Restricted generating trees for weak orderings

Juan B. Gil

Penn State Altoona jgil@psu.edu

Valparaiso, IN, June 2022

Penn State Altoona

Other stopping conditions 00

Penn State Altoona

Restricted generating trees for weak orderings

Juan B. Gil

Penn State Altoona jgil@psu.edu

Valparaiso, IN, June 2022

< 口 > < 同 >

Joint work with D. Birmajer, D. Kenepp, and M. Weiner.

Restricted generating trees for weak orderings 1/21

Weak-ordering chains

<□ ▶ < 回 ▶ < 臣 ▶ < 臣 ▶ 王 少 Q ○ Penn State Altoona

- Weak-ordering chains
- Generating trees and stopping conditions

A D > <
 A P >
 A

- Weak-ordering chains
- Generating trees and stopping conditions
- Stopping conditions of length 2 and 3

- Weak-ordering chains
- Generating trees and stopping conditions
- Stopping conditions of length 2 and 3
- Other stopping conditions

A weak-ordering chain in the variables x_1, x_2, \ldots, x_n is an expression of the form

 x_{i_1} op x_{i_2} op \cdots op x_{i_n} ,

where op is either < or =. Let WOC(n) denote the set of all weak-ordering chains in n variables. Every $w \in WOC(n)$ corresponds to an ordered partition:

$$x_2 < x_4 = x_5 < x_1 < x_3 \quad \longleftrightarrow \quad \{\{2\}, \{4, 5\}, \{1\}, \{3\}\}.$$

A weak-ordering chain in the variables x_1, x_2, \ldots, x_n is an expression of the form

 x_{i_1} op x_{i_2} op \cdots op x_{i_n} ,

where op is either < or =. Let WOC(n) denote the set of all weak-ordering chains in n variables. Every $w \in WOC(n)$ corresponds to an ordered partition:

$$x_2 < x_4 = x_5 < x_1 < x_3 \quad \longleftrightarrow \quad \{\{2\}, \{4,5\}, \{1\}, \{3\}\}.$$

Weak-ordering chains are counted by the Fubini numbers

$$f_0=1$$
 and $f_n=\sum_{i=1}^n \binom{n}{i} f_{n-i}$ for $n\geq 1$.

Every $w \in WOC(n)$ can be recursively generated starting with x_1 , and then inserting x_i (together with either < or =) into an existing weak-ordering chain of length i - 1.

Penn State Altoona

Every $w \in WOC(n)$ can be recursively generated starting with x_1 , and then inserting x_i (together with either < or =) into an existing weak-ordering chain of length i - 1.

 x_1

Every $w \in WOC(n)$ can be recursively generated starting with x_1 , and then inserting x_i (together with either < or =) into an existing weak-ordering chain of length i - 1.

 x_1 $x_2 < x_1$

Penn State Altoona

Every $w \in WOC(n)$ can be recursively generated starting with x_1 , and then inserting x_i (together with either < or =) into an existing weak-ordering chain of length i - 1.

 x_1 $x_2 < x_1$ $x_2 < x_1 < x_3$

Penn State Altoona

Every $w \in WOC(n)$ can be recursively generated starting with x_1 , and then inserting x_i (together with either < or =) into an existing weak-ordering chain of length i - 1.

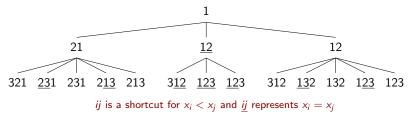
Every $w \in WOC(n)$ can be recursively generated starting with x_1 , and then inserting x_i (together with either < or =) into an existing weak-ordering chain of length i - 1.

Penn State Altoona

Image: A mathematical states and a mathem

Generating tree

This insertion process generates a rooted labeled tree whose nodes are the weak-ordering chains.



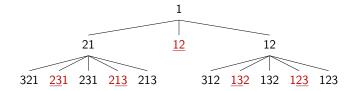
Stopping conditions

Suppose we wish to stop the generating process as soon as we have a tie. In other words, suppose we do not allow nodes with $x_i = x_j$ to have descendants.

