Long paths, deep trees and dual cycles

Michal Opler Joint work with Vít Jelínek and Jakub Pekárek

Charles University in Prague

PP 2022 June 22, 2022

Monotone grid classes

Definition

A $k \times \ell$ matrix \mathcal{M} of permutation classes with entries from the set $\{\text{Av}(21), \text{Av}(12), \emptyset\}$ is a monotone gridding matrix. The (monotone) grid class of \mathcal{M} , denoted by $\text{Grid}(\mathcal{M})$, is a class of permutations that can be partitioned, by $\ell-1$ horizontal and k-1 vertical cuts, into a $k \times \ell$ array of cells (called gridding), where the cell in the i-th column and j-th row induces a pattern from $\mathcal{M}_{i,j}$.

$$\mathcal{M} = \begin{pmatrix} \operatorname{Av}(12) & ---- & \operatorname{Av}(21) \\ \operatorname{Av}(21) & -\operatorname{Av}(12) \end{pmatrix}$$

Monotone grid classes

Definition

A $k \times \ell$ matrix \mathcal{M} of permutation classes with entries from the set $\{\text{Av}(21), \text{Av}(12), \emptyset\}$ is a monotone gridding matrix. The (monotone) grid class of \mathcal{M} , denoted by $\text{Grid}(\mathcal{M})$, is a class of permutations that can be partitioned, by $\ell-1$ horizontal and k-1 vertical cuts, into a $k \times \ell$ array of cells (called gridding), where the cell in the i-th column and j-th row induces a pattern from $\mathcal{M}_{i,j}$.

$$\mathcal{M} = \begin{pmatrix} \operatorname{Av}(12) & ---- & \operatorname{Av}(21) \\ & \operatorname{Av}(21) - \operatorname{Av}(12) \end{pmatrix}$$

Definition

The cell graph of \mathcal{M} is a graph whose vertices are the non-empty cells of \mathcal{M} , with two vertices being adjacent if they share a row or a column of \mathcal{M} and all cells between them are empty.

Long paths

Definition

A permutation class \mathcal{C} has the long path property (LPP) if for every k the class \mathcal{C} contains a monotone grid subclass whose cell graph is a path of length k.

Long paths

Definition

A permutation class C has the long path property (LPP) if for every k the class C contains a monotone grid subclass whose cell graph is a path of length k.

Example

The class Av(321) has the LPP.

Long paths

Definition

A permutation class \mathcal{C} has the long path property (LPP) if for every k the class \mathcal{C} contains a monotone grid subclass whose cell graph is a path of length k.

Example

The class Av(321) has the LPP.

Definition

A permutation class $\mathcal C$ has the computable long path property if there exists an algorithm that given a k computes the description of a monotone grid subclass of $\mathcal C$ whose cell graph is a path of length k.

Deep trees

Definition

A c-subdivided binary tree of depth d is a graph obtained from a binary tree of depth d by replacing every edge by a path of length at most c. A permutation class $\mathcal C$ has the deep tree property (DTP) if there is a c such that for every d, the class $\mathcal C$ contains a monotone grid subclass whose cell graph is a c-subdivided binary tree of depth d.

Deep trees

Definition

A c-subdivided binary tree of depth d is a graph obtained from a binary tree of depth d by replacing every edge by a path of length at most c. A permutation class $\mathcal C$ has the deep tree property (DTP) if there is a c such that for every d, the class $\mathcal C$ contains a monotone grid subclass whose cell graph is a c-subdivided binary tree of depth d.

Example

The class Av(4321) has the DTP.

Deep trees

Definition

A c-subdivided binary tree of depth d is a graph obtained from a binary tree of depth d by replacing every edge by a path of length at most c. A permutation class $\mathcal C$ has the deep tree property (DTP) if there is a c such that for every d, the class $\mathcal C$ contains a monotone grid subclass whose cell graph is a c-subdivided binary tree of depth d.

Example

The class Av(4321) has the DTP.

Definition

A permutation class C has the computable deep tree property, if there exists an algo...

Dual cycles

Definition

A permutation class $\mathcal C$ has the bicycle property (BP) if $\mathcal C$ contains a monotone grid subclass whose cell graph contains two connected cycles.

Dual cycles

Definition

A permutation class $\mathcal C$ has the bicycle property (BP) if $\mathcal C$ contains a monotone grid subclass whose cell graph contains two connected cycles.

Example

The class Av(4321) has the BP.

Dual cycles

Definition

A permutation class $\mathcal C$ has the bicycle property (BP) if $\mathcal C$ contains a monotone grid subclass whose cell graph contains two connected cycles.

