A Game of Darts

Andy Niedermaier

Jane Street
June 2022

Outline

(1) The "darts" game
(2) Encoding games as permutations
(3) Combinatorics of the 2- and 3-player games
(4) A non-combinatorial approach (sorry!)
(5) Potential threads to explore...

Acknowledgment

This talk is based on work begun with my advisor, Jeffrey Remmel.

So there's this dartboard...

The Game!

Imagine p players lined up to take turns throwing a dart at a dartboard. Player 1 is at the front, followed by Player 2, and so on, ending with Player p at the very back.

The players are all equally skilled.

So there's this dartboard...

The Game!

Imagine p players lined up to take turns throwing a dart at a dartboard. Player 1 is at the front, followed by Player 2, and so on, ending with Player p at the very back.

The players are all equally skilled.
The golden rule is: whenever it is your turn to throw, your dart must land closer to the center than any other previously thrown dart.

- If you succeed, you go to the back of the line to await your next turn.
- If you don't, you are eliminated.

Play continues for as long as it takes until one player remains. The last player remaining is the winner.

So there's this dartboard...

Example game with 3 players. ("Eliminating" throws are in red.)

- Player 1's first throw lands 10 inches from the center.
- Then Player 2 throws a dart that lands 12 inches away.
- Then Player 3 throws a dart that lands 7 inches away.
- Then Player 1 throws a dart that lands 6.3 inches away.
- Then Player 3 throws a dart that lands π inches away.
- Then Player 1 throws a dart that lands 8 inches away.

So there's this dartboard...

Example game with 3 players. ("Eliminating" throws are in red.)

- Player 1's first throw lands 10 inches from the center.
- Then Player 2 throws a dart that lands 12 inches away.
- Then Player 3 throws a dart that lands 7 inches away.
- Then Player 1 throws a dart that lands 6.3 inches away.
- Then Player 3 throws a dart that lands π inches away.
- Then Player 1 throws a dart that lands 8 inches away.

Player 3 wins!

Encoding games as permutations

We can encode each game as a permutation, by replacing the "distances to the center" by the corresponding permutation with the same relative ordering.

The example game, with distances $10,12,7,6.3, \pi, 8$, would then be encoded by the permutation ($5,6,3,2,1,4$).

Given any permutation $\sigma \in S_{n}$ there is a $\frac{1}{n!}$ chance that n random throws will have the relative ordering σ.

Encoding games as permutations

The final throw in any given game is a losing throw, therefore no game can be encoded in a permutation ending in 1 .

Let's use \bar{S}_{n} to denote the set of $n!-(n-1)$! permutations of $[n]$ that do not end in 1.

Encoding games as permutations

The final throw in any given game is a losing throw, therefore no game can be encoded in a permutation ending in 1 .

Let's use \bar{S}_{n} to denote the set of $n!-(n-1)$! permutations of $[n]$ that do not end in 1.

	σ	\# elim	winner
some permutations $\sigma \in \bar{S}_{4}:$	1234	3	1
	2413	2	3
	3214	1	1
	4123	2	2

The number of eliminations in a game equals the number of values in its permutation that are not left-to-right minimal.

Terminology... and a claim!

Terminology

We use $w_{n, p, k}$ to denote the number of permutations of length n that correspond to p-player games in which player k is the winner.

We use $P_{p, k}$ to denote the win probability for player k in a p-player game. Note that $P_{p, k}=\sum_{n} \frac{w_{n, p, k}}{n!}$

Terminology... and a claim!

Terminology

We use $w_{n, p, k}$ to denote the number of permutations of length n that correspond to p-player games in which player k is the winner.

We use $P_{p, k}$ to denote the win probability for player k in a p-player game. Note that $P_{p, k}=\sum_{n} \frac{w_{n, p, k}}{n!}$

A Claim!
 $\sum_{k} w_{n, p, k}=(n-1)\left[\begin{array}{c}n+p-1 \\ n\end{array}\right]$

(Can be shown by setting up boundary conditions \& recurrence relation...)

The 2-player game

In order for a permutation σ to describe a 2-player game, it must descend monotonically some number of times (possibly zero), then conclude with a single increase.

The 2-player game

In order for a permutation σ to describe a 2-player game, it must descend monotonically some number of times (possibly zero), then conclude with a single increase.

