Restricted generating trees for weak orderings

Juan B. Gil
Penn State Altoona
jgil@psu.edu
Valparaiso, IN, June 2022

Restricted generating trees for weak orderings

Juan B. Gil
Penn State Altoona
jgil@psu.edu

Valparaiso, IN, June 2022

Joint work with D. Birmajer, D. Kenepp, and M. Weiner.

Outline:

- Weak-ordering chains

Outline:

- Weak-ordering chains
- Generating trees and stopping conditions

Outline:

- Weak-ordering chains
- Generating trees and stopping conditions
- Stopping conditions of length 2 and 3

Outline:

- Weak-ordering chains
- Generating trees and stopping conditions
- Stopping conditions of length 2 and 3
- Other stopping conditions

A weak-ordering chain in the variables $x_{1}, x_{2}, \ldots, x_{n}$ is an expression of the form

$$
x_{i_{1}} \text { op } x_{i_{2}} \text { op } \cdots \text { op } x_{i_{n}}
$$

where op is either $<$ or $=$. Let $\mathcal{W O C}(n)$ denote the set of all weak-ordering chains in n variables. Every $w \in \mathcal{W O C}(n)$ corresponds to an ordered partition:

$$
x_{2}<x_{4}=x_{5}<x_{1}<x_{3} \longleftrightarrow\{\{2\},\{4,5\},\{1\},\{3\}\} .
$$

A weak-ordering chain in the variables $x_{1}, x_{2}, \ldots, x_{n}$ is an expression of the form

$$
x_{i_{1}} \text { op } x_{i_{2}} \text { op } \cdots \text { op } x_{i_{n}}
$$

where op is either $<$ or $=$. Let $\mathcal{W O C}(n)$ denote the set of all weak-ordering chains in n variables. Every $w \in \mathcal{W O C}(n)$ corresponds to an ordered partition:

$$
x_{2}<x_{4}=x_{5}<x_{1}<x_{3} \longleftrightarrow\{\{2\},\{4,5\},\{1\},\{3\}\} .
$$

Weak-ordering chains are counted by the Fubini numbers

$$
f_{0}=1 \text { and } f_{n}=\sum_{i=1}^{n}\binom{n}{i} f_{n-i} \text { for } n \geq 1
$$

Every $w \in \mathcal{W O C}(n)$ can be recursively generated starting with x_{1}, and then inserting x_{i} (together with either $<$ or $=$) into an existing weak-ordering chain of length $i-1$.

Every $w \in \mathcal{W O C}(n)$ can be recursively generated starting with x_{1}, and then inserting x_{i} (together with either $<$ or $=$) into an existing weak-ordering chain of length $i-1$.
x_{1}

Every $w \in \mathcal{W O C}(n)$ can be recursively generated starting with x_{1}, and then inserting x_{i} (together with either $<$ or $=$) into an existing weak-ordering chain of length $i-1$.

$$
x_{1}
$$

$$
x_{2}<x_{1}
$$

Every $w \in \mathcal{W O C}(n)$ can be recursively generated starting with x_{1}, and then inserting x_{i} (together with either $<$ or $=$) into an existing weak-ordering chain of length $i-1$.

$$
\begin{aligned}
& x_{1} \\
& x_{2}<x_{1} \\
& x_{2}<x_{1}<x_{3}
\end{aligned}
$$

Every $w \in \mathcal{W O C}(n)$ can be recursively generated starting with x_{1}, and then inserting x_{i} (together with either $<$ or $=$) into an existing weak-ordering chain of length $i-1$.

$$
\begin{aligned}
& x_{1} \\
& x_{2}<x_{1} \\
& x_{2}<x_{1}<x_{3} \\
& x_{2}<x_{4}<x_{1}<x_{3}
\end{aligned}
$$

Every $w \in \mathcal{W O C}(n)$ can be recursively generated starting with x_{1}, and then inserting x_{i} (together with either $<$ or $=$) into an existing weak-ordering chain of length $i-1$.

$$
\begin{aligned}
& x_{1} \\
& x_{2}<x_{1} \\
& x_{2}<x_{1}<x_{3} \\
& x_{2}<x_{4}<x_{1}<x_{3} \\
& x_{2}<x_{4}=x_{5}<x_{1}<x_{3}
\end{aligned}
$$

Generating tree

This insertion process generates a rooted labeled tree whose nodes are the weak-ordering chains.

