The first occurrence of a pattern in a random sequence

Yixin (Kathy) Lin
Joint work with Sergi Elizalde
Dartmouth College
June 17, 2022

Penney's game

In Penney's game, Alina selects a binary word of length $n \geq 3$, then Ben selects another binary word of the same length. A fair coin is tossed repeatedly.

Ex., Alina: HHH, Ben: THH, THTTHTHTHH.

Penney's game

In Penney's game, Alina selects a binary word of length $n \geq 3$, then Ben selects another binary word of the same length. A fair coin is tossed repeatedly.

Ex., Alina: HHH, Ben: THH, THTTHTHTHH.

It is known that, for any word picked by Alina, Ben can always pick a word will be more likely to appear first.

Penney's game for permutations

Let $\mathbf{X}=X_{1}, X_{2}, \ldots$ be a sequence of i.i.d. continuous random variables. A consecutive occurrence of a permutation $\sigma \in \mathcal{S}_{k}$ is a subsequence $X_{i}, X_{i+1}, \ldots, X_{i+k-1}$ whose entries are in the same relative order as $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{k}$.

Ex., Sydney: 123, Tom: 213.

Penney's game for permutations

Let $\mathbf{X}=X_{1}, X_{2}, \ldots$ be a sequence of i.i.d. continuous random variables. A consecutive occurrence of a permutation $\sigma \in \mathcal{S}_{k}$ is a subsequence $X_{i}, X_{i+1}, \ldots, X_{i+k-1}$ whose entries are in the same relative order as $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{k}$.

Ex., Sydney: 123, Tom: 213.

Penney's game for permutations

Let $\mathbf{X}=X_{1}, X_{2}, \ldots$ be a sequence of i.i.d. continuous random variables. A consecutive occurrence of a permutation $\sigma \in \mathcal{S}_{k}$ is a subsequence $X_{i}, X_{i+1}, \ldots, X_{i+k-1}$ whose entries are in the same relative order as $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{k}$.

Ex., Sydney: 123, Tom: 213.

Penney's game for permutations

Let $\mathbf{X}=X_{1}, X_{2}, \ldots$ be a sequence of i.i.d. continuous random variables. A consecutive occurrence of a permutation $\sigma \in \mathcal{S}_{k}$ is a subsequence $X_{i}, X_{i+1}, \ldots, X_{i+k-1}$ whose entries are in the same relative order as $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{k}$.

Ex., Sydney: 123, Tom: 213.

Penney's game for permutations

Let $\mathbf{X}=X_{1}, X_{2}, \ldots$ be a sequence of i.i.d. continuous random variables. A consecutive occurrence of a permutation $\sigma \in \mathcal{S}_{k}$ is a subsequence $X_{i}, X_{i+1}, \ldots, X_{i+k-1}$ whose entries are in the same relative order as $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{k}$.

Ex., Sydney: 123, Tom: 213.

Penney's game for permutations

Let $\mathbf{X}=X_{1}, X_{2}, \ldots$ be a sequence of i.i.d. continuous random variables. A consecutive occurrence of a permutation $\sigma \in \mathcal{S}_{k}$ is a subsequence $X_{i}, X_{i+1}, \ldots, X_{i+k-1}$ whose entries are in the same relative order as $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{k}$.

Ex., Sydney: 123, Tom: 213.

Penney's game for permutations

Let $\mathbf{X}=X_{1}, X_{2}, \ldots$ be a sequence of i.i.d. continuous random variables. A consecutive occurrence of a permutation $\sigma \in \mathcal{S}_{k}$ is a subsequence $X_{i}, X_{i+1}, \ldots, X_{i+k-1}$ whose entries are in the same relative order as $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{k}$.

Ex., Sydney: 123, Tom: 213.

Penney's game for permutations

Let $\mathbf{X}=X_{1}, X_{2}, \ldots$ be a sequence of i.i.d. continuous random variables. A consecutive occurrence of a permutation $\sigma \in \mathcal{S}_{k}$ is a subsequence $X_{i}, X_{i+1}, \ldots, X_{i+k-1}$ whose entries are in the same relative order as $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{k}$.