Penn State Altoona

Stopping conditions

Suppose we wish to stop the generating process as soon as we have a tie. In other words, suppose we do not allow nodes with $x_i = x_j$ to have descendants. Then



with only 11 leaves instead of 13. This is a generating tree of weak-ordering chains subject to the *stopping condition* $x_i = x_i$.

Given a stopping condition, how may leaves after *n* steps?

Penn State Altoona

(日)、<四)、<三</p>

Restricted generating trees for weak orderings 7/2

Counting strategy

Separate the *active leaves* (avoiding the stopping condition), from the *inactive leaves* (containing the stopping condition). Let a_n be the total number of active leaves and b_n be the total number of inactive leaves after n steps.

Counting strategy

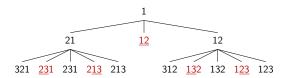
Separate the *active leaves* (avoiding the stopping condition), from the *inactive leaves* (containing the stopping condition). Let a_n be the total number of active leaves and b_n be the total number of inactive leaves after *n* steps. Meaning of active/inactive depends on condition!

Counting strategy

Separate the *active leaves* (avoiding the stopping condition), from the *inactive leaves* (containing the stopping condition). Let a_n be the total number of active leaves and b_n be the total number of inactive leaves after *n* steps. Meaning of active/inactive depends on condition!

For the stopping condition $x_i = x_j$, we have

$$a_1 = 1, \ b_1 = 0, \ a_2 = 2, \ b_2 = 1, \ a_3 = 6, \ b_3 = 5.$$



Penn State Altoona

Stopping condition $x_i = x_j$

Theorem $1, 3, 11, 47, 239, 1439, 10079, 80639, \dots$, [A020543]

If w_n is the number of weak-ordering chains in WOC(n), subject to the stopping condition $x_i = x_j$ with $i \neq j$, then $w_n = 2n! - 1$.

Stopping condition $x_i = x_j$

Theorem 1, 3, 11, 47, 239, 1439, 10079, 80639, ..., [A020543]

If w_n is the number of weak-ordering chains in WOC(n), subject to the stopping condition $x_i = x_j$ with $i \neq j$, then $w_n = 2n! - 1$.

Every permutation of $\{x_1, \ldots, x_n\}$ gives an active chain. So, $a_n = n!$.

Stopping condition $x_i = x_j$

Theorem 1, 3, 11, 47, 239, 1439, 10079, 80639, ..., [A020543]

If w_n is the number of weak-ordering chains in WOC(n), subject to the stopping condition $x_i = x_j$ with $i \neq j$, then $w_n = 2n! - 1$.

Every permutation of $\{x_1, \ldots, x_n\}$ gives an active chain. So, $a_n = n!$. Every leaf that becomes inactive at level k is a descendant of an active node at level k - 1, and each of these active chains generates k - 1inactive leaves (for $j \in \{1, \ldots, k - 1\}$, replace x_j with $x_j = x_k$). Thus, there are $(k - 1)a_{k-1}$ leaves becoming inactive at level k and so

$$b_n = \sum_{k=1}^{\infty} (k-1)(k-1)! = n! - 1.$$

Stopping condition $x_i < x_j$

THEOREM 1, 3, 9, 25, 65, 161, 385, 897, ..., [A002064]

If w_n is the number of weak-ordering chains in WOC(n), subject to the stopping condition $x_i < x_j$ with i < j, then $w_n = (n-1)2^{n-1} + 1$.

Penn State Altoona

<<p>< □ ト < 同 ト < 三 ト</p>

Stopping condition $x_i < x_j$

THEOREM 1, 3, 9, 25, 65, 161, 385, 897, ..., [A002064]

If w_n is the number of weak-ordering chains in WOC(n), subject to the stopping condition $x_i < x_j$ with i < j, then $w_n = (n-1)2^{n-1} + 1$.