Stopping conditions

Suppose we wish to stop the generating process as soon as we have a tie. In other words, suppose we do not allow nodes with $x_{i}=x_{j}$ to have descendants.

Stopping conditions

Suppose we wish to stop the generating process as soon as we have a tie. In other words, suppose we do not allow nodes with $x_{i}=x_{j}$ to have descendants. Then

with only 11 leaves instead of 13 . This is a generating tree of weak-ordering chains subject to the stopping condition $x_{i}=x_{j}$.

Given a stopping condition, how may leaves after n steps?

Counting strategy

Separate the active leaves (avoiding the stopping condition), from the inactive leaves (containing the stopping condition). Let a_{n} be the total number of active leaves and b_{n} be the total number of inactive leaves after n steps.

Counting strategy

Separate the active leaves (avoiding the stopping condition), from the inactive leaves (containing the stopping condition). Let a_{n} be the total number of active leaves and b_{n} be the total number of inactive leaves after n steps. Meaning of active/inactive depends on condition!

Counting strategy

Separate the active leaves (avoiding the stopping condition), from the inactive leaves (containing the stopping condition). Let a_{n} be the total number of active leaves and b_{n} be the total number of inactive leaves after n steps. Meaning of active/inactive depends on condition!

For the stopping condition $x_{i}=x_{j}$, we have

$$
a_{1}=1, \quad b_{1}=0, \quad a_{2}=2, \quad b_{2}=1, \quad a_{3}=6, \quad b_{3}=5
$$

Stopping condition $x_{i}=x_{j}$

$$
\text { ThEOREM } \quad 1,3,11,47,239,1439,10079,80639, \ldots, \text { [A020543] }
$$

If w_{n} is the number of weak-ordering chains in $\mathcal{W O C}(n)$, subject to the stopping condition $x_{i}=x_{j}$ with $i \neq j$, then $w_{n}=2 n!-1$.

Stopping condition $x_{i}=x_{j}$

$$
\text { ThEOREM } \quad 1,3,11,47,239,1439,10079,80639, \ldots, \text { [A020543] }
$$

If w_{n} is the number of weak-ordering chains in $\mathcal{W O C}(n)$, subject to the stopping condition $x_{i}=x_{j}$ with $i \neq j$, then $w_{n}=2 n!-1$.

Every permutation of $\left\{x_{1}, \ldots, x_{n}\right\}$ gives an active chain. So, $a_{n}=n!$.

Stopping condition $x_{i}=x_{j}$

$$
\text { THEOREM } \quad 1,3,11,47,239,1439,10079,80639, \ldots, \text { [A020543] }
$$

If w_{n} is the number of weak-ordering chains in $\mathcal{W O C}(n)$, subject to the stopping condition $x_{i}=x_{j}$ with $i \neq j$, then $w_{n}=2 n!-1$.

Every permutation of $\left\{x_{1}, \ldots, x_{n}\right\}$ gives an active chain. So, $a_{n}=n!$. Every leaf that becomes inactive at level k is a descendant of an active node at level $k-1$, and each of these active chains generates $k-1$ inactive leaves (for $j \in\{1, \ldots, k-1\}$, replace x_{j} with $x_{j}=x_{k}$). Thus, there are $(k-1) a_{k-1}$ leaves becoming inactive at level k and so

$$
b_{n}=\sum_{k=1}^{n}(k-1)(k-1)!=n!-1 \text {. }
$$

Stopping condition $x_{i}<x_{j}$

ThEOREM $1,3,9,25,65,161,385,897, \ldots$, [A002064]
If w_{n} is the number of weak-ordering chains in $\mathcal{W O C}(n)$, subject to the stopping condition $x_{i}<x_{j}$ with $i<j$, then $w_{n}=(n-1) 2^{n-1}+1$.

Stopping condition $x_{i}<x_{j}$

$$
\text { THEOREM } \quad 1,3,9,25,65,161,385,897, \ldots, \text { [A002064] }
$$

If w_{n} is the number of weak-ordering chains in $\mathcal{W O C}(n)$, subject to the stopping condition $x_{i}<x_{j}$ with $i<j$, then $w_{n}=(n-1) 2^{n-1}+1$.

