A q-analogue and a symmetric function analogue of a result of Carlitz, Scoville and Vaughan

Yifei Li

University of Illinois at Springfield

Permutation Patterns 2022 Valparaiso University

June 24, 2022

- The Bessel function $J_0(z) = \sum_{n=0}^{\infty} (-1)^n \frac{(z^2/4)^n}{n!n!}$.
- Let $f(z) = \sum_{n=0}^{\infty} (-1)^n \frac{z^n}{n! n!}$, then $J_0(z) = f(z^2/4)$.
- Write $\frac{1}{f(z)} = \sum_{n=0}^{\infty} \omega_n \frac{z^n}{n! n!}$.

It follows that $\sum_{k=0}^{n} (-1)^k \binom{n}{k}^2 \omega_k = 0$, and ω_k 's are the the coefficients of the reciprocal Bessel function.

- The Bessel function $J_0(z) = \sum_{n=0}^{\infty} (-1)^n \frac{(z^2/4)^n}{n!n!}$.
- Let $f(z) = \sum_{n=0}^{\infty} (-1)^n \frac{z^n}{n! n!}$, then $J_0(z) = f(z^2/4)$.
- Write $\frac{1}{f(z)} = \sum_{n=0}^{\infty} \omega_n \frac{z^n}{n! n!}$.

It follows that $\sum_{k=0}^{n} (-1)^k \binom{n}{k}^2 \omega_k = 0$, and ω_k 's are the the coefficients of the reciprocal Bessel function.

Given $\sigma \in \mathcal{S}_n$, a permutation of $[n] := \{1, 2, ..., n\}$, i is an ascent of σ if $\sigma(i) < \sigma(i+1)$. e.g. $\sigma = 213$, $\sigma(2) = 1 < \sigma(3) = 3$, 2 is an ascent.

C-S-V result (1976)

Carlitz, Scoville and Vaughan proved that the number ω_k is the number of pairs of permutations of S_k with no common ascent.

- The Bessel function $J_0(z) = \sum_{n=0}^{\infty} (-1)^n \frac{(z^2/4)^n}{n! n!}$.
- Let $f(z) = \sum_{n=0}^{\infty} (-1)^n \frac{z^n}{n! n!}$, then $J_0(z) = f(z^2/2)$.
- Write $\frac{1}{f(z)} = \sum_{n=0}^{\infty} \omega_n \frac{z^n}{n! n!}$.
- It follows that $\sum_{k=0}^{n} (-1)^k \binom{n}{k}^2 \omega_k = 0.$

C-S-V result (1976)

Carlitz, Scoville and Vaughan proved that the number ω_k is the number of pairs of permutations of S_k with no common ascent.

• For example, $\omega_2 = 3$: (12,21), (21,12), (21,21).

- The Bessel function $J_0(z) = \sum_{n=0}^{\infty} (-1)^n \frac{(z^2/4)^n}{n!n!}$.
- Let $f(z) = \sum_{n=0}^{\infty} (-1)^n \frac{z^n}{n! n!}$, then $J_0(z) = f(z^2/2)$.
- Write $\frac{1}{f(z)} = \sum_{n=0}^{\infty} \omega_n \frac{z^n}{n! n!}$.
- It follows that $\sum_{k=0}^{n} (-1)^k \binom{n}{k}^2 \omega_k = 0.$

C-S-V result (1976)

Carlitz, Scoville and Vaughan proved that the number ω_k is the number of pairs of permutations of S_k with no common ascent.

- For example, $\omega_2 = 3$: (12,21), (21,12), (21,21).
- Carlitz, Scoville and Vaughan's result provided a combinatorial interpretation of the coefficient ω_k in the reciprocal Bessel function.
- Their proof uses generating functions.

Methods and Motivation

- $\omega_n = \#$ of pairs of permutations of S_n with no common ascent.
- A common idea of Combinatorics: Counting the same thing twice in different ways.

