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Monotone grid classes

Definition
A k × ` matrix M of permutation classes with entries from the set {Av(21),Av(12), ∅}
is a monotone gridding matrix. The (monotone) grid class of M, denoted by Grid(M),
is a class of permutations that can be partitioned, by `− 1 horizontal and k − 1 vertical
cuts, into a k × ` array of cells (called gridding), where the cell in the i-th column and
j-th row induces a pattern from Mi,j .

M =

Av(12) Av(21)

Av(21) Av(12)



Definition
The cell graph of M is a graph whose vertices are the non-empty cells of M, with two
vertices being adjacent if they share a row or a column of M and all cells between them
are empty.
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Long paths

Definition
A permutation class C has the long path property (LPP) if for every k the class C
contains a monotone grid subclass whose cell graph is a path of length k.

Example

The class Av(321) has the LPP.

Av(321) = ⊇

. . . . . .

Definition
A permutation class C has the computable long path property if there exists an
algorithm that given a k computes the description of a monotone grid subclass of C
whose cell graph is a path of length k.
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Deep trees

Definition
A c-subdivided binary tree of depth d is a graph obtained from a binary tree of depth d
by replacing every edge by a path of length at most c. A permutation class C has the
deep tree property (DTP) if there is a c such that for every d , the class C contains a
monotone grid subclass whose cell graph is a c-subdivided binary tree of depth d .

Example

The class Av(4321) has the DTP.

Av(4321) = ⊇

. . .

⊇

. . .

Definition
A permutation class C has the computable deep tree property, if there exists an algo...
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Dual cycles

Definition
A permutation class C has the bicycle property (BP) if C contains a monotone grid
subclass whose cell graph contains two connected cycles.

Example

The class Av(4321) has the BP.

Av(4321) = ⊇

Proposition

The BP implies the DTP, and the DTP implies the LPP.
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Tree-width

Definition
The incidence graph Gπ of a permutation π is the graph whose vertices are the n entries
π1, . . . , πn, with two entries πi and πj connected by an edge if |i − j | = 1 or |πi −πj | = 1.

Definition
The tree-width of a permutation π, denoted by tw(π), is the tree-width of Gπ.

Theorem (Berendsohn, Kozma and Marx, 2019)

Given a permutation π of length k and a permutation τ of length n, we can decide if τ
contains π in time O(ntw(π)+1).
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Tree-width lower bounds

Definition
The tree-width growth function of a permutation class C is defined as

twC(n) = max{tw(π); π ∈ C ∧ |π| = n}.

Theorem (Berendsohn, 2019)

For a pattern σ, twAv(σ)(n) = Ω(n/ log n) if |σ| ≥ 4 and σ is not symmetric to one of
3412, 3142, 4213, 4123, 41352, 42153 and 42513.

Theorem
For a permutation class C we have

I twC(n) ∈ Ω(
√
n) if C has the long path property,

I twC(n) ∈ Ω(n/ log n) if C has the deep tree property, and

I twC(n) ∈ Θ(n) if C has the bicycle property.
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Graph minors

Definition
A graph H is a minor of the graph G if H can be formed from G by deleting edges and
vertices and by contracting edges.

Fact
If H is a minor of G then we have tw(H) ≤ tw(G).

Definition
For a positive interger k, the k × k grid graph is the graph
with vertex set [k]× [k] such that vertices (i , j) and (i ′, j ′)
are joined with an edge if and only if |i − i ′|+ |j − j ′| = 1.

Proposition (folklore)

The k × k grid graph has tree-width exactly k.
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Lower bound for long paths

Goal: Find a permutation π ∈ C of length k2 such that Gπ contains the k × k grid
graph as a minor.

1. Fix a monotone gridding matrix M such that Grid(M) ⊆ C, GM is a path of
length 2k − 1 and no three cells share the same row or column.

2. Map diagonals of the k × k grid to the cells on the path with two consecutive cells
interleaved.
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Lower bound for deep trees

Goal: For a given arbitrary graph G with m edges, find a permutation π ∈ C of length
O(m logm) such that Gπ contains G as a minor. The result follows from the existence
of sparse graphs with linear tree-width.