Indices must appear in decreasing order $x_n \text{ op } x_{n-1} \text{ op } \cdots \text{ op } x_1$, and we can choose op to be either < or =. Hence $a_n = 2^{n-1}$.

Penn State Altoona

Stopping condition $x_i < x_j$

THEOREM 1, 3, 9, 25, 65, 161, 385, 897, ..., [A002064]

If w_n is the number of weak-ordering chains in WOC(n), subject to the stopping condition $x_i < x_j$ with i < j, then $w_n = (n-1)2^{n-1} + 1$.

Indices must appear in decreasing order x_n op x_{n-1} op \cdots op x_1 , and we can choose op to be either < or =. Hence $a_n = 2^{n-1}$. Every active chain at level k-1 generates k-1 inactive leaves, obtained by replacing x_j with $x_j < x_k$ for $j \in \{1, \ldots, k-1\}$. So, there are $(k-1)a_{k-1}$ leaves becoming inactive at level k and so $b_n = \sum_{k=1}^n (k-1)2^{k-2} = (n-2)2^{n-1} + 1.$

Stopping condition $x_i \leq x_j$

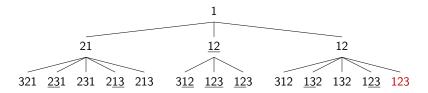
Theorem

If w_n is the number of weak-ordering chains in $\mathcal{WOC}(n)$, subject to the stopping condition $x_i \leq x_j$ with i < j, then $w_n = n^2 - n + 1$.

 \rightsquigarrow Central polygonal numbers $1,3,7,13,21,31,43,57,\ldots,$ [A002061]

• □ > < □ > < Ξ</p>

Consider the stopping condition is $x_i < x_j < x_k$ with i < j < k. In this case, the generating tree at level 3 looks like:



and the node with label 123 will have no descendants as the generating tree grows.

Passage to permutations

Given an ordered partition π of [n], we let σ_{π} be the *underlined* permutation obtained by merging the parts of π and underlining the entries coming from the same block of π .

$$x_{2} < x_{4} = x_{5} < x_{1} < x_{3} \iff \pi = 2 | 54 | 1 | 3 \iff \sigma_{\pi} = 2 \underline{54} 13,$$

$$x_{2} = x_{4} = x_{6} < x_{5} < x_{1} = x_{3} \iff \pi = 642 | 5 | 31 \iff \sigma_{\pi} = \underline{642} 5 \underline{31}.$$

Image: Image:

Penn State Altoona

イロト イポト イヨト イヨ

Passage to permutations

Given an ordered partition π of [n], we let σ_{π} be the *underlined* permutation obtained by merging the parts of π and underlining the entries coming from the same block of π .

$$x_{2} < x_{4} = x_{5} < x_{1} < x_{3} \iff \pi = 2 | 54 | 1 | 3 \iff \sigma_{\pi} = 2 \frac{54}{13},$$

$$x_{2} = x_{4} = x_{6} < x_{5} < x_{1} = x_{3} \iff \pi = 642 | 5 | 31 \iff \sigma_{\pi} = \frac{642}{5} \frac{531}{21}.$$

Let $\mathcal{V}_n(\sigma)$ be the set of chains projecting to σ . A descent in σ could come from $x_{\sigma(i)} < x_{\sigma(i+1)}$ or $x_{\sigma(i)} = x_{\sigma(i+1)}$ in the chain. If σ has d descents, $\mathcal{V}_n(\sigma)$ has 2^d elements, and if a chain contains an increasing subsequence $x_{i_1} < x_{i_2} < x_{i_3}$, then the projected permutation contains a 123-pattern.