Methods and Motivation

- $\omega_n = \#$ of pairs of permutations of S_n with no common ascent.
- A common idea of Combinatorics: Counting the same thing twice in different ways.
- Obtain C-S-V result by counting the ω_n in 2 ways:
 - **1** # of decreasing maximal chains in $B_n \circ B_n$.
 - ② The möbius number μ of the poset $B_n \circ B_n$ Given P a poset,

$$\begin{split} &\mu(s,s) = 1, \text{ for all } s \in P, \\ &\mu(s,u) = -\sum_{s \leq t \leq u} \mu(s,t), \text{ for all } s < u \text{ in } P. \end{split}$$

Methods and Motivation

- $\omega_n = \#$ of pairs of permutations of S_n with no common ascent.
- A common idea of Combinatorics: Counting the same thing twice in different ways.
- Obtain C-S-V result by counting the ω_n in 2 ways:
 - **1** # of decreasing maximal chains in $B_n \circ B_n$.
 - ② The möbius number μ of the poset $B_n \circ B_n$ Given P a poset,

$$\mu(s,s) = 1$$
, for all $s \in P$, $\mu(s,u) = -\sum_{s \le t < u} \mu(s,t)$, for all $s < u$ in P .

- Change B_n to its q-analogue poset $\longrightarrow q$ -analogue of C-S-V result

The q-analogue of B_n

- Let $B_n :=$ all subsets of $\{1, 2, ..., n\}$ ordered by inclusion, also called Boolean Algebra.
- Let $B_n(q) :=$ all subspaces of \mathbb{F}_q^n , an *n*-dimensional vector space over \mathbb{F}_q , ordered by containment.
- $B_n(q)$ is a q-analogue of B_n .

The q-analogue of B_n

- Let $B_n :=$ all subsets of $\{1, 2, ..., n\}$ ordered by inclusion, also called Boolean Algebra.
- Let $B_n(q) :=$ all subspaces of \mathbb{F}_q^n , an *n*-dimensional vector space over \mathbb{F}_q , ordered by containment.
- $B_n(q)$ is a q-analogue of B_n .

An edge labeling of $B_n(q)$

• An edge labeling of $B_2(2)$:

- A chain c is *increasing* if its label is strictly increasing and *decreasing* if its label is weakly decreasing (non-increasing).
- The left most chain of $B_2(2)$ is increasing with a label 12 and the other two chains are decreasing.
- $\mu(B_2(2)) = 2 = \#$ of decreasing maximal chains.

Segre Product Poset $B_2(2) \circ B_2(2)$

Segre Product Poset

$$B_n(q) \circ B_n(q) := \{(a,b) \in B_n(q) \times B_n(q) \text{ and } \dim(a) = \dim(b)\}$$

Segre Product Poset $B_2(2) \circ B_2(2)$

Segre Product Poset

$$B_n(q) \circ B_n(q) := \{(a,b) \in B_n(q) \times B_n(q) \text{ and } \dim(a) = \dim(b)\}$$

- The left most chain of $B_2(2) \circ B_2(2)$ is increasing with label (12, 12).
- The labels of decreasing (non-increasing) chains in $B_n(q) \circ B_n(q)$ are pairs of permutations $(\sigma, \omega) \in \mathcal{S}_n \times \mathcal{S}_n$ with no common ascent. e.g. The second chain has label (12, 21).

Edge-Lexicographical labeling (EL-labeling)

An *EL-labeling* is an edge labeling that satisfies the following two conditions:

- There is a unique increasing maximal chain in every closed interval,
- ② and its label lexicographically precedes all other maximal chains in the same interval.

Edge-Lexicographical labeling (EL-labeling)

An *EL-labeling* is an edge labeling that satisfies the following two conditions:

- There is a unique increasing maximal chain in every closed interval,
- ② and its label lexicographically precedes all other maximal chains in the same interval.

An EL-labeling of $B_2(2) \circ B_2(2)$:

Decreasing maximal chains in an EL-labeling

Theorem (Björner, Wachs, and Hall)

Suppose P is a pure poset for which $\hat{P}:=P\cup\{\hat{0},\hat{1}\}$ admits an EL-labeling. Then the number of decreasing maximal chains of \hat{P} is $\mu(\hat{P})$, the möbius number of \hat{P} , without the '-' sign.

Decreasing maximal chains in an EL-labeling

Theorem (Björner, Wachs, and Hall)

Suppose P is a pure poset for which $\hat{P}:=P\cup\{\hat{0},\hat{1}\}$ admits an EL-labeling. Then the number of decreasing maximal chains of \hat{P} is $\mu(\hat{P})$, the möbius number of \hat{P} , without the '-' sign.