Example

The class Av(4321) has the BP.

Proposition

The BP implies the DTP, and the DTP implies the LPP.

Tree-width

Definition

The incidence graph G_{π} of a permutation π is the graph whose vertices are the n entries π_1, \ldots, π_n , with two entries π_i and π_j connected by an edge if |i-j|=1 or $|\pi_i-\pi_j|=1$.

Definition

The tree-width of a permutation π , denoted by $tw(\pi)$, is the tree-width of G_{π} .

Tree-width

Definition

The incidence graph G_{π} of a permutation π is the graph whose vertices are the n entries π_1, \ldots, π_n , with two entries π_i and π_j connected by an edge if |i-j|=1 or $|\pi_i-\pi_j|=1$.

Definition

The tree-width of a permutation π , denoted by $tw(\pi)$, is the tree-width of G_{π} .

Theorem (Berendsohn, Kozma and Marx, 2019)

Given a permutation π of length k and a permutation τ of length n, we can decide if τ contains π in time $O(n^{\operatorname{tw}(\pi)+1})$.

Tree-width lower bounds

Definition

The tree-width growth function of a permutation class ${\mathcal C}$ is defined as

$$\operatorname{tw}_{\mathcal{C}}(n) = \max\{\operatorname{tw}(\pi); \ \pi \in \mathcal{C} \land |\pi| = n\}.$$

Theorem (Berendsohn, 2019)

For a pattern σ , $\operatorname{tw}_{Av(\sigma)}(n) = \Omega(n/\log n)$ if $|\sigma| \ge 4$ and σ is not symmetric to one of 3412, 3142, 4213, 4123, 41352, 42153 and 42513.

Tree-width lower bounds

Definition

The tree-width growth function of a permutation class ${\mathcal C}$ is defined as

$$\operatorname{tw}_{\mathcal{C}}(n) = \max\{\operatorname{tw}(\pi); \ \pi \in \mathcal{C} \land |\pi| = n\}.$$

Theorem (Berendsohn, 2019)

For a pattern σ , $\operatorname{tw}_{A\nu(\sigma)}(n) = \Omega(n/\log n)$ if $|\sigma| \ge 4$ and σ is not symmetric to one of 3412, 3142, 4213, 4123, 41352, 42153 and 42513.

Theorem

For a permutation class C we have

- ▶ $\operatorname{tw}_{\mathcal{C}}(n) \in \Omega(\sqrt{n})$ if \mathcal{C} has the long path property,
- $\operatorname{tw}_{\mathcal{C}}(n) \in \Omega(n/\log n)$ if \mathcal{C} has the deep tree property, and
- ▶ $\operatorname{tw}_{\mathcal{C}}(n) \in \Theta(n)$ if \mathcal{C} has the bicycle property.

Graph minors

Definition

A graph H is a minor of the graph G if H can be formed from G by deleting edges and vertices and by contracting edges.

Fact

If H is a minor of G then we have $tw(H) \le tw(G)$.

Graph minors

Definition

A graph H is a minor of the graph G if H can be formed from G by deleting edges and vertices and by contracting edges.

Fact

If H is a minor of G then we have $tw(H) \le tw(G)$.

Definition

For a positive interger k, the $k \times k$ grid graph is the graph with vertex set $[k] \times [k]$ such that vertices (i,j) and (i',j') are joined with an edge if and only if |i-i'|+|j-j'|=1.

Proposition (folklore)

The $k \times k$ grid graph has tree-width exactly k.

Lower bound for long paths

Goal: Find a permutation $\pi \in \mathcal{C}$ of length k^2 such that G_{π} contains the $k \times k$ grid graph as a minor.

Lower bound for long paths

Goal: Find a permutation $\pi \in \mathcal{C}$ of length k^2 such that G_{π} contains the $k \times k$ grid graph as a minor.

1. Fix a monotone gridding matrix \mathcal{M} such that $\operatorname{Grid}(\mathcal{M}) \subseteq \mathcal{C}$, $\mathcal{G}_{\mathcal{M}}$ is a path of length 2k-1 and no three cells share the same row or column.

Lower bound for long paths

Goal: Find a permutation $\pi \in \mathcal{C}$ of length k^2 such that G_{π} contains the $k \times k$ grid graph as a minor.

- 1. Fix a monotone gridding matrix \mathcal{M} such that $\operatorname{Grid}(\mathcal{M}) \subseteq \mathcal{C}$, $G_{\mathcal{M}}$ is a path of length 2k-1 and no three cells share the same row or column.
- 2. Map diagonals of the $k \times k$ grid to the cells on the path with two consecutive cells interleaved.

