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(2+2)-free posets, ascent sequences and pattern avoiding permutations
M. Bousquet-Melou, A. Claesson, M. Dukes, S. Kitaev.

Ascent Sequences embody the combinatorial structures of:
- (2 4 2)-free posets;
- Stoimenow's matchings;

- Fishburn permutations:

F = Sym

- Fishburn trees (ongoing work, PP20237).
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To develop a general framework to handle pattern avoidance on several
combinatorial objects.

‘Ascent sequences <=  Fishburn permutations

Transport of patterns

@ Settings: Endofunctions.

@ Operator: Burge transpose.




Endofunctions

o [n]={1,...,n}.
e End, = {x:[n] — [n]}.

o Linear notation: x = xq - - - x,, where x; = x(/).



Endofunctions

o [n]={1,...,n}.
e End, = {x:[n] — [n]}.

o Linear notation: x = xq - - - x,, where x; = x(/).

Permutations: Sym,,

Im(x) = [n] — Each integer from 1 to n appears exactly once.

Cayley Permutations: Cay,

Im(x) = [k], for some k — Each integer from 1 to k appears at least once.
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Ascent sequences A

An endofunction x € End,, is an ascent sequence if:
e x3 =1;

o xit1 < |Asc’(x -+ x;)| +2, foreach i < n—1.

e x = 121

o |Asc'(x -+ x)| = {1,

@ Xj11 € {1,2,3,




Ascent sequences A

An endofunction x € End,, is an ascent sequence if:
e x3 =1;

o xit1 < |Asc’(x -+ x;)| +2, foreach i < n—1.

e x = 1212

o |Asc'(x -+ x)| = {1,3,

@ Xj11 € {1,2,3,4,




Ascent sequences A

An endofunction x € End,, is an ascent sequence if:
e x3 =1;

o xit1 < |Asc’(x -+ x;)| +2, foreach i < n—1.

e x = 12124

o |Asc'(xq -+ x)| = {1,3,4}

@ Xj11 € {1,2,3,4,5}
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Modified ascent sequences A

e Originally defined as the bijective image A of A through the map”
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Modified ascent sequences A

e Originally defined as the bijective image A of A through the map”

Alternative Description as subset of Cay

A Cayley permutation x = xq - - - X, is a Modified Ascent Sequence if and only if:
Q@ xx =1, and

Q X < xj41 if and only if x;.1 is the leftmost occurrence of that integer in x.

{Ascent tops} U {x1} = {Leftmost occurrences}
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Modified ascent sequences A

e Originally defined as the bijective image A of A through the map”

Alternative Description as subset of Cay

A Cayley permutation x = xq - - - X, is a Modified Ascent Sequence if and only if:
Q@ xx =1, and

Q X < xj41 if and only if x;.1 is the leftmost occurrence of that integer in x.

‘ {Ascent tops} U {x1} = {Leftmost occurrences}

In terms of patterns

ETHT:

ﬁ:Cay ,

I EI
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A: Ascent Sequences

A _¢ . F

Al / A: Modified Ascent Sequences
WK

A

F: Fishburn permutations

@ Provide a high-level description of <2> via the Burge transpose.

@ Transport of patterns on [Cay] and Sym.
© Transport of patterns on A and F.
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Definition of ¢ : A — F

Let x = 1412231 € A,

1 23 456 7 @ Write the integers from 1 to n above x.
1 41 2 2 31
4 @ Flip the biword.
1 4 2 2 31
1 2 3 45 6 7
U @ Sort the columns in increasing order w.r.t.
the top entry.
G ;’ i ; i 2 g © Break ties by sorting in decreasing order

w.r.t. the bottom entry.

~

$(1412231) = 7315462
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Burge biwords

|

Bur, = {<x> :x € Cay,, u€ l,, Des(u) C Des(x)} ,

where [, is the set of weakly increasing Cayley permutations.

Burge Transpose

where (;) is obtained by:

Q Flipping (4);
@ Sorting the columns in increasing order w.r.t. the top entry;

© Breaking ties by sorting in decreasing order w.r.t. the bottom entry.

T is an involution on Bur,,.




The map v : Cay,, — Sym,,

o Leti,=12---n.

@ The Burge Transpose induces a map v : Cay, — Sym, by:

() - (o)




The map v : Cay,, — Sym,,

o Leti,=12---n.

@ The Burge Transpose induces a map v : Cay, — Sym, by:

() - (o)

~ on Modifed Ascent Sequences
If x € A, then y(x) = $(x).

~ generalizes (;/5 Ao F

~ on classical permutations

If x € Sym,, then y(x) = x~ 1.

‘7 generalizes the permutation inverse




Transport on [Cay] and Sym

Equivalence Classes
Let x,y € Cay,. Define the quotient set [Cay] by:

x~y = y(x) =)




Transport on [Cay] and Sym

Equivalence Classes
Let x,y € Cay,. Define the quotient set [Cay] by:

x~y = y(x)=7(y)

Pattern Containment on [Cay]

[x] > [y] if there are x" € [x] and y’ € [y] such that x’ > y’.