Active leaves

The set of active chains in WOC(n), subject to the stopping condition $x_{i_1} < x_{i_2} < x_{i_3}$ is the union

$$\bigcup_{\sigma\in S_n(123)}\mathcal{V}_n(\sigma)=\bigcup_{d=0}^{n-1}\bigcup_{\sigma\in S_n^d(123)}\mathcal{V}_n(\sigma),$$

Active leaves

The set of active chains in WOC(n), subject to the stopping condition $x_{i_1} < x_{i_2} < x_{i_3}$ is the union

$$\bigcup_{\sigma\in S_n(123)}\mathcal{V}_n(\sigma)=\bigcup_{d=0}^{n-1}\bigcup_{\sigma\in S_n^d(123)}\mathcal{V}_n(\sigma),$$

If $e_{n,d} = |S_n^d(123)|$, the number of active leaves at level n is

$$a_n = \sum_{d=0}^{n-1} \sum_{\sigma \in S_n^d(123)} |\mathcal{V}_n(\sigma)| = \sum_{d=0}^{n-1} 2^d e_{n,d}.$$

Penn State Altoona

< D > < A > < B > <</p>

Active leaves

The set of active chains in WOC(n), subject to the stopping condition $x_{i_1} < x_{i_2} < x_{i_3}$ is the union

$$\bigcup_{\sigma \in S_n(123)} \mathcal{V}_n(\sigma) = \bigcup_{d=0}^{n-1} \bigcup_{\sigma \in S_n^d(123)} \mathcal{V}_n(\sigma),$$

If $e_{n,d} = |S_n^d(123)|$, the number of active leaves at level n is

$$a_n = \sum_{d=0}^{n-1} \sum_{\sigma \in S_n^d(123)} |\mathcal{V}_n(\sigma)| = \sum_{d=0}^{n-1} 2^d e_{n,d}.$$

M. Barnabei et al., The descent statistic on 123-avoiding permutations Chen et al., Ordered partitions avoiding a permutation pattern of length 3 $\,$

A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Connection to Dyck paths

The set of active chains in WOC(n) with stopping condition $x_{i_1} < x_{i_2} < x_{i_3}$ is in bijection with the set of Dyck paths of semilength *n* where valleys and triple down-steps come in 2 colors.

Inactive leaves

A leaf is inactive if the associated permutation has a 123 pattern. To count the elements that become inactive at level n, consider:

$$\mathcal{G}_n^d(123) = \left\{ \sigma \in S_n \mid \sigma \text{ has a } 123 \text{ pattern, } d \text{ descents,}
ight.$$

and $\sigma' \in S_{n-1}(123)
ight\}$

Inactive leaves

A leaf is inactive if the associated permutation has a 123 pattern. To count the elements that become inactive at level n, consider:

$$\mathcal{G}_n^d(123) = \left\{ \sigma \in S_n \mid \sigma \text{ has a } 123 \text{ pattern, } d \text{ descents,} \right.$$

and $\sigma' \in S_{n-1}(123) \right\}$
permutation obtained from
 σ by removing n

Inactive leaves

A leaf is inactive if the associated permutation has a 123 pattern. To count the elements that become inactive at level n, consider:

$$\mathcal{G}_n^d(123) = \left\{ \sigma \in S_n \mid \sigma \text{ has a } 123 \text{ pattern, } d \text{ descents,} \right.$$

and $\sigma' \in S_{n-1}(123) \right\}$
permutation obtained from
 σ by removing n

If $g_{n,d} = |\mathcal{G}_n^d(123)|$, then

$$g_{n,d} = (d+1)e_{n-1,d} + (n-d)e_{n-1,d-1} - e_{n,d},$$

where $e_{n,d} = |S_n^d(123)|$.

Penn State Altoona

Stopping condition
$$x_{i_1} < x_{i_2} < x_{i_3}$$

THEOREM

If w_n is the number of weak-ordering chains in WOC(n), subject to the stopping condition $x_{i_1} < x_{i_2} < x_{i_3}$, then

$$w_n = \sum_{d=0}^{n-1} 2^d e_{n,d} + \sum_{j=3}^n \sum_{d=0}^{j-3} 2^d g_{j,d}.$$