Ex., Sydney: 123, Tom: 213.

Expected time to see the first occurrence of a pattern

For $\sigma \in \mathcal{S}_{k}$, define the random variable T_{σ} as the smallest j such that X_{1}, \ldots, X_{j} contains an occurrence of σ. Let $\alpha_{n}(\sigma)$ be the number of permutations in \mathcal{S}_{n} that avoid the pattern σ, and denote the corresponding exponential generating function by

$$
P_{\sigma}(z)=\sum_{n \geq 0} \alpha_{n}(\sigma) \frac{z^{n}}{n!}
$$

The expectation $\mathbb{E} T_{\sigma}$ has a surprisingly simple expression in terms of this generating function.

Theorem

For every σ,

$$
\mathbb{E} T_{\sigma}=P_{\sigma}(1)
$$

Expected time to see the first occurrence of a pattern

Expressions for $P_{\sigma}(z)$ for various σ have been obtained by Elizalde and Noy (2003, 2012). For example, it follows from above theorem that

$$
\begin{aligned}
& \mathbb{E} T_{12}=e \\
& \mathbb{E} T_{123}=\frac{\sqrt{3 e}}{2 \cos \left(\frac{\sqrt{3}}{2}+\frac{\pi}{6}\right)} \approx 7.924 \\
& \mathbb{E} T_{132}=\frac{1}{1-\int_{0}^{1} e^{-t^{2} / 2} d t} \approx 6.926
\end{aligned}
$$

Probability of seeing one pattern before another

Given two permutations σ and τ, we would like to compute the probability that σ appears before τ in \mathbf{X}, which we denote by $\operatorname{Pr}(\sigma \prec \tau)$.

Observation

For the decreasing pattern $\rho_{k}=k(k-1) \cdots 21$,

$$
\operatorname{Pr}\left(\rho_{k} \prec 12\right)=\frac{1}{k!}
$$

Probability that 12 precedes ρ_{k}

Define $F_{\sigma \rightarrow \tau}$ as the number of further steps to see the pattern τ after the first occurrence of σ, assuming that σ occurs before τ in X.

Theorem

For any two consecutive patterns σ and τ,

$$
\operatorname{Pr}(\sigma \prec \tau)=\frac{\mathbb{E} F_{\tau \rightarrow \sigma}+\mathbb{E} T_{\tau}-\mathbb{E} T_{\sigma}}{\mathbb{E} F_{\tau \rightarrow \sigma}+\mathbb{E} F_{\sigma \rightarrow \tau}}
$$

Probability of seeing one pattern before another

$\operatorname{Pr}(\sigma \prec \tau)$ for patterns of length 3

$\operatorname{Pr}(\sigma \prec \tau) \backslash \tau$	123	132	213	231	312	321
σ						
123	-	0.5	0.412	0.551	0.342	0.5
132	0.5	-	0.462	0.476	0.5	0.658
213	0.588	0.538	-	0.5	0.524	0.449
231	0.449	0.524	0.5	-	0.538	0.588
312	0.658	0.5	0.476	0.462	-	0.5
321	0.5	0.342	0.551	0.412	0.5	-

Probability of seeing one pattern before another

$\operatorname{Pr}(\sigma \prec \tau)$ for patterns of length 3

$\frac{\operatorname{Pr}(\sigma \prec \tau) \backslash \tau}{\sigma}$	123	132	213	231	312	321
123	-	0.5	0.412	0.551	0.342	0.5
132	0.5	-	0.462	0.476	0.5	0.658
213	0.588	0.538	-	0.5	0.524	0.449
231	0.449	0.524	0.5	-	0.538	0.588
312	0.658	0.5	0.476	0.462	-	0.5
321	0.5	0.342	0.551	0.412	0.5	-

Conjecture

Assume Sydney picks $\sigma=\sigma_{1} \cdots \sigma_{k}$, then the winning strategy for Tom would be to pick $\sigma_{k} \sigma_{1} \cdots \sigma_{k-1}$.

