The first occurrence of a pattern in a random sequence

Yixin (Kathy) Lin Joint work with Sergi Elizalde

Dartmouth College

June 17, 2022

Yixin (Kathy) Lin The first occurrence of a pattern in a random sequence

In Penney's game, Alina selects a binary word of length $n \ge 3$, then Ben selects another binary word of the same length. A fair coin is tossed repeatedly.

Ex., Alina: HHH, Ben: THH, THTTHTHTHH.

In Penney's game, Alina selects a binary word of length $n \ge 3$, then Ben selects another binary word of the same length. A fair coin is tossed repeatedly.

Ex., Alina: HHH, Ben: THH, THTTHTHTHH.

It is known that, for any word picked by Alina, Ben can always pick a word will be more likely to appear first.

```
Ex., Sydney: 123, Tom: 213.
```

0

```
Ex., Sydney: 123, Tom: 213.
```

```
Ex., Sydney: 123, Tom: 213.
```


For $\sigma \in S_k$, define the random variable T_{σ} as the smallest j such that X_1, \ldots, X_j contains an occurrence of σ . Let $\alpha_n(\sigma)$ be the number of permutations in S_n that avoid the pattern σ , and denote the corresponding exponential generating function by

$$P_{\sigma}(z) = \sum_{n \ge 0} \alpha_n(\sigma) \frac{z^n}{n!}.$$

The expectation $\mathbb{E}T_{\sigma}$ has a surprisingly simple expression in terms of this generating function.

Theorem

For every σ ,

$$\mathbb{E} T_{\sigma} = P_{\sigma}(1).$$

Expressions for $P_{\sigma}(z)$ for various σ have been obtained by Elizalde and Noy (2003, 2012). For example, it follows from above theorem that

$$\mathbb{E} T_{12} = e,$$

$$\mathbb{E} T_{123} = \frac{\sqrt{3e}}{2\cos(\frac{\sqrt{3}}{2} + \frac{\pi}{6})} \approx 7.924,$$

$$\mathbb{E} T_{132} = \frac{1}{1 - \int_0^1 e^{-t^2/2} dt} \approx 6.926.$$

Given two permutations σ and τ , we would like to compute the probability that σ appears before τ in **X**, which we denote by $\Pr(\sigma \prec \tau)$.

Observation

For the decreasing pattern $\rho_k = k(k-1)\cdots 21$,

$$Pr(\rho_k \prec 12) = \frac{1}{k!}.$$

Define $F_{\sigma \to \tau}$ as the number of further steps to see the pattern τ after the first occurrence of σ , assuming that σ occurs before τ in **X**.

Theorem

For any two consecutive patterns σ and τ ,

$$\mathsf{Pr}(\sigma \prec \tau) = \frac{\mathbb{E}F_{\tau \to \sigma} + \mathbb{E}T_{\tau} - \mathbb{E}T_{\sigma}}{\mathbb{E}F_{\tau \to \sigma} + \mathbb{E}F_{\sigma \to \tau}}.$$

. . . .

D (

$\Pr(\sigma \prec \tau)$ for patterns of length 3									
$\frac{\Pr(\sigma \prec \tau)}{\sigma}$	123	132	213	231	312	321			
123	-	0.5	0.412	0.551	0.342	0.5			
132	0.5	_	0.462	0.476	0.5	0.658			
213	0.588	0.538	-	0.5	0.524	0.449			
231	0.449	0.524	0.5	-	0.538	0.588			
312	0.658	0.5	0.476	0.462	_	0.5			
321	0.5	0.342	0.551	0.412	0.5	_			

$\Pr(\sigma \prec \tau)$ for patterns of length 3									
$\frac{\Pr(\sigma \prec \tau)}{\sigma} \frac{\tau}{\tau}$	123	132	213	231	312	321			
123	-	0.5	0.412	0.551	0.342	0.5			
132	0.5	_	0.462	0.476	0.5	0.658			
213	0.588	0.538	_	0.5	0.524	0.449			
231	0.449	0.524	0.5	_	0.538	0.588			
312	0.658	0.5	0.476	0.462	_	0.5			
321	0.5	0.342	0.551	0.412	0.5	_			

) **c**

Conjecture

Assume Sydney picks $\sigma = \sigma_1 \cdots \sigma_k$, then the winning strategy for Tom would be to pick $\sigma_k \sigma_1 \cdots \sigma_{k-1}$.