- $[n]_q = q^{n-1} + q^{n-2} + ... + 1$ is the q-analogue of the natural number n
- $[n]_q! = [n]_q[n-1]_q...[2]_q[1]_q$
- The *q*-analogue of $\binom{n}{k}$ is $\binom{n}{k}_q = \frac{[n]_q!}{[k]_q![n-k]_q!}$.
- For a permutation $\sigma \in \mathcal{S}_n$, the *inversion statistic* is defined by $inv(\sigma) := |\{(i,j) : 1 \le i < j \le n \text{ and } \sigma(i) > \sigma(j)\}|.$

Decreasing maximal chains in an EL-labeling

Theorem (Björner, Wachs, and Hall)

Suppose P is a pure poset for which $\hat{P}:=P\cup\{\hat{0},\hat{1}\}$ admits an EL-labeling. Then the number of decreasing maximal chains of \hat{P} is $\mu(\hat{P})$, the möbius number of \hat{P} , without the '-' sign.

- $[n]_q = q^{n-1} + q^{n-2} + ... + 1$ is the *q*-analogue of the natural number *n*
- $[n]_q! = [n]_q[n-1]_q...[2]_q[1]_q$
- The *q*-analogue of $\binom{n}{k}$ is $\binom{n}{k}_q = \frac{[n]_q!}{[k]_q![n-k]_q!}$.
- For a permutation $\sigma \in \mathcal{S}_n$, the *inversion statistic* is defined by $inv(\sigma) := |\{(i,j) : 1 \le i < j \le n \text{ and } \sigma(i) > \sigma(j)\}|.$
- **Notation:** Let \mathcal{D}_n be the set of all pairs of permutations $(\sigma, \tau) \in \mathcal{S}_n \times \mathcal{S}_n$ with no common ascent.

q-analogue to $\sum_{k=0}^{n} (-1)^k \binom{n}{k}^2 \omega_k = 0$, the C-S-V result

- **Notation:** Let \mathcal{D}_n be the set of all pairs of permutations $(\sigma, \tau) \in \mathcal{S}_n \times \mathcal{S}_n$ with no common ascent.
- $inv(\sigma) := |\{(i,j) : 1 \le i < j \le n \text{ and } \sigma(i) > \sigma(j)\}|$

Theorem 1 (L.): a q-analogue to C-S-V result

The Segre product $B_n(q) \circ B_n(q)$ admits an EL-labeling. Let $W_n(q)$ be the total number of decreasing maximal chains of $B_n(q) \circ B_n(q)$. Then

$$\sum_{i=0}^{n} (-1)^{i} {n \brack i}_{q}^{2} W_{i}(q) = 0$$

and
$$W_i(q) = \sum_{(\sigma,\tau) \in \mathcal{D}_i} q^{inv(\sigma) + inv(\tau)}$$
.

q-analogue to $\sum_{k=0}^{n} (-1)^k \binom{n}{k}^2 \omega_k = 0$, the C-S-V result

Theorem 1 (L.): a q-analogue to C-S-V result

The Segre product $B_n(q) \circ B_n(q)$ admits an EL-labeling. Let $W_n(q)$ be the total number of decreasing maximal chains of $B_n(q) \circ B_n(q)$. Then

$$\sum_{i=0}^{n} (-1)^{i} {n \brack i}_{q}^{2} W_{i}(q) = 0$$
 (1)

and $W_i(q) = \sum_{(\sigma,\tau) \in \mathcal{D}_i} q^{inv(\sigma) + inv(\tau)}$.

- Equation (1) implies that $W_n(q)$ are the coefficients of the reciprocal of q-Bessel function $J_0^{(1)}(z;q)$
- Theorem 1 provides a combinatorial interpretation of those coefficients $W_n(q)$ and a method to compute $W_n(q)$.

q-analogue to C-S-V result

- We can get C-S-V's result by letting q = 1.
- Our *q*-analogue offers topological approach by using the top homology of $B_n(q) \circ B_n(q) \setminus \{\hat{0}, \hat{1}\}.$
- The number $(-1)^n W_n(q)$ is the reduced Euler characteristic of $B_n(q) \circ B_n(q)$.

q-analogue to C-S-V result

- We can get C-S-V's result by letting q = 1.
- Our *q*-analogue offers topological approach by using the top homology of $B_n(q) \circ B_n(q) \setminus \{\hat{0}, \hat{1}\}.$
- The number $(-1)^n W_n(q)$ is the reduced Euler characteristic of $B_n(q) \circ B_n(q)$.

 $W_n(q)$ are the signless reduced Euler characteristic of $\triangle(B_n(q) \circ B_n(q))$.

A further generalization

A well-known **symmetric function identity**: for $n \ge 1$,

$$\sum_{i=0}^{n} (-1)^{i} e_{i} h_{n-i} = 0,$$

where e_i and h_{n-i} are the elementary and complete homogeneous symmetric functions respectively.

