaps the fixed point of τ with n and
then removes (n) to get a permutation in Dn−1.
For n > 1, equation (4) can be proven by exhibiting a bijection between Dn and
([n− 1]×Dn−1) ∪ En−1. Let

φn : Dn → ([n− 1]×Dn−1) ∪ En−1

σ 7→
{
(σ(n), σ \ n) if σ \ n ∈ Dn−1

σ \ n otherwise,

with
φ−1
n : ([n− 1]×Dn−1) ∪ En−1 → Dn

(m,σ) 7→ (nm)σ

τ 7→ (an)τ.

Removing n from the cycle notation of a derangement yields a permutation in En−1 exactly when
n was in a transposition in σ, so the first case of φn occurs exactly when n is not in a
transposition in σ. The inverse map φ−1

n sends a pair (m,σ) to the permutation (nm)σ, which
essentially adds n in the cycle notation of σ before m. In the second case, φ−1

n sends elements
τ ∈ En−1 to the permutation obtained by inserting n into a cycle with the unique fixed point of τ .
The proof of relation (2) is by induction using equation (1).

Obtaining new maps

We will use the map φn to obtain a bijection showing of the relation (5). This yields a map which
is conjugate to the one presented in [2]; here we show how such a map can be deduced using the
bijective proof of the two-term identity (4).

Definition
Define πn ∈ Sn to be the product of disjoint simple transpositions (1 2)(3 4) · · · (n− 1 n) if n is
even, and if n is odd, πn = (1 2)(3 4) · · · (n− 2 n− 1)(n). Let Πn denote the singleton set {πn}.
Define πn,j to be a permutation on [n] \ [j − 1] given by

πn,j =

{
(j j + 1) · · · (n− 1 n) if n− j + 1 is even

(j j + 1) · · · (n− 2 n− 1)(n) if n− j + 1 is odd.

Recursive maps

Notation
Let A,B be disjoint sets. Given functions f : A→ C and g : B → D, we define

f ⊕ g : A ∪B → C ∪D

x 7→
{
f (x) if x ∈ A

g(x) if x ∈ B.

Also, denote by () the empty permutation from ∅ to ∅.

We will define a map αn that takes Dn → En ∪ Πn if n is even, and if n is odd,
αn : Dn ∪ Πn → En. Here are the bases cases:

α0 : D0 → E0 ∪ Π0

() 7→ π0
and α1 : D1 ∪ Π1 → E1

π1 7→ (1).

For n > 1, we define the maps αn and α−1
n recursively. If n is even, αn : Dn → En ∪ Πn is as

follows:

αn : Dn
φn−→ ([n− 1]×Dn−1) ∪ En−1

1[n−1]×Dn−1
⊕α−1

n−1−−−−−−−−−→ ([n− 1]×Dn−1) ∪Dn−1 ∪ Πn−1

g−1
n ⊕ℓ−1

n−−−−→ [n]×Dn−1 ∪ Πn
fn⊕1Πn−−−−→ En ∪ Πn

where ℓn : Πn → Πn−1 sends πn to πn \ n = πn−1 and gn is the map which takes an ordered pair
(m,σ) and removes the first coordinate if m = n. If n is odd, we similarly define
αn : Dn ∪ Πn → En as follows:

αn : Dn ∪ Πn
φn⊕ℓn−−−→ ([n− 1]×Dn−1) ∪ En−1 ∪ Πn−1

1[n−1]×Dn−1
⊕α−1

n−1−−−−−−−−−→ [n− 1]×Dn−1 ∪Dn−1

g−1
n−→ [n]×Dn−1

fn−→ En.

The inverse maps are given by reversing the arrows.

Following through the recursive definitions of the maps, we can show how to directly obtain the
image of αn depending on two possible cases for the input derangement. Using this combinatorial
description, we see that αn is conjugate to the map ψn in [2] by an involution on Sn given by
“cycle-reversing” permutations. It follows that the combinatorial proof in [2] can be derived from
the combinatorial proof for the identity (4).