Some examples:

σ	winner
12	1
312	2
4213	1
43215	2
653214	1

The 2-player game

It is not hard to see that

$$
w_{n, 2,1}=\left\{\begin{array}{cl}
n-1 & n \text { is even } \\
0 & n \text { is odd }
\end{array} \quad \text { and } \quad w_{n, 2,2}=\left\{\begin{array}{cl}
0 & n \text { is even } \\
n-1 & n \text { is odd }
\end{array}\right.\right.
$$

The 2-player game

It is not hard to see that

$$
w_{n, 2,1}=\left\{\begin{array}{cl}
n-1 & n \text { is even } \\
0 & n \text { is odd }
\end{array} \quad \text { and } \quad w_{n, 2,2}=\left\{\begin{array}{cl}
0 & n \text { is even } \\
n-1 & n \text { is odd }
\end{array}\right.\right.
$$

Thus $P_{2,2}=\sum_{n} \frac{w_{n, 2,2}}{n!}=\frac{0}{1!}+\frac{2}{3!}+\frac{4}{5!}+\frac{6}{7!}+\frac{8}{9!}+\cdots$

The 2-player game

It is not hard to see that

$$
w_{n, 2,1}=\left\{\begin{array}{cl}
n-1 & n \text { is even } \\
0 & n \text { is odd }
\end{array} \quad \text { and } \quad w_{n, 2,2}=\left\{\begin{array}{cl}
0 & n \text { is even } \\
n-1 & n \text { is odd }
\end{array}\right.\right.
$$

Thus $P_{2,2}=\sum_{n} \frac{w_{n, 2,2}}{n!}=\frac{0}{1!}+\frac{2}{3!}+\frac{4}{5!}+\frac{6}{7!}+\frac{8}{9!}+\cdots$

$$
\begin{aligned}
& =\left(\frac{1}{0!}-\frac{1}{1!}\right)+\left(\frac{1}{2!}-\frac{1}{3!}\right)+\left(\frac{1}{4!}-\frac{1}{5!}\right)+\left(\frac{1}{6!}-\frac{1}{7!}\right)+\left(\frac{1}{8!}-\frac{1}{9!}\right)+\cdots \\
& =\mathrm{e}^{-1}
\end{aligned}
$$

The 2-player game

It is not hard to see that

$$
w_{n, 2,1}=\left\{\begin{array}{cl}
n-1 & n \text { is even } \\
0 & n \text { is odd }
\end{array} \quad \text { and } \quad w_{n, 2,2}=\left\{\begin{array}{cc}
0 & n \text { is even } \\
n-1 & n \text { is odd }
\end{array}\right.\right.
$$

Thus $P_{2,2}=\sum_{n} \frac{w_{n, 2,2}}{n!}=\frac{0}{1!}+\frac{2}{3!}+\frac{4}{5!}+\frac{6}{7!}+\frac{8}{9!}+\cdots$

$$
\begin{aligned}
& =\left(\frac{1}{0!}-\frac{1}{1!}\right)+\left(\frac{1}{2!}-\frac{1}{3!}\right)+\left(\frac{1}{4!}-\frac{1}{5!}\right)+\left(\frac{1}{6!}-\frac{1}{7!}\right)+\left(\frac{1}{8!}-\frac{1}{9!}\right)+\cdots \\
& =\mathrm{e}^{-1}
\end{aligned}
$$

Result
$P_{2,1}=1-e^{-1}$, and $P_{2,2}=e^{-1}$.

The 3-player game

Things are a bit more complicated for the 3-player game...
For instance, consider the set of permutations which describe a 3-player game in which Player 1 is the winner. One can show that

$$
\begin{aligned}
P_{3,1} & =\sum_{a \geq 0} \sum_{b \geq 0} \frac{(3 a+1)(3 a+2 b+2)}{(3 a+2 b+3)!}+\frac{(3 a+2)(3 a+2 b+4)}{(3 a+2 b+5)!} \\
& \approx 0.466493
\end{aligned}
$$

The 3-player game

Things are a bit more complicated for the 3-player game...
For instance, consider the set of permutations which describe a 3-player game in which Player 1 is the winner. One can show that

$$
\begin{aligned}
P_{3,1} & =\sum_{a \geq 0} \sum_{b \geq 0} \frac{(3 a+1)(3 a+2 b+2)}{(3 a+2 b+3)!}+\frac{(3 a+2)(3 a+2 b+4)}{(3 a+2 b+5)!} \\
& \approx 0.466493
\end{aligned}
$$