Probability of seeing one pattern before another

$\operatorname{Pr}(\sigma \prec \tau)$ for patterns of length $\mathbf{3}$

$\operatorname{Pr}(\sigma \prec \tau) \backslash \tau$	123	132	213	231	312	321
σ						
123	-	0.5	0.412	0.551	0.342	0.5
132	0.5	-	0.462	0.476	0.5	0.658
213	0.588	0.538	-	0.5	0.524	0.449
231	0.449	0.524	0.5	-	0.538	0.588
312	0.658	0.5	0.476	0.462	-	0.5
321	0.5	0.342	0.551	0.412	0.5	-

Probability of seeing one pattern before another

$\operatorname{Pr}(\sigma \prec \tau)$ for patterns of length $\mathbf{3}$

$\operatorname{Pr}(\sigma \prec \tau) \backslash \tau$	123	132	213	231	312	321
σ						
123	-	0.5	0.412	0.551	0.342	0.5
132	0.5	-	0.462	0.476	0.5	0.658
213	0.588	0.538	-	0.5	0.524	0.449
231	0.449	0.524	0.5	-	0.538	0.588
312	0.658	0.5	0.476	0.462	-	0.5
321	0.5	0.342	0.551	0.412	0.5	-

Observation

$\operatorname{Pr}(\tau \prec \sigma)=1-\operatorname{Pr}(\sigma \prec \tau)$ assuming that neither of the patterns contains the other.

Probability of seeing one pattern before another

$\operatorname{Pr}(\sigma \prec \tau)$ for patterns of length 3

$\operatorname{Pr}(\sigma \prec \tau) \backslash \tau$	123	132	213	231	312	321
σ	-	0.5	0.412	0.551	0.342	0.5
123		-	0.462	0.476	0.5	0.658
132			-	0.5	0.524	0.449
213				-	0.538	0.588
231				-	0.5	
312						-
321						

Probability of seeing one pattern before another

$\operatorname{Pr}(\sigma \prec \tau)$ for patterns of length 3

$\operatorname{Pr}(\sigma \prec \tau) \backslash \tau$	123	132	213	231	312	321
σ						
123	-	0.5	0.412	0.551	0.342	0.5
132		-	0.462	0.476	0.5	0.658
213			-	0.5	0.524	0.449
231				-	0.538	0.588
312					-	0.5
321						-

Observation

If $\bar{\sigma}$ denotes the permutation such that $\bar{\sigma}_{i}=k+1-\sigma_{i}$ for $1 \leq i \leq k$, then $\operatorname{Pr}(\sigma \prec \tau)=\operatorname{Pr}(\bar{\sigma} \prec \bar{\tau})=1-\operatorname{Pr}(\bar{\tau} \prec \bar{\sigma})$.

Probability of seeing one pattern before another

$\operatorname{Pr}(\sigma \prec \tau)$ for patterns of length 3

$\frac{\operatorname{Pr}(\sigma \prec \tau)}{\sigma} \quad 123$	132	213	231	312	321	
123	-	0.5	0.412	0.551	0.342	0.5
132		-	0.462	0.476	0.5	
213			-	0.5		
231				-		
312					-	
321						-

Probability of seeing one pattern before another

$\operatorname{Pr}(\sigma \prec \tau)$ for patterns of length 3

$\frac{\operatorname{Pr}(\sigma \prec \tau) \backslash \tau}{\sigma}$	123	132	213	231	312	321
123	-	0.5	0.412	0.551	0.342	0.5
132		-	0.462	0.476	0.5	
213			-	0.5		
231				-		
312					-	
321						-

Observation

$$
\operatorname{Pr}(\sigma \prec \bar{\sigma})=0.5
$$

Probability of seeing one pattern before another

$\operatorname{Pr}(\sigma \prec \tau)$ for patterns of length 3						
$\frac{\operatorname{Pr}(\sigma \prec \tau)}{\sigma} \quad \tau$	123	132	213	231	312	321
123	-		0.412	0.551	0.342	
132		-	0.462	0.476		
213			-			
231				-		
312					-	
321						-