A further generalization

A well-known **symmetric function identity**: for $n \ge 1$,

$$\sum_{i=0}^{n} (-1)^{i} e_{i} h_{n-i} = 0,$$

where e_i and h_{n-i} are the elementary and complete homogeneous symmetric functions respectively.

- The *(Frobenius) characteristic ch* maps a representation of S_n to a symmetric function of degree n
- e_i is the characteristic of the representation of S_i on the top homology of B_i .
- h_{n-i} is the characteristic of the trivial representation of S_{n-i} .

A further generalization

A well-known **symmetric function identity**: for $n \ge 1$,

$$\sum_{i=0}^{n} (-1)^{i} e_{i} h_{n-i} = 0,$$

where e_i and h_{n-i} are the elementary and complete homogeneous symmetric functions respectively.

- The (Frobenius) characteristic ch maps a representation of S_n to a symmetric function of degree n
- e_i is the characteristic of the representation of S_i on the top homology of B_i .
- h_{n-i} is the characteristic of the trivial representation of S_{n-i} .
- The product Frobenius characteristic ch maps a repr. of $S_n \times S_n$ to a symmetric function in two sets of variables $x = (x_1, x_2, ...)$ and $y = (y_1, y_2, ...)$.

An analogue to $\sum_{i=0}^{n} (-1)^{i} e_{i} h_{n-i} = 0$

Theorem 2 (L.): a symmetric function analogue

Let $P_n := B_n \circ B_n - \{\hat{0}, \hat{1}\}$. The action of $S_n \times S_n$ on P_n induces a representation on $\widetilde{H}_{n-2}(P_n)$. Let $ch(\widetilde{H}_{n-2}(P_n))$ be the product Frobenius characteristic of this representation. Then

$$\sum_{i=0}^{n} (-1)^{i} ch(\widetilde{H}_{i-2}(P_{i})) h_{n-i}(x) h_{n-i}(y) = 0.$$
 (2)

An analogue to $\sum_{i=0}^{n} (-1)^{i} e_{i} h_{n-i} = 0$

Theorem 2 (L.): a symmetric function analogue

Let $P_n := B_n \circ B_n - \{\hat{0}, \hat{1}\}$. The action of $S_n \times S_n$ on P_n induces a representation on $\widetilde{H}_{n-2}(P_n)$. Let $ch(\widetilde{H}_{n-2}(P_n))$ be the product Frobenius characteristic of this representation. Then

$$\sum_{i=0}^{n} (-1)^{i} ch(\widetilde{H}_{i-2}(P_{i})) h_{n-i}(x) h_{n-i}(y) = 0.$$
 (2)

- Equation (2) contains symmetric functions with variables $x = (x_1, x_2,...)$ and $y = (y_1, y_2,...)$.
- Specialize equation (2) by substituting (q^{i-1}) for both x_i and y_i . Denote the specialization of f by ps(f).

The connection between two analogues

- $\widetilde{H}_{n-2}(P_n)$ is the top homology of $B_n \circ B_n$.
- $W_n(q)$ is the signless reduced Euler characteristic of $B_n(q) \circ B_n(q)$.

Specializing equation (2) \Longrightarrow

- **1** Theorem 3 (L.): $ps(ch(\widetilde{H}_{n-2}(P_n))) = \frac{W_n(q)}{\prod_{i=1}^n (1-q^i)^2}$.
- **Theorem 1 (L.)**: $\sum_{i=0}^{n} (-1)^{i} {n \brack i}_{q}^{2} W_{i}(q) = 0$ *q*-analogue to C-S-V result.

The connection between two analogues

- $\widetilde{H}_{n-2}(P_n)$ is the top homology of $B_n \circ B_n$.
- $W_n(q)$ is the signless reduced Euler characteristic of $B_n(q) \circ B_n(q)$.

Specializing equation (2) \Longrightarrow

- **1** Theorem 3 (L.): $ps(ch(\widetilde{H}_{n-2}(P_n))) = \frac{W_n(q)}{\prod_{i=1}^n (1-q^i)^2}$.
- **Theorem 1 (L.)**: $\sum_{i=0}^{n} (-1)^{i} {n \brack i}_{q}^{2} W_{i}(q) = 0$ *q*-analogue to C-S-V result.

Remark:

- Symmetric function analogue generalizes the *q*-analogue to C-S-V identity and the symmetric function identity.
- The symmetric function analogue a group theoretic result.

Thank You!