 $1, 3, 13, 69, 401, 2433, 15121, 95441, 609025, 3918273, \ldots,$

Penn State Altoona

Other stopping conditions $\circ\circ$

Stopping condition
$$x_{i_1} \leq x_{i_2} \leq x_{i_3}$$

Theorem

If w_n is the number of weak-ordering chains in WOC(n), subject to the stopping condition $x_{i_1} \leq x_{i_2} \leq x_{i_3}$, then

$$w_n = \sum_{d=0}^{n-1} 2^{n-1-d} e_{n,d} + \sum_{j=3}^n \sum_{d=2}^{j-1} 2^{j-1-d} g_{j,d}.$$

 $1, 3, 13, 59, 269, 1227, 5613, 25771, 118765, 549227, \ldots,$

Penn State Altoona

Other stopping conditions $\circ\circ$

Stopping condition
$$x_{i_1} \leq x_{i_2} < x_{i_3}$$

Theorem

If w_n is the number of weak-ordering chains in WOC(n), subject to the stopping condition $x_{i_1} \le x_{i_2} < x_{i_3}$, then

$$w_n = \sum_{d=0}^{n-1} 2^d N_{n,d} + \sum_{j=3}^n \sum_{d=1}^{j-2} 2^d \ell_{j,d},$$

where $\ell_{n,d} = |\mathcal{G}_n^d(213)|$ and $N_{n,v} = \frac{1}{n} {n \choose v} {n \choose v+1}$.

 $1, 3, 13, 65, 341, 1827, 9913, 54273, 299209, 1658723, \ldots,$

Restricted generating trees for weak orderings 19/21

Penn State Altoona

Other stopping conditions $\circ\circ$

Stopping condition $x_{i_1} \leq x_{i_2} < x_{i_3}$

 $\mathcal{G}_n^d(213) = \{ \sigma \in S_n \, | \, \sigma \text{ has a 213 pattern, } d \text{ descents, and } \sigma' \in S_{n-1}(213) \}$

Theorem

If w_n is the number of weak-ordering chains in WOC(n), subject to the stopping condition $x_{i_1} \le x_{i_2} < x_{i_3}$, then

$$w_n = \sum_{d=0}^{n-1} 2^d N_{n,d} + \sum_{j=3}^n \sum_{d=1}^{j-2} 2^d \ell_{j,d}$$

where $\ell_{n,d} = |\mathcal{G}_n^d(213)|$ and $N_{n,v} = \frac{1}{n} {n \choose v} {n \choose v+1}$.

 $1, 3, 13, 65, 341, 1827, 9913, 54273, 299209, 1658723, \ldots,$

Restricted generating trees for weak orderings 19/21

Penn State Altoona

Other stopping conditions $\bullet \circ$

Other stopping conditions

•
$$x_{i_1} = \cdots = x_{i_k}$$

• $x_{i_1} < x_{i_2} = x_{i_3}$
• $x_{i_1} \le x_{i_2} = x_{i_3}$

Penn State Altoona

(日)、<四)、<三</p>

Restricted generating trees for weak orderings 20/21

Other stopping conditions $\bullet \circ$

Other stopping conditions

$$\begin{array}{c|c} \bullet & x_{i_1} = \dots = x_{i_k} \\ \bullet & x_{i_1} < x_{i_2} = x_{i_3} \\ \bullet & x_{i_1} \le x_{i_2} = x_{i_3} \end{array} \end{array} \begin{array}{c} \text{Done!} \end{array}$$

Penn State Altoona

A B +
 A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Restricted generating trees for weak orderings 20/21

Other stopping conditions $\bullet \circ$

Other stopping conditions

Penn State Altoona

Restricted generating trees for weak orderings 20/21

References

- M. Barnabei, F. Bonetti, and M. Silimbani, The descent statistic on 123-avoiding permutations, *Sém. Lothar. Combin.* 63 (2010), Art. B63a, 8 pp.
- W.Y.C. Chen, A.Y.L. Dai, and R.D.P. Zhou, Ordered partitions avoiding a permutation pattern of length 3, European J. Combin. 36 (2014), 416–424.