Probability of seeing one pattern before another

Theorem

Let $\sigma, \tau \in \mathcal{S}_{k}$ be two patterns, let a_{n} be the number of permutations of length n that end with σ, and avoid both σ and τ elsewhere. Then the probability that σ shows up before τ is given by

$$
\begin{aligned}
\operatorname{Pr}(\sigma \prec \tau) & =\sum_{n \geq k} \operatorname{Pr}(\text { game ends at } n) \cdot \operatorname{Pr}(\sigma \prec \tau \mid \text { game ends at } n) \\
& =\sum_{n \geq k} \frac{a_{n}}{n!} .
\end{aligned}
$$

Probability of seeing one pattern before another

$\operatorname{Pr}(\sigma \prec \tau)$ for patterns of length 3						
$\frac{\operatorname{Pr}(\sigma \prec \tau)}{\sigma} \quad \tau$	123	132	213	231	312	321
123	-		0.412	0.551	0.342	
132		-	0.462	0.476		
213			-			
231				-		
312					-	
321						-

Probability that 132 precedes 231

permutations that end with 123 with at most 1 valley and no peak
permutations that end with 132, and avoid 132 and 231 elsewhere

$$
\begin{aligned}
\operatorname{Pr}(132 \prec 231) & =\sum_{n \geq 3} \frac{\sum_{i=0}^{n-3}\binom{n-1}{i}}{n!} \\
& =\frac{e^{2}}{2}-e-\frac{1}{2} \approx 0.476 .
\end{aligned}
$$

Probability of seeing one pattern before another

$\operatorname{Pr}(\sigma \prec \tau)$ for patterns of length 3						
$\operatorname{Pr}(\sigma \prec \tau)$						
σ	123	132	213	231	312	321
123	-		0.412	0.551	0.342	
132		-	0.462	0.476		
213			-			
231				-		
312					-	
321						-

Probability that 123 precedes 213

Lemma

Let b_{n} be the number of permutations of length n that end with 312, and avoid both 123 and 213 elsewhere. Then for all $n \geq 5$,

$$
b_{n}=b_{n-1}+(n-1) \cdot b_{n-2},
$$

with initial conditions

$$
b_{0}=b_{1}=b_{2}=0, b_{3}=1 \text { and } b_{4}=4
$$

Probability that 123 precedes 213

Theorem

Let c_{n} be the number of permutations of length n that end with 123, and avoid both 123 and 213 elsewhere. Then for all $n \geq 5$,

$$
c_{n}=c_{n-1}+b_{n-1}+(n-1) \cdot c_{n-2}
$$

with initial conditions $c_{3}=1$ and $c_{4}=2$.
Let $B(x)$ and $C(x)$ be the corresponding E.G.F. for b_{n} and c_{n}, resp. Then

$$
\begin{aligned}
& C(x)=e^{\frac{x(x+2)}{2}}\left(\int_{0}^{x} \frac{z^{2}+2 B(z)}{2} e^{-\frac{z(2+z)}{2}} d z\right) . \\
& \operatorname{Pr}(123 \prec 213)=\sum_{n \geq 0} \frac{c_{n}}{n!}=C(1) \approx 0.412 .
\end{aligned}
$$

Probability of seeing one pattern before another

$\operatorname{Pr}(\sigma \prec \tau)$ for patterns of length 3						
$\frac{\operatorname{Pr}(\sigma \prec \tau)}{\sigma} \quad \tau$	123	132	213	231	312	321
123	-		0.412	0.551	0.342	
132		-	0.462	0.476		
213			-			
231				-		
312					-	
321						-