Indices must appear in decreasing order x_{n} op $x_{n-1} \mathrm{op} \cdots \mathrm{op} x_{1}$, and we can choose op to be either $<$ or $=$. Hence $a_{n}=2^{n-1}$.

Stopping condition $x_{i}<x_{j}$

$$
\text { THEOREM } \quad 1,3,9,25,65,161,385,897, \ldots, \text { [A002064] }
$$

If w_{n} is the number of weak-ordering chains in $\mathcal{W O C}(n)$, subject to the stopping condition $x_{i}<x_{j}$ with $i<j$, then $w_{n}=(n-1) 2^{n-1}+1$.

Indices must appear in decreasing order $x_{n} \mathrm{op} x_{n-1} \mathrm{op} \cdots \mathrm{op} x_{1}$, and we can choose op to be either $<$ or $=$. Hence $a_{n}=2^{n-1}$.
Every active chain at level $k-1$ generates $k-1$ inactive leaves, obtained by replacing x_{j} with $x_{j}<x_{k}$ for $j \in\{1, \ldots, k-1\}$. So, there are $(k-1) a_{k-1}$ leaves becoming inactive at level k and so

$$
b_{n}=\sum_{k=1}^{n}(k-1) 2^{k-2}=(n-2) 2^{n-1}+1
$$

Stopping condition $x_{i} \leq x_{j}$

Theorem

If w_{n} is the number of weak-ordering chains in $\mathcal{W O C}(n)$, subject to the stopping condition $x_{i} \leq x_{j}$ with $i<j$, then $w_{n}=n^{2}-n+1$.
\rightsquigarrow Central polygonal numbers $1,3,7,13,21,31,43,57, \ldots,[A 002061]$

Consider the stopping condition is $x_{i}<x_{j}<x_{k}$ with $i<j<k$. In this case, the generating tree at level 3 looks like:

and the node with label 123 will have no descendants as the generating tree grows.

Passage to permutations

Given an ordered partition π of [n], we let σ_{π} be the underlined permutation obtained by merging the parts of π and underlining the entries coming from the same block of π.

$$
\begin{gathered}
x_{2}<x_{4}=x_{5}<x_{1}<x_{3} \longleftrightarrow \pi=2|54| 1 \mid 3 \longleftrightarrow \sigma_{\pi}=25413 \\
x_{2}=x_{4}=x_{6}<x_{5}<x_{1}=x_{3} \longleftrightarrow \pi=642|5| 31 \longleftrightarrow \sigma_{\pi}=\underline{642} 5 \underline{31}
\end{gathered}
$$

Passage to permutations

Given an ordered partition π of $[n]$, we let σ_{π} be the underlined permutation obtained by merging the parts of π and underlining the entries coming from the same block of π.

$$
\begin{gathered}
x_{2}<x_{4}=x_{5}<x_{1}<x_{3} \longleftrightarrow \pi=2|54| 1 \mid 3 \longleftrightarrow \sigma_{\pi}=2 \underline{54} 13 \\
x_{2}=x_{4}=x_{6}<x_{5}<x_{1}=x_{3} \longleftrightarrow \pi=642|5| 31 \longleftrightarrow \sigma_{\pi}=\underline{642} 5 \underline{31}
\end{gathered}
$$

Let $\mathcal{V}_{n}(\sigma)$ be the set of chains projecting to σ. A descent in σ could come from $x_{\sigma(i)}<x_{\sigma(i+1)}$ or $x_{\sigma(i)}=x_{\sigma(i+1)}$ in the chain. If σ has d descents, $\mathcal{V}_{n}(\sigma)$ has 2^{d} elements, and if a chain contains an increasing subsequence $x_{i_{1}}<x_{i_{2}}<x_{i_{3}}$, then the projected permutation contains a 123 -pattern.