We can use the numerators above to back out values for $w_{n, 3,1}$:

$$
\left\{w_{n, 3,1}\right\}_{n \geq 3}=2,0,12,20,18,63,80,81,180,209,216,390,434, \ldots
$$

The 3-player game

Things are a bit more complicated for the 3-player game...
For instance, consider the set of permutations which describe a 3-player game in which Player 1 is the winner. One can show that

$$
\begin{aligned}
P_{3,1} & =\sum_{a \geq 0} \sum_{b \geq 0} \frac{(3 a+1)(3 a+2 b+2)}{(3 a+2 b+3)!}+\frac{(3 a+2)(3 a+2 b+4)}{(3 a+2 b+5)!} \\
& \approx 0.466493
\end{aligned}
$$

We can use the numerators above to back out values for $w_{n, 3,1}$:

$$
\begin{aligned}
& \left\{w_{n, 3,1}\right\}_{n \geq 3}=2,0,12,20,18,63,80,81,180,209,216,390,434, \ldots \\
& \left\{w_{n, 3,2}\right\}_{n \geq 3}=0,6,0,25,30,35,88,117,110,242,264,286,476, \ldots \\
& \left\{w_{n, 3,3}\right\}_{n \geq 3}=0,3,12,5,42,49,56,126,160,154,312,338,364, \ldots
\end{aligned}
$$

Some values of $w_{n, p, k}$ (namely, for $n=12$)

$p \backslash k$	1	2	3	4	5	6	7	8	9	10	11
2	11	0	0	0	0	0	0	0	0	0	0
3	209	242	154	0	0	0	0	0	0	0	0
4	3,410	3,597	4,081	3,432	0	0	0	0	0	0	0
5	46,255	38,918	34,111	37,631	42,735	0	0	0	0	0	0
6	261,789	266,860	303,017	319,704	314,633	269,500	0	0	0	0	0
7	1,689,688	1,736,658	1,609,784	1,403,072	1,060,796	1,086,822	1,335,785	0	0	0	0
8	6,845,058	5,374,600	3,989,348	2,442,528	3,193,014	4,289,340	5,301,274	6,151,068	0	0	0
9	12,993,640	7,300,656	2,652,408	7,977,552	10,723,284	12,078,000	12,726,120	12,996,720	13,056,120	0	0
10	11,292,336	0	19,958,400	19,958,400	18,295,200	16,632,000	15,190,560	13,970,880	12,937,320	12,054,240	0
11	0	39,916,800	19,958,400	13,305,600	9,979,200	7,983,360	6,652,800	5,702,400	4,989,600	4,435,200	3,991,680
12	39,916,800	0	0	0	0	0	0	0	0	0	0

$p \backslash k$	1	2	3	4	5	6	7	8	9	10	11
2	1	--	--	--	--	--	--	--	--	--	--
3	0.345455	0.4	0.254545	--	--	--	--	--	--	--	--
4	0.234848	0.247727	0.281061	0.236364	--	--	--	--	--	--	--
5	0.23168	0.194931	0.170854	0.188485	0.21405	--	--	--	--	--	--
6	0.150843	0.153765	0.174599	0.184214	0.181292	0.155286	--	--	--	--	--
7	0.170287	0.17502	0.162234	0.141402	0.106907	0.10953	0.13462	--	--	--	--
8	0.182116	0.142994	0.106139	0.064985	0.084952	0.11412	0.141043	0.163652	--	--	--
9	0.140465	0.078922	0.028673	0.08624	0.115922	0.130567	0.137573	0.140498	0.14114	--	--
10	0.080493	--	0.142266	0.142266	0.13041	0.118555	0.10828	0.099586	0.092219	0.085924	--
11	--	0.341417	0.170709	0.113806	0.085354	0.068283	0.056903	0.048774	0.042677	0.037935	0.034142
12	1	--	--	--	--	--	--	--	--	--	--

A Game of Darts

A continuous dartboard

Let's model the dartboard as the unit interval, and imagine each "dart" is a pull from $U[0,1]$. (Lower pulls are better, as they represent your distance to the center.)

Let us generalize $P_{p, k}$ to take a real-valued parameter. Define $P_{p, k}(x)$ to be the probability that the player currently in position k, out of p players in total, will eventually win the game, given that the current "score to beat" for the person at the front of the line is x.