Probability that 123 precedes 231

Theorem

Let $d(n, i)$ denote the number of permutations in S_{n} that end with 123, avoid both 123 and 213 elsewhere, and starting with number i. Then for all $n \geq 5$ and all $1 \leq i \leq n$,

$$
d(n, i)=\sum_{j=1}^{i-1} d(n-1, j)+\sum_{j=i}^{n-2}(n-1-j) d(n-2, j)
$$

with $d(3,1)=1, d(3,2)=d(3,3)=0$; and $d(4,1)=0$, $d(4,2)=d(4,3)=d(4,4)=1$.

$$
\operatorname{Pr}(123 \prec 231)=\sum_{n \geq 0} \sum_{i \geq 0} \frac{d(n, i)}{n!} \approx 0.551 .
$$

This recurrence relation is based on 'On multi-avoidance of generalised patterns' by Kitaev and Mansour.

Probability of seeing one pattern before another

$\operatorname{Pr}(\sigma \prec \tau)$ for patterns of length 3						
$\operatorname{Pr}(\sigma \prec \tau)$						
σ	123	132	213	231	312	321
123	-		0.412	0.551	0.342	
132		-	0.462	0.476		
213			-			
231				-		
312					-	
321						-

Probability that 132 precedes 213

Theorem

Let $s(n ; i, j)$ be the number of permutations that end with 132 , avoid both 132 and 213 elsewhere, and starting with numbers i and j. Then

- $s(n ; i, i)=0$ for all $n, i \geq 1$;
- $s(n ; i, j)=\sum_{k=1}^{i-1} s(n-1 ; j, k)$ if $i>j$;
- $s(n ; i, j)=\sum_{k=1}^{i-1} s(n-1 ; j-1, k)+\sum_{k=j}^{n-1} s(n-1 ; j-1, k)$ if $i<j$;
with initial conditions $s(3 ; 1,3)=1, s(3 ; i, j)=0$ for all other i, j.

$$
\operatorname{Pr}(132 \prec 213)=\sum_{n \geq 0} \sum_{i \geq 0} \sum_{j \geq 0} \frac{s(n ; i, j)}{n!} \approx 0.462
$$

This recurrence relation is based on 'On multi-avoidance of generalised patterns' by Kitaev and Mansour.

Probability of seeing one pattern before another

$\operatorname{Pr}(\sigma \prec \tau)$ for patterns of length 3						
$\frac{\operatorname{Pr}(\sigma \prec \tau)}{\sigma} \quad \tau$	123	132	213	231	312	321
123	-		0.412	0.551	0.342	
132		-	0.462	0.476		
213			-			
231				-		
312					-	
321						-

Probability that 123 precedes 312

Theorem

Let $t(n ; i, j)$ be the number of permutations that end with 123 , avoid both 123 and 312 elsewhere, and start with i and j. Then

- $t(n ; i, i)=0$ for all $n, i \geq 1$;
- $t(n ; i, j)=\sum_{k=1}^{j-1} t(n-1 ; j-1, k)$ if $i<j$;
- $t(n ; i, j)=\sum_{k=1}^{j-1} t(n-1 ; j, k)+\sum_{k=i}^{n-1} t(n-1 ; j, k)$ if $i>j$; with $t(4 ; 2,1)=1$, and $t(4 ; i, j)=0$ for all other $i, j \leq 4$.

$$
\operatorname{Pr}(132 \prec 213)=\sum_{n \geq 0} \sum_{i \geq 0} \sum_{j \geq 0} \frac{t(n ; i, j)}{n!} \approx 0.342
$$

References

國 S．Collings．Coin sequence probabilities and paradoxes．Bulletin vol．18（11－12）（1982），p．227－232．

囯 S．Elizalde and M．Noy．Consecutive patterns in permutations． Adv．in Appl．Math．vol． 30 （2003），p．110－123．
目 S．Elizalde and M．Noy．Clusters，generating functions and asymptotics for consecutive patterns in permutations．Adv．in Appl．Math．vol． 49 （2012），p．351－374．
囯 M．Gardner．On the paradoxical situations that arise from nontransitive situation．Scientific American（Oct 1974）， p．120－125．
（ S．Kitaev and T．Mansour．On multi－avoidance of generalised patterns．Discrete Math（2002）．