Goal: For a given arbitrary graph G with m edges, find a permutation $\pi \in \mathcal{C}$ of length $O(m \log m)$ such that G_{π} contains G as a minor. The result follows from the existence of sparse graphs with linear tree-width.

Goal: For a given arbitrary graph G with m edges, find a permutation $\pi \in \mathcal{C}$ of length $O(m \log m)$ such that G_{π} contains G as a minor. The result follows from the existence of sparse graphs with linear tree-width.

1. Fix a monotone gridding matrix \mathcal{M} such that $\operatorname{Grid}(\mathcal{M}) \subseteq \mathcal{C}$ and the cell graph $G_{\mathcal{M}}$ is a c-subdivided binary tree with exactly m leaves.

Goal: For a given arbitrary graph G with m edges, find a permutation $\pi \in \mathcal{C}$ of length $O(m \log m)$ such that G_{π} contains G as a minor. The result follows from the existence of sparse graphs with linear tree-width.

- 1. Fix a monotone gridding matrix \mathcal{M} such that $\operatorname{Grid}(\mathcal{M}) \subseteq \mathcal{C}$ and the cell graph $G_{\mathcal{M}}$ is a c-subdivided binary tree with exactly m leaves.
- 2. Map each leaf in $G_{\mathcal{M}}$ to a unique edge in G with two points representing its vertices. Each point is associated to a specific vertex of G.

Goal: For a given arbitrary graph G with m edges, find a permutation $\pi \in \mathcal{C}$ of length $O(m \log m)$ such that G_{π} contains G as a minor. The result follows from the existence of sparse graphs with linear tree-width.

- 1. Fix a monotone gridding matrix \mathcal{M} such that $\operatorname{Grid}(\mathcal{M}) \subseteq \mathcal{C}$ and the cell graph $G_{\mathcal{M}}$ is a c-subdivided binary tree with exactly m leaves.
- 2. Map each leaf in $G_{\mathcal{M}}$ to a unique edge in G with two points representing its vertices. Each point is associated to a specific vertex of G.
- 3. Contract the subgraphs induced by points associated to the same vertex.

Principal classes

σ	LPP of Av(σ)	DTP of Av(σ)	BP of Av(σ)
21, 312	×	×	×
321, 3412, 3142, 4213, 4123, 41352	√	×	×
all other	√	√	√

Principal classes

σ	LPP of Av(σ)	DTP of Av(σ)	BP of Av(σ)
21, 312	×	×	×
321, 3412, 3142, 4213, 4123, 41352	√	×	×
all other	√	√	√

Corollary

For a pattern σ , $\operatorname{tw}_{Av(\sigma)}(n) = \Theta(n)$ if $|\sigma| \ge 4$ and σ is not symmetric to one of 3412, 3142, 4213, 41352.

Computational complexity

Can we also deduce lower bounds for the complexity of pattern matching or counting?

Computational complexity

Can we also deduce lower bounds for the complexity of pattern matching or counting?

Hypothesis (Exponential Time Hypothesis (ETH))

There exists $\delta > 0$ such that $3\text{-}\mathrm{SAT}$ cannot be solved in time $O(2^{\delta n})$ where n is the number of variables.

Computational complexity

Can we also deduce lower bounds for the complexity of pattern matching or counting?

Hypothesis (Exponential Time Hypothesis (ETH))

There exists $\delta > 0$ such that 3-SAT cannot be solved in time $O(2^{\delta n})$ where n is the number of variables.

#PERMUTATION PATTERN MATCHING (#PPM)

Input: Permutations π of size k and τ of size n.

Question: How many occurrences of π are contained in τ ?

Theorem (Berendsohn, Kozma and Marx, 2019)

#PERMUTATION PATTERN MATCHING cannot be solved in time $f(k) \cdot n^{o(k/\log k)}$ for any function f unless ETH fails.

 $\mathcal{C}\textsc{-Pattern}$ #Permutation Pattern Matching ($\mathcal{C}\textsc{-Pattern}$ #PPM)

Input: Permutations $\pi \in \mathcal{C}$ of size k and τ of size n. Question: How many occurrences of π are contained in τ ?

Theorem (Berendsohn, 2019)

Av(654321)-PATTERN #PPM cannot be solved in time $f(k) \cdot n^{o(k/\log^4 k)}$ for any function f unless ETH fails.

Theorem

- ▶ If C has the computable LPP, then C-PATTERN #PPM cannot be solved in time $f(k) \cdot n^{o(\sqrt{k})}$ for any function f assuming ETH, and
- if C has the computable DTP, then C-PATTERN #PPM cannot be solved in time $f(k) \cdot n^{o(k/\log^2 k)}$ for any function f assuming ETH.