Active leaves

The set of active chains in $\mathcal{W O C}(n)$, subject to the stopping condition $x_{i_{1}}<x_{i_{2}}<x_{i_{3}}$ is the union

$$
\bigcup_{\sigma \in S_{n}(123)} \mathcal{V}_{n}(\sigma)=\bigcup_{d=0}^{n-1} \bigcup_{\sigma \in S_{n}^{d}(123)} \mathcal{V}_{n}(\sigma)
$$

Active leaves

The set of active chains in $\mathcal{W O C}(n)$, subject to the stopping condition $x_{i_{1}}<x_{i_{2}}<x_{i_{3}}$ is the union

$$
\bigcup_{\in S_{n}(123)} \mathcal{V}_{n}(\sigma)=\bigcup_{d=0}^{n-1} \bigcup_{\sigma \in S_{n}^{d}(123)} \mathcal{V}_{n}(\sigma)
$$

If $e_{n, d}=\left|S_{n}^{d}(123)\right|$, the number of active leaves at level n is

$$
a_{n}=\sum_{d=0}^{n-1} \sum_{\sigma \in S_{n}^{d}(123)}\left|\mathcal{V}_{n}(\sigma)\right|=\sum_{d=0}^{n-1} 2^{d} e_{n, d}
$$

Active leaves

The set of active chains in $\mathcal{W O C}(n)$, subject to the stopping condition $x_{i_{1}}<x_{i_{2}}<x_{i_{3}}$ is the union

$$
\bigcup_{\sigma \in S_{n}(123)} \mathcal{V}_{n}(\sigma)=\bigcup_{d=0}^{n-1} \bigcup_{\sigma \in S_{n}^{d}(123)} \mathcal{V}_{n}(\sigma)
$$

If $e_{n, d}=\left|S_{n}^{d}(123)\right|$, the number of active leaves at level n is

$$
a_{n}=\sum_{d=0}^{n-1} \sum_{\sigma \in S_{n}^{d}(123)}\left|\mathcal{V}_{n}(\sigma)\right|=\sum_{d=0}^{n-1} 2^{d} e_{n, d}
$$

M. Barnabei et al., The descent statistic on 123 -avoiding permutations Chen et al., Ordered partitions avoiding a permutation pattern of length 3

Connection to Dyck paths

The set of active chains in $\mathcal{W O C}(n)$ with stopping condition $x_{i_{1}}<x_{i_{2}}<x_{i_{3}}$ is in bijection with the set of Dyck paths of semilength n where valleys and triple down-steps come in 2 colors.

Inactive leaves

A leaf is inactive if the associated permutation has a 123 pattern. To count the elements that become inactive at level n, consider:

$$
\begin{gathered}
\mathcal{G}_{n}^{d}(123)=\left\{\sigma \in S_{n} \mid\right. \\
\sigma \text { has a } 123 \text { pattern, } d \text { descents, } \\
\text { and } \left.\sigma^{\prime} \in S_{n-1}(123)\right\}
\end{gathered}
$$

Inactive leaves

A leaf is inactive if the associated permutation has a 123 pattern. To count the elements that become inactive at level n, consider:

$$
\begin{gathered}
\mathcal{G}_{n}^{d}(123)=\left\{\sigma \in S_{n} \mid\right. \\
\sigma \text { has a } 123 \text { pattern, } d \text { descents, } \\
\text { and } \left.\sigma^{\prime} \in S_{n-1}(123)\right\} \\
\text { permutation obtained from } \\
\sigma \text { by removing } n
\end{gathered}
$$

Inactive leaves

A leaf is inactive if the associated permutation has a 123 pattern. To count the elements that become inactive at level n, consider:

$$
\begin{gathered}
\mathcal{G}_{n}^{d}(123)=\left\{\sigma \in S_{n} \mid\right. \\
\sigma \text { has a } 123 \text { pattern, } d \text { descents, } \\
\text { and } \left.\sigma^{\prime} \in S_{n-1}(123)\right\} \\
\text { permutation obtained from } \\
\sigma \text { by removing } n
\end{gathered}
$$

If $g_{n, d}=\left|\mathcal{G}_{n}^{d}(123)\right|$, then

$$
g_{n, d}=(d+1) e_{n-1, d}+(n-d) e_{n-1, d-1}-e_{n, d},
$$

where $e_{n, d}=\left|S_{n}^{d}(123)\right|$.