If we modify the map αn and extend its domain to Dn ∪ En, we obtain an involution on all of Sn
which exchanges the elements of each subset except for πn.

Definition of λn : Dn ∪ En → Dn ∪ En

If σ = πn, then λn sends σ to itself. If σ has any fixed point m, we add the 2-cycle (n + 1 m).
The n + 1 is a placeholder and will be discarded after applying the map to σ. Let N = n if n + 1
was not added as a placeholder, and otherwise let N = n + 1. Then look at the cycle notation of
σ, and find the smallest j such that

σ = δ ◦ πN,j
for δ ∈ Dj−1, having no copy of πj−1,i at the end. If there is no pattern of simple transpositions
like this, we let j = N + 1. Then the image of σ is as follows.

Case 1. If δ has j − 1 in a 2-cycle, we have

σ = (· · · j − 2 · · · )(j − 1 a) ◦ πN,j
and its image is

λn(σ) = (· · · j − 2 a · · · )(j − 1 j) ◦ πN,j+1
where any values above n are excluded from the cycle notation.

Case 2. If δ does not have j − 1 in a 2-cycle, we have

σ = (· · · j − 1 a · · · ) ◦ πN,j
and its image is

λn(σ) = (· · · j − 1 · · · )(j a) ◦ πN,j+1.
Again, any values above n are excluded from the cycle notation. We can check that this defines an
involution on Dn ∪ En.

Proposition
Let σ ∈ Dn∪En, with σ ̸= πn. If σ ∈ Dn, then λn(σ) ∈ En. If σ ∈ En, then λn(σ) ∈ Dn. Also,
λn(λn(σ)) = σ.

Examples (n = 5):

λ5((12)(345)): j = 6, j − 1 = 5 which is not in a 2-cycle, so we send it to (12)(3)(45).

λ5((12)(3)(45)): First we change it to (12)(36)(45), adding the 6 as a placeholder.
Then j = 7, so j − 1 = 6, which is in a 2-cycle. It gets sent to (12)(345).

λ5((1234)(5)): j = 5, so j − 1 = 4, which is not in a 2-cycle. This gets sent to (15)(234).

λ5((15)(234)): j = 6, so j − 1 = 5, which is in a 2-cycle. This gets sent to (1234)(5).

An involution on Sn

From the recursive maps, we obtained a combinatorial description of αn that was then extended to
λn, which fixes πn and exchanges the other elements of Dn and En. Using this, we can define a
map on the entire symmetric group

Λn : Sn → Sn

σ 7→
{
σ if σ /∈ Dn ∪ En

λn(σ) otherwise,

which is an involution on Sn.

Nonderangements

Definition
Let Dn denote Sn \Dn, the set of nonderangements of [n]. Similarly let En denote Sn \En, the
set of permutations of [n] which do not have exactly one fixed point.

Having found the bijection αn : Dn → En(±Πn), we can use the method of subtracting maps
described in [1] to obtain a map

αn : Dn → En (∓Πn).

The map is given by subtracting αn from the identity on Sn. We begin with σ ∈ Dn. If σ ∈ En as
well, that means σ has at least 2 fixed points. So σ is already in En, so when applying the identity,
σ lands where we want it to land. So we can just map σ to itself. Otherwise, σ /∈ En, which
means σ ∈ En. In this case, we apply α−1

n to obtain some permutation σ′ ∈ Dn ⊆ En.

Description of the nonderangement map

In summary, the description of αn is as follows:

αn : Dn → En (∓Πn)

σ 7→
{
σ if σ ∈ En

α−1
n (σ) if σ ∈ En.

With the special case where σ = πn, we only have that πn ∈ Dn when n is odd. In this case, πn
gets sent to itself and we have En ∪ Πn as the image of αn. If n is even, then πn ∈ En since πn is
a derangement. However, there is nothing in Dn that maps to πn, so in this case the image of αn
is En \ Πn.
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