Theorem

- ▶ If C has the computable LPP, then C-PATTERN #PPM cannot be solved in time $f(k) \cdot n^{o(\sqrt{k})}$ for any function f assuming ETH, and
- ▶ if C has the computable DTP, then C-PATTERN $\# \mathrm{PPM}$ cannot be solved in time $f(k) \cdot n^{o(k/\log^2 k)}$ for any function f assuming ETH.

Corollary

For a pattern σ of length at least 4 and not symmetric to one of 3412, 3142, 4213, 4123, 41352, $\text{Av}(\sigma)$ -Pattern #PPM cannot be solved in time $f(k) \cdot n^{\circ(k/\log^2 k)}$ under ETH.

Theorem

- ▶ If C has the computable LPP, then C-PATTERN #PPM cannot be solved in time $f(k) \cdot n^{o(\sqrt{k})}$ for any function f assuming ETH, and
- ▶ if C has the computable DTP, then C-PATTERN #PPM cannot be solved in time $f(k) \cdot n^{o(k/\log^2 k)}$ for any function f assuming ETH.

Corollary

For a pattern σ of length at least 4 and not symmetric to one of 3412, 3142, 4213, 4123, 41352, $\text{Av}(\sigma)$ -Pattern #PPM cannot be solved in time $f(k) \cdot n^{\circ(k/\log^2 k)}$ under ETH.

As a byproduct, we also obtain asymptotic optimality of the tree-width based algorithm.

Theorem

If $\mathcal C$ has the computable LPP then $\mathcal C$ -PATTERN PPM cannot be solved in time $f(\mathrm{tw}(\pi)) \cdot n^{o(\mathrm{tw}(\pi))}$ for any function f, unless ETH fails.

Trichotomy for monotone grid classes

Theorem (Jelínek, O. and Pekárek, 2020)

For a monotone gridding matrix $\mathcal M$ one of the following holds:

- ▶ Either $G_{\mathcal{M}}$ is a forest, $\operatorname{tw}_{\operatorname{Grid}(\mathcal{M})}(n) = O(1)$ and $\operatorname{Grid}(\mathcal{M})$ -PATTERN PPM is polynomial-time solvable, or
- ▶ $G_{\mathcal{M}}$ contains a cycle, $\operatorname{tw}_{\mathsf{Grid}(\mathcal{M})}$ is unbounded and $\mathsf{Grid}(\mathcal{M})$ -PATTERN PPM is NP-complete.

Trichotomy for monotone grid classes

Theorem (Jelínek, O. and Pekárek, 2020)

For a monotone gridding matrix $\mathcal M$ one of the following holds:

- ▶ Either $G_{\mathcal{M}}$ is a forest, $\operatorname{tw}_{\operatorname{Grid}(\mathcal{M})}(n) = O(1)$ and $\operatorname{Grid}(\mathcal{M})$ -PATTERN PPM is polynomial-time solvable, or
- ▶ $G_{\mathcal{M}}$ contains a cycle, $\operatorname{tw}_{\mathsf{Grid}(\mathcal{M})}$ is unbounded and $\mathsf{Grid}(\mathcal{M})$ -PATTERN PPM is NP-complete.

Theorem

# of cycles	Example	LPP	BP	$\mathrm{tw}_{\mathit{Grid}_{\mathcal{M}}}(\mathit{n})$	Grid(M)-PATTERN #PPM lower bound
0		×	×	Θ(1)	_
1		✓	×	$\Theta(\sqrt{n})$	$f(k) \cdot n^{o(\sqrt{k})}$
≥ 2		✓	√	⊖(n)	$f(k) \cdot n^{o(k/\log^2 k)}$

Summary

- ▶ The LPP, DTP and BP imply lower bounds both for the tree-width growth function and the complexity of pattern counting.
- $ightharpoonup Av(\sigma)$ has the LPP for every σ of length at least 3 except for the symmetries of 312.
- ▶ Av(σ) has the BP for every σ of length at least 4 that is not symmetric to one of 3412, 3142, 4213, 4123, 41352.

Question

Is the LPP the only obstacle to bounded tree-width? In other words, is it true that a class $\mathcal C$ has unbounded tree-width if and only if it has the LPP?

Question

For $\sigma \in \{3412, 3142, 4213, 4123, 41352\}$, we have $\operatorname{tw}_{\operatorname{Av}(\sigma)}(n) = \Omega(\sqrt{n})$ but no upper bound other than the trivial O(n). What are the actual tree-width growth functions?

Question

Can these properties be used to obtain results in other areas?

Thank you!