Transport on [Cay] and Sym

Equivalence Classes

Let x,y € Cay,. Define the quotient set [Cay] by:

x~y = y(x)=7(y)

Pattern Containment on [Cay]

[x] > [y] if there are x" € [x] and y’ € [y] such that x’ > y’.

Transport Theorem on [Cay] and Sym

xX] > [y] <= v(x) >~(y)

or

7 ([Cay][y]) = Sym(v(y))-




Transport Theorem with inverse permutation

We can rewrite:
Sym(v(y)) = ([Cay][y])

as:

Sym(p) = ~([Cay]lp'])

Transport Theorem for sets of Patterns

@ Let X be a set of patterns.

o Let | U 1.

oEX

Sym(%) = y([Cay][=~1])




A constructive procedure for [p~!]

o Let p= BB, - B; be the decomposition of p into decreasing runs.
o Let {(j) = |Bj|.

o Let I(p) = lya) ® lo2) ® -+ ® ly(y).-

{id} x [p~*] = (/(p) x {p})"
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o Let p= BB, - B; be the decomposition of p into decreasing runs.
e Let ¢(j) = |Bj|.
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A constructive procedure for [p~!]

o Let p= BB, - B; be the decomposition of p into decreasing runs.
e Let ¢(j) = |Bj|.

o Let I(p) = ly1) @ ly2) @ - D lye).

{id} x [p~1 = (/(p) x {p})

Example: p = 3142

T 1122\ " /1123\7 /1233\" /1234\"
vz ) = {(3142) ’<3142> ’(3142) ’(3142)




A constructive procedure for [p~!]

o Let p= BB, - B; be the decomposition of p into decreasing runs.
e Let ¢(j) = |Bj|.

o Let I(p) = ly1) @ ly2) @ - D lye).

{id} x [p~1 = (/(p) x {p})

Example: p = 3142

o= e ={(05). () () )




A constructive procedure for [p~!]

o Let p= BB, - B; be the decomposition of p into decreasing runs.
e Let ¢(j) = |Bj|.

o Let I(p) = ly1) @ ly2) @ - D lye).

{id} x [p~1 = (/(p) x {p})

Example: p = 3142
T 1122\ 7 /1123\" /1233\" /1234\"
- {22 (52 (52 (29
[ [1238\ [1234\ [1234\ (1234
“ ) \1212) ' \1312) "\2313) "\2413) (-

—  [314271] = {1212,1312, 2313, 2413}




1324777

o [132471] = {1223,1324}.

— | Sym(1324) = 7 ([Cay][1223,1324]) |

o [423171] = {2121, 3121, 3231, 4231}.

— | Sym(4231) = 7 ([Cay][2121,3121, 3231, 4231]) |




e v : A — Fis bijective.
o A is a set of representatives for classes [x] € [Cay] s.t. ¥(y) € F.

Transport Theorem for F and A
F(p) = (Allp™D)
and

F () =7 (AyD) -

| A\

Corollary
For each n > 1:

| \

hS

Fa(p)l = |An(lp~])]

A\




Transport of a single pattern A +— F

[P~ p Transport

1 1 A(1) «+— F(1)

11,21 21 A(11) +— F(21)

12 12 A(12) «— F(12)
112,213 213 A(112) «— F(213)
121,231 312 A(121) +— F(312)
122,132 132 A(122) «— F(132)
212,312 231 A(212) «— F(231)
123 123 A(123) «— F(123)
1212,2313,1312,2413 3142 A(1212) «— F(3142)
1123,2134 2134 A(1123) «— F(2134)
2312,3412 3412 A(312) +— F(3412)
1232,1342 1423 A(132) «— F(1423)
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A fruitful instance of transport

A(212,231) is in bijection with Sym(231,4123) (Baxter, Pudwell).
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Q 7(231,4123) = (A(212,312,2341,1231)).




A fruitful instance of transport

A(212,231) is in bijection with Sym(231,4123) (Baxter, Pudwell).

We transport the pair (231,4123):
O [23171] = {212,312} and [4123~1] = {2341,1231}.

Q F(231,4123) = y (A(212,312,2341,1231)).

Q A(212,312,2341,1231) is the modified set of A4(212,231).

Q F(231,4123) = Sym(231,4123).




A fruitful instance of transport

A(212,231) is in bijection with Sym(231,4123) (Baxter, Pudwell).

We transport the pair (231,4123):
O [23171] = {212,312} and [4123~1] = {2341,1231}.

Q F(231,4123) = y (A(212,312,2341,1231)).

Q A(212,312,2341,1231) is the modified set of A4(212,231).

Q F(231,4123) = Sym(231,4123).

A(212,312) ——*~ Sym(231,4123)

|

A(212,312,2341,1231)




Transport of RGF

@ Restricted growth functions RGF are representatives for [Cay].

e v(RGF) = Sym(23-1).

Transport theorem for RGF

Sym(23-1,0) = fy(RGF[a*l]) and 'y(RGF[y]) = Sym(23—1,'y(y))

Q ~(RGF(3123)) = F(2341). [3-noncrossing set partitions]
Q 7(RGF(1323)) = F(1342).




Reference
Transport of patterns by Burge transpose, G. Cerbai, A. Claesson.

Thanks!
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