Thus $P_{p, k}=P_{p, k}(1)$ for all p and k.
Note also that $P_{p, k}(0)= \begin{cases}1 & \text { if } k=p \\ 0 & \text { otherwise }\end{cases}$

A continuous dartboard

The following system of equations arises:

$$
\begin{aligned}
P_{2,1}(x) & =\int_{0}^{x} P_{2,2}(u) \mathrm{d} u \\
P_{2,1}(x)+P_{2,2}(x) & =1 \\
P_{2,1}(0) & =0
\end{aligned}
$$

A continuous dartboard

The following system of equations arises:

$$
\begin{aligned}
P_{2,1}(x) & =\int_{0}^{x} P_{2,2}(u) \mathrm{d} u \\
P_{2,1}(x)+P_{2,2}(x) & =1 \\
P_{2,1}(0) & =0
\end{aligned}
$$

This is a solvable DE! We get

$$
\begin{aligned}
& P_{2,1}(x)=1-e^{-x} \\
& P_{2,2}(x)=e^{-x}
\end{aligned}
$$

Result

$P_{2,1}=1-e^{-1}$, and $P_{2,2}=e^{-1}$.

A continuous dartboard

For 3 players we have

$$
\begin{aligned}
P_{3,1}(x) & =\int_{0}^{x} P_{3,3}(u) \mathrm{d} u \\
P_{3,2}(x) & =(1-x) \cdot P_{2,1}(x)+\int_{0}^{x} P_{3,1}(u) \mathrm{d} u \\
P_{3,1}(x)+P_{3,2}(x)+P_{3,3}(x) & =1 \\
P_{3,1}(0)=P_{3,2}(0) & =0
\end{aligned}
$$

A continuous dartboard

For 3 players we have

$$
\begin{aligned}
P_{3,1}(x) & =\int_{0}^{x} P_{3,3}(u) \mathrm{d} u \\
P_{3,2}(x) & =(1-x) \cdot P_{2,1}(x)+\int_{0}^{x} P_{3,1}(u) \mathrm{d} u \\
P_{3,1}(x)+P_{3,2}(x)+P_{3,3}(x) & =1 \\
P_{3,1}(0)=P_{3,2}(0) & =0
\end{aligned}
$$

Wait for it...

A continuous dartboard

Result

$$
\begin{aligned}
& P_{3,1}(x)=1+e^{-x}(x-1)-\frac{2 e^{-x / 2}}{\sqrt{3}} \sin \left(\frac{\sqrt{3} x}{2}\right) \\
& P_{3,2}(x)=-e^{-x}+e^{-x / 2}\left(\cos \left(\frac{\sqrt{3} x}{2}\right)+\frac{1}{\sqrt{3}} \sin \left(\frac{\sqrt{3} x}{2}\right)\right) \\
& P_{3,3}(x)=e^{-x}(2-x)+e^{-x / 2}\left(\frac{1}{\sqrt{3}} \sin \left(\frac{\sqrt{3} x}{2}\right)-\cos \left(\frac{\sqrt{3} x}{2}\right)\right)
\end{aligned}
$$

A continuous dartboard

Result

Niedermaier (2021)

$$
\begin{aligned}
& P_{3,1}(x)=1+e^{-x}(x-1)-\frac{2 e^{-x / 2}}{\sqrt{3}} \sin \left(\frac{\sqrt{3} x}{2}\right) \\
& P_{3,2}(x)=-e^{-x}+e^{-x / 2}\left(\cos \left(\frac{\sqrt{3} x}{2}\right)+\frac{1}{\sqrt{3}} \sin \left(\frac{\sqrt{3} x}{2}\right)\right) \\
& P_{3,3}(x)=e^{-x}(2-x)+e^{-x / 2}\left(\frac{1}{\sqrt{3}} \sin \left(\frac{\sqrt{3} x}{2}\right)-\cos \left(\frac{\sqrt{3} x}{2}\right)\right)
\end{aligned}
$$

Result

Niedermaier (2021)

$$
P_{3,1}=\sum_{a \geq 0} \sum_{b \geq 0} \frac{(3 a+1)(3 a+2 b+2)}{(3 a+2 b+3)!}+\frac{(3 a+2)(3 a+2 b+4)}{(3 a+2 b+5)!}=1-\frac{2 \sin (\sqrt{3} / 2)}{\sqrt{3 e}}
$$

A continuous dartboard

The plots for $P_{3, k}(x)$:

At the far right $(x=1)$ we have the win probabilities:
$\left(P_{3,1}, P_{3,2}, P_{3,3}\right) \approx(0.4665,0.2918,0.2417)$.