Stopping condition $x_{i_{1}}<x_{i_{2}}<x_{i_{3}}$

Theorem

If w_{n} is the number of weak-ordering chains in $\mathcal{W O C}(n)$, subject to the stopping condition $x_{i_{1}}<x_{i_{2}}<x_{i_{3}}$, then

$$
w_{n}=\sum_{d=0}^{n-1} 2^{d} e_{n, d}+\sum_{j=3}^{n} \sum_{d=0}^{j-3} 2^{d} g_{j, d}
$$

$1,3,13,69,401,2433,15121,95441,609025,3918273, \ldots$,

Stopping condition $x_{i_{1}} \leq x_{i_{2}} \leq x_{i_{3}}$

Theorem

If w_{n} is the number of weak-ordering chains in $\mathcal{W O C}(n)$, subject to the stopping condition $x_{i_{1}} \leq x_{i_{2}} \leq x_{i_{3}}$, then

$$
w_{n}=\sum_{d=0}^{n-1} 2^{n-1-d} e_{n, d}+\sum_{j=3}^{n} \sum_{d=2}^{j-1} 2^{j-1-d} g_{j, d}
$$

$1,3,13,59,269,1227,5613,25771,118765,549227, \ldots$,

Stopping condition $x_{i_{1}} \leq x_{i_{2}}<x_{i_{3}}$

Theorem

If w_{n} is the number of weak-ordering chains in $\mathcal{W O C}(n)$, subject to the stopping condition $x_{i_{1}} \leq x_{i_{2}}<x_{i_{3}}$, then

$$
w_{n}=\sum_{d=0}^{n-1} 2^{d} N_{n, d}+\sum_{j=3}^{n} \sum_{d=1}^{j-2} 2^{d} \ell_{j, d}
$$

where $\ell_{n, d}=\left|\mathcal{G}_{n}^{d}(213)\right|$ and $N_{n, v}=\frac{1}{n}\binom{n}{v}\binom{n}{v+1}$.
$1,3,13,65,341,1827,9913,54273,299209,1658723, \ldots$,

Stopping condition $x_{i_{1}} \leq x_{i_{2}}<x_{i_{3}}$

$$
\mathcal{G}_{n}^{d}(213)=\left\{\sigma \in S_{n} \mid \sigma \text { has a } 213 \text { pattern, } d \text { descents, and } \sigma^{\prime} \in S_{n-1}(213)\right\}
$$

Theorem

If w_{n} is the number of weak-ordering chains in $\mathcal{W O C}(n)$, subject to the stopping condition $x_{i_{1}} \leq x_{i_{2}}<x_{i_{3}}$, then

$$
w_{n}=\sum_{d=0}^{n-1} 2^{d} N_{n, d}+\sum_{j=3}^{n} \sum_{d=1}^{j-2} 2^{d} \ell_{j, d}
$$

where $\ell_{n, d}=\left|\mathcal{G}_{n}^{d}(213)\right|$ and $N_{n, v}=\frac{1}{n}\binom{n}{v}\binom{n}{v+1}$.
$1,3,13,65,341,1827,9913,54273,299209,1658723, \ldots$,

Other stopping conditions

$>x_{i_{1}}=\cdots=x_{i_{k}}$
$>x_{i_{1}}<x_{i_{2}}=x_{i_{3}}$
$>x_{i_{1}} \leq x_{i_{2}}=x_{i_{3}}$

Other stopping conditions

$\left.\begin{array}{l}x_{i_{1}}=\cdots=x_{i_{k}} \\ x_{i_{1}}<x_{i_{2}}=x_{i_{3}} \\ x_{i_{1}} \leq x_{i_{2}}=x_{i_{3}}\end{array}\right\}$ Done!

Other stopping conditions

- $x_{i_{1}}=\cdots=x_{i_{k}}$
- $x_{i_{1}}<x_{i_{2}}=x_{i_{3}} \quad$ Done!
- $x_{i_{1}} \leq x_{i_{2}}=x_{i_{3}}$
$-x_{i_{1}}<x_{i_{2}}>x_{i_{3}}$
$-x_{i_{1}} \leq x_{i_{2}}>x_{i_{3}}$
- $x_{i_{1}} \leq x_{i_{2}} \geq x_{i_{3}}$

References

- M. Barnabei, F. Bonetti, and M. Silimbani, The descent statistic on 123-avoiding permutations, Sém. Lothar. Combin. 63 (2010), Art. B63a, 8 pp.
- W.Y.C. Chen, A.Y.L. Dai, and R.D.P. Zhou, Ordered partitions avoiding a permutation pattern of length 3, European J. Combin. 36 (2014), 416-424.