$Pr(\sigma\prec au)$ for patterns of length 3									
$\frac{\Pr(\sigma \prec \tau)}{\sigma}$	123	132	213	231	312	321			
123	-	0.5	0.412	0.551	0.342	0.5			
132	0.5	-	0.462	0.476	0.5	0.658			
213	0.588	0.538	_	0.5	0.524	0.449			
231	0.449	0.524	0.5	-	0.538	0.588			
312	0.658	0.5	0.476	0.462	_	0.5			
321	0.5	0.342	0.551	0.412	0.5	_			

• • = • • = • = •

$\Pr(\sigma \prec \tau)$ for patterns of length 3									
$\frac{\Pr(\sigma \prec \tau)}{\sigma} \frac{\tau}{\tau}$	123	132	213	231	312	321			
123	-	0.5	0.412	0.551	0.342	0.5			
132	0.5	_	0.462	0.476	0.5	0.658			
213	0.588	0.538	_	0.5	0.524	0.449			
231	0.449	0.524	0.5	_	0.538	0.588			
312	0.658	0.5	0.476	0.462	_	0.5			
321	0.5	0.342	0.551	0.412	0.5				

 $D_{\mu}(-)$ () for motherway of lowerth 2

Observation

 $\Pr(\tau \prec \sigma) = 1 - \Pr(\sigma \prec \tau)$ assuming that neither of the patterns contains the other.

$Pr(\sigma\prec au)$ for patterns of length 3									
$\frac{\Pr(\sigma \prec \tau)}{\sigma} \frac{\tau}{\tau}$	123	132	213	231	312	321			
123	-	0.5	0.412	0.551	0.342	0.5			
132		_	0.462	0.476	0.5	0.658			
213			_	0.5	0.524	0.449			
231				_	0.538	0.588			
312					_	0.5			
321						-			

$Pr(\sigma\prec au)$ for patterns of length 3									
$\frac{\Pr(\sigma \prec \tau)}{\sigma} \frac{\tau}{\tau}$	123	132	213	231	312	321			
123	-	0.5	0.412	0.551	0.342	0.5			
132		_	0.462	0.476	0.5	0.658			
213			-	0.5	0.524	0.449			
231				-	0.538	0.588			
312					_	0.5			
321						_			

Observation

If $\bar{\sigma}$ denotes the permutation such that $\bar{\sigma}_i = k + 1 - \sigma_i$ for $1 \leq i \leq k$, then $\Pr(\sigma \prec \tau) = \Pr(\bar{\sigma} \prec \bar{\tau}) = 1 - \Pr(\bar{\tau} \prec \bar{\sigma})$.

• • (0	, ,	. o. p.				
$\frac{\Pr(\sigma \prec \tau)}{\sigma}$	123	132	213	231	312	321
123	-	0.5	0.412	0.551	0.342	0.5
132		-	0.462	0.476	0.5	
213			_	0.5		
231				_		
312					_	
321						-

 $\Pr(\sigma \prec \tau)$ for patterns of length 3

$\frac{\Pr(\sigma \prec \tau)}{\sigma}$	123	132	213	231	312	321		
123	-	0.5	0.412	0.551	0.342	0.5		
132		-	0.462	0.476	0.5			
213			_	0.5				
231				_				
312					_			
321						-		

 $\Pr(\sigma \prec \tau)$ for patterns of length 3

Observation

 $\Pr(\sigma \prec \bar{\sigma}) = 0.5.$

伺 ト イヨ ト イヨ ト

э

$\frac{\Pr(\sigma \prec \tau)}{\sigma}$	123	132	213	231	312	321
				[
123	-		0.412	0.551	0.342	
132		_	0.462	0.476		
213			-			
231				-		
312					_	
321						-
						-

4 3 4 3 4

э

Theorem

Let $\sigma, \tau \in S_k$ be two patterns, let a_n be the number of permutations of length n that end with σ , and avoid both σ and τ elsewhere. Then the probability that σ shows up before τ is given by

$$Pr(\sigma \prec \tau) = \sum_{n \ge k} Pr(\text{game ends at } n) \cdot Pr(\sigma \prec \tau | \text{game ends at } n)$$
$$= \sum_{n \ge k} \frac{a_n}{n!}.$$

$\frac{\Pr(\sigma \prec \tau)}{\tau}$	123	132	213	231	312	321
$\frac{\sigma}{123}$			0.412	0.551	0.342	
132		_	0.462	0.476	0.0.1	
213			-			
231				_		
312					_	
321						-

4 3 4 3 4

э

Probability that 132 precedes 231

 $\bigvee \iff \bigvee$

permutations that end with 123 with at most \leftrightarrow with 132, and avoid 1 valley and no peak

permutations that end 132 and 231 elsewhere

$$\Pr(132 \prec 231) = \sum_{n \ge 3} \frac{\sum_{i=0}^{n-3} {n-1 \choose i}}{n!}$$
$$= \frac{e^2}{2} - e - \frac{1}{2} \approx 0.476.$$

123	132	213	231	312	321
		0.412	0.551	0.342	
	_	0.462	0.476		
		_			
			_		
				-	
					-
	123	123 132 - - - -	- 0.412	0.412 0.551	- 0.412 0.551 0.342

4 3 4 3 4

э

Lemma

Let b_n be the number of permutations of length n that end with 312, and avoid both 123 and 213 elsewhere. Then for all $n \ge 5$,

$$b_n = b_{n-1} + (n-1) \cdot b_{n-2},$$

with initial conditions

$$b_0 = b_1 = b_2 = 0, \ b_3 = 1 \ and \ b_4 = 4.$$

Theorem

Let c_n be the number of permutations of length n that end with 123, and avoid both 123 and 213 elsewhere. Then for all $n \ge 5$,

$$c_n = c_{n-1} + b_{n-1} + (n-1) \cdot c_{n-2},$$

with initial conditions $c_3 = 1$ and $c_4 = 2$.