4 players!

For 4 players we have

$$
\begin{aligned}
& P_{4,1}(x)=\int_{0}^{x} P_{4,3}(u) \mathrm{d} u \\
& P_{4,2}(x)=(1-x) \cdot P_{3,1}(x)+\int_{0}^{x} P_{4,1}(u) \mathrm{d} u \\
& P_{4,3}(x)=(1-x) \cdot P_{3,2}(x)+\int_{0}^{x} P_{4,2}(u) \mathrm{d} u
\end{aligned}
$$

$$
\begin{aligned}
P_{4,1}(x)+P_{4,2}(x)+P_{4,3}(x)+P_{4,4}(x) & =1 \\
P_{4,1}(0)=P_{4,2}(0)=P_{4,3}(0) & =0
\end{aligned}
$$

4 players!

For 4 players we have

$$
\begin{aligned}
& P_{4,1}(x)=\int_{0}^{x} P_{4,3}(u) \mathrm{d} u \\
& P_{4,2}(x)=(1-x) \cdot P_{3,1}(x)+\int_{0}^{x} P_{4,1}(u) \mathrm{d} u \\
& P_{4,3}(x)=(1-x) \cdot P_{3,2}(x)+\int_{0}^{x} P_{4,2}(u) \mathrm{d} u
\end{aligned}
$$

$$
\begin{array}{r}
P_{4,1}(x)+P_{4,2}(x)+P_{4,3}(x)+P_{4,4}(x)=1 \\
P_{4,1}(0)=P_{4,2}(0)=P_{4,3}(0)=0
\end{array}
$$

$$
\begin{aligned}
P_{4,1}(x)= & 1+\frac{5}{4}\left(\cos x-\sin x-e^{-x}\right)+2 x e^{-x}-\frac{3 x^{2} e^{-x}}{4} \\
& -e^{-x / 2} \cos \left(\frac{\sqrt{3} x}{2}\right)(x+1)+\sqrt{3} e^{-x / 2} \sin \left(\frac{\sqrt{3} x}{2}\right)\left(x-\frac{1}{3}\right)
\end{aligned}
$$

4 players!

The plots for $P_{4, k}(x)$:

Win probabilities: $\left(P_{4,1}, P_{4,2}, P_{4,3}, P_{4,4}\right) \approx(0.3712,0.2422,0.2032,0.1834)$.

Potential threads to explore...

- Connecting the winner of a game (permutation) to other areas in permutation statistics.
- Generating functions to count statistics on games, e.g.

$$
\sum_{\sigma \in \bar{S}_{n}} p^{\# \text { players }} \cdot q^{\text {winner }}
$$

- Generating functions to count games by its "rank permutation" γ,

$$
f_{r}(\gamma)=\sum_{\sigma \mathrm{w} / \mathrm{rk} \text { perm. } \gamma} r^{|\sigma|}
$$

- e.g., $f_{r}(12)=\frac{r^{2}+r^{4}}{\left(1-r^{2}\right)^{2}}$, and $f_{r}(132)=r^{2}\left(\frac{r^{2}}{1-r^{2}}\left(\frac{r}{1-r^{3}}\right)^{\prime}\right)^{\prime}$
- Solving the general DE systems for computing $P_{p, k}$.

Potential threads to explore...

- Connecting the winner of a game (permutation) to other areas in permutation statistics.
- Generating functions to count statistics on games, e.g.

$$
\sum_{\sigma \in \bar{S}_{n}} p^{\# \text { players }} \cdot q^{\text {winner }}
$$

- Generating functions to count games by its "rank permutation" γ,

$$
f_{r}(\gamma)=\sum_{\sigma \mathrm{w} / \mathrm{rk} \text { perm. } \gamma} r^{|\sigma|}
$$

- e.g., $f_{r}(12)=\frac{r^{2}+r^{4}}{\left(1-r^{2}\right)^{2}}$, and $f_{r}(132)=r^{2}\left(\frac{r^{2}}{1-r^{2}}\left(\frac{r}{1-r^{3}}\right)^{\prime}\right)^{\prime}$
- Solving the general DE systems for computing $P_{p, k}$.