1. Fix a monotone gridding matrix M such that Grid(M) ⊆ C and the cell graph GM
is a c-subdivided binary tree with exactly m leaves.

2. Map each leaf in GM to a unique edge in G with two points representing its
vertices. Each point is associated to a specific vertex of G .

3. Contract the subgraphs induced by points associated to the same vertex.

e4

e3

e2

e1
G :
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Principal classes

σ LPP of Av(σ) DTP of Av(σ) BP of Av(σ)
21, 312 × × ×
321, 3412, 3142, 4213,
4123, 41352

X × ×
all other X X X

Corollary

For a pattern σ, twAv(σ)(n) = Θ(n) if |σ| ≥ 4 and σ is not symmetric to one of 3412,
3142, 4213, 4123, 41352.
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Computational complexity

Can we also deduce lower bounds for the complexity of pattern matching or counting?

Hypothesis (Exponential Time Hypothesis (ETH))

There exists δ > 0 such that 3-SAT cannot be solved in time O(2δn) where n is the
number of variables.

#Permutation Pattern Matching (#PPM)
Input: Permutations π of size k and τ of size n.
Question: How many occurrences of π are contained in τ?

Theorem (Berendsohn, Kozma and Marx, 2019)

#Permutation Pattern Matching cannot be solved in time f (k) · no(k/ log k) for
any function f unless ETH fails.
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Counting patterns from a given class

C-Pattern #Permutation Pattern Matching (C-Pattern #PPM)
Input: Permutations π ∈ C of size k and τ of size n.
Question: How many occurrences of π are contained in τ?

Theorem (Berendsohn, 2019)
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Counting patterns from a given class

Theorem

I If C has the computable LPP, then C-Pattern #PPM cannot be solved in time

f (k) · no(
√
k) for any function f assuming ETH, and

I if C has the computable DTP, then C-Pattern #PPM cannot be solved in time

f (k) · no(k/ log2 k) for any function f assuming ETH.

Corollary

For a pattern σ of length at least 4 and not symmetric to one of 3412, 3142, 4213, 4123,

41352, Av(σ)-Pattern #PPM cannot be solved in time f (k) · no(k/ log2 k) under ETH.

As a byproduct, we also obtain asymptotic optimality of the tree-width based algorithm.

Theorem
If C has the computable LPP then C-Pattern PPM cannot be solved in time
f (tw(π)) · no(tw(π)) for any function f , unless ETH fails.
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Trichotomy for monotone grid classes

Theorem (Jeĺınek, O. and Pekárek, 2020)

For a monotone gridding matrixM one of the following holds:

I Either GM is a forest, twGrid(M)(n) = O(1) and Grid(M)-Pattern PPM is
polynomial-time solvable, or

I GM contains a cycle, twGrid(M) is unbounded and Grid(M)-Pattern PPM is
NP-complete.

Theorem

# of cycles Example LPP BP twGridM(n)
Grid(M)-Pattern
#PPM lower bound

0 × × Θ(1) —

1 X × Θ(
√
n) f (k) · no(

√
k)

≥ 2 X X Θ(n) f (k) · no(k/ log2 k)
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Summary

I The LPP, DTP and BP imply lower bounds both for the tree-width growth function
and the complexity of pattern counting.

I Av(σ) has the LPP for every σ of length at least 3 except for the symmetries of 312.

I Av(σ) has the BP for every σ of length at least 4 that is not symmetric to one of
3412, 3142, 4213, 4123, 41352.

Question
Is the LPP the only obstacle to bounded tree-width? In other words, is it true that a
class C has unbounded tree-width if and only if it has the LPP?

Question
For σ ∈ {3412, 3142, 4213, 4123, 41352}, we have twAv(σ)(n) = Ω(

√
n) but no upper

bound other than the trivial O(n). What are the actual tree-width growth functions?

Question
Can these properties be used to obtain results in other areas?



Thank you!