Let B(x) and C(x) be the corresponding E.G.F. for b_n and c_n , resp. Then

$$C(x) = e^{\frac{x(x+2)}{2}} \left(\int_0^x \frac{z^2 + 2B(z)}{2} e^{-\frac{z(2+z)}{2}} dz \right).$$

Pr(123 \le 213) = $\sum_{n \ge 0} \frac{c_n}{n!} = C(1) \approx 0.412.$

$\frac{\Pr(\sigma \prec \tau)}{\sigma}$	123	132	213	231	312	321
123	-		0.412	0.551	0.342	
132		_	0.462	0.476		
213			-			
231				-		
312					-	
321						-

4 3 4 3 4

э

Theorem

Let d(n, i) denote the number of permutations in S_n that end with 123, avoid both 123 and 213 elsewhere, and starting with number *i*. Then for all $n \ge 5$ and all $1 \le i \le n$,

$$d(n,i) = \sum_{j=1}^{i-1} d(n-1,j) + \sum_{j=i}^{n-2} (n-1-j)d(n-2,j),$$

with d(3,1) = 1, d(3,2) = d(3,3) = 0; and d(4,1) = 0, d(4,2) = d(4,3) = d(4,4) = 1.

$$\Pr(123 \prec 231) = \sum_{n \ge 0} \sum_{i \ge 0} \frac{d(n, i)}{n!} \approx 0.551.$$

This recurrence relation is based on 'On multi-avoidance of generalised patterns' by Kitaev and Mansour.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

$\frac{\Pr(\sigma \prec \tau)}{\sigma} \frac{\tau}{\tau}$	123	132	213	231	312	321
123	_		0.412	0.551	0.342	
132		_	0.462	0.476		
213			-			
231				_		
312					-	
321						_

4 3 4 3 4

э

Theorem

Let s(n; i, j) be the number of permutations that end with 132, avoid both 132 and 213 elsewhere, and starting with numbers i and j. Then

•
$$s(n; i, i) = 0$$
 for all $n, i \ge 1$;

•
$$s(n; i, j) = \sum_{k=1}^{i-1} s(n-1; j, k)$$
 if $i > j$;

•
$$s(n; i, j) = \sum_{k=1}^{i-1} s(n-1; j-1, k) + \sum_{k=j}^{n-1} s(n-1; j-1, k)$$
 if
 $i < j;$

with initial conditions s(3; 1, 3) = 1, s(3; i, j) = 0 for all other i, j.

$$\Pr(132 \prec 213) = \sum_{n \ge 0} \sum_{i \ge 0} \sum_{j \ge 0} \frac{s(n; i, j)}{n!} \approx 0.462.$$

This recurrence relation is based on 'On multi-avoidance of generalised patterns' by Kitaev and Mansour.

$\frac{\Pr(\sigma \prec \tau) \tau}{\sigma}$	123	132	213	231	312	321
123	-		0.412	0.551	0.342	
132		_	0.462	0.476		
213			-			
231				—		
312					_	
321						-

4 3 4 3 4

э

Theorem

Let t(n; i, j) be the number of permutations that end with 123, avoid both 123 and 312 elsewhere, and start with i and j. Then

•
$$t(n; i, i) = 0$$
 for all $n, i \ge 1$;

•
$$t(n; i, j) = \sum_{k=1}^{j-1} t(n-1; j-1, k)$$
 if $i < j$;

• $t(n; i, j) = \sum_{k=1}^{j-1} t(n-1; j, k) + \sum_{k=i}^{n-1} t(n-1; j, k)$ if i > j;

with t(4; 2, 1) = 1, and t(4; i, j) = 0 for all other $i, j \le 4$.

$$\Pr(132 \prec 213) = \sum_{n \ge 0} \sum_{i \ge 0} \sum_{j \ge 0} \frac{t(n; i, j)}{n!} \approx 0.342.$$

References

- S. Collings. Coin sequence probabilities and paradoxes. *Bulletin* vol.18(11-12) (1982), p.227-232.
- S. Elizalde and M. Noy. Consecutive patterns in permutations. *Adv. in Appl. Math.* vol. 30 (2003), p.110-123.
- S. Elizalde and M. Noy. Clusters, generating functions and asymptotics for consecutive patterns in permutations. *Adv. in Appl. Math.* vol. 49 (2012), p.351-374.
- M. Gardner. On the paradoxical situations that arise from nontransitive situation. *Scientific American* (Oct 1974), p.120-125.
- S. Kitaev and T. Mansour. On multi-avoidance of generalised patterns. *Discrete Math* (2002).

• • = • • = •