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Carlitz, Scoville, and Vaughan’s result

The Bessel function J0(z) =
∑∞

n=0(−1)n (z2/4)n

n!n! .

Let f (z) =
∑∞

n=0(−1)n zn

n!n! , then J0(z) = f (z2/4).

Write 1
f (z) =

∑∞
n=0 ωn

zn

n!n! .

It follows that
n∑

k=0

(−1)k
(
n

k

)2

ωk = 0, and ωk ’s are the the

coefficients of the reciprocal Bessel function.

Given σ ∈ Sn, a permutation of [n] := {1, 2, ..., n}, i is an ascent
of σ if σ(i) < σ(i + 1). e.g. σ = 213, σ(2) = 1 < σ(3) = 3, 2 is
an ascent.

C-S-V result (1976)

Carlitz, Scoville and Vaughan proved that the number ωk is the
number of pairs of permutations of Sk with no common ascent.
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ωk = 0.

C-S-V result (1976)

Carlitz, Scoville and Vaughan proved that the number ωk is the
number of pairs of permutations of Sk with no common ascent.

For example, ω2 = 3: (12, 21), (21, 12), (21, 21).

Carlitz, Scoville and Vaughan’s result provided a combinatorial
interpretation of the coefficient ωk in the reciprocal Bessel
function.

Their proof uses generating functions.
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Methods and Motivation

ωn = # of pairs of permutations of Sn with no common
ascent.

A common idea of Combinatorics: Counting the same
thing twice in different ways.

Obtain C-S-V result by counting the ωn in 2 ways:
1 # of decreasing maximal chains in Bn ◦ Bn.
2 The möbius number µ of the poset Bn ◦ Bn

Given P a poset,
µ(s, s) = 1, for all s ∈ P,

µ(s, u) = −
∑

s≤t<u

µ(s, t), for all s < u in P.

3 ωn = 1O‘=’ 2O =⇒ C-S-V identity:
∑n

k=0(−1)k
(
n
k

)2
ωk = 0.

Rewrite C-S-V: ωn = −
n−1∑
k=0

(−1)k
(
n

k

)2

ωk .

Change Bn to its q-analogue poset −→ q-analogue of
C-S-V result
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The q-analogue of Bn

Let Bn := all subsets of {1, 2, . . . , n} ordered by inclusion,
also called Boolean Algebra.

Let Bn(q) := all subspaces of Fn
q, an n-dimensional vector

space over Fq, ordered by containment.

Bn(q) is a q-analogue of Bn.

Yifei Li (University of Illinois at Springfield) A q-analogue and a symmetric function analogue 5 / 16



The q-analogue of Bn

Let Bn := all subsets of {1, 2, . . . , n} ordered by inclusion,
also called Boolean Algebra.

Let Bn(q) := all subspaces of Fn
q, an n-dimensional vector

space over Fq, ordered by containment.

Bn(q) is a q-analogue of Bn.

Yifei Li (University of Illinois at Springfield) A q-analogue and a symmetric function analogue 5 / 16



An edge labeling of Bn(q)

An edge labeling of B2(2):

A chain c is increasing if its label is strictly increasing and
decreasing if its label is weakly decreasing (non-increasing).

The left most chain of B2(2) is increasing with a label 12 and
the other two chains are decreasing.

µ(B2(2)) = 2 = # of decreasing maximal chains.
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Segre Product Poset B2(2) ◦ B2(2)

Segre Product Poset
Bn(q) ◦ Bn(q) := {(a, b) ∈ Bn(q)× Bn(q) and dim(a) = dim(b)}

The left most chain of B2(2) ◦ B2(2) is increasing with label
(12, 12).

The labels of decreasing (non-increasing) chains in
Bn(q) ◦ Bn(q) are pairs of permutations (σ, ω) ∈ Sn × Sn with
no common ascent. e.g. The second chain has label (12, 21).
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Edge-Lexicographical labeling (EL-labeling)

An EL-labeling is an edge labeling that satisfies the following two
conditions:

1 There is a unique increasing maximal chain in every closed
interval,

2 and its label lexicographically precedes all other maximal
chains in the same interval.

An EL-labeling of B2(2) ◦ B2(2):
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Decreasing maximal chains in an EL-labeling

Theorem (Björner, Wachs, and Hall)

Suppose P is a pure poset for which P̂ := P ∪ {0̂, 1̂} admits an
EL-labeling. Then the number of decreasing maximal chains of P̂
is µ(P̂), the möbius number of P̂, without the ‘−’ sign.

[n]q = qn−1 + qn−2 + ...+ 1 is the q-analogue of the natural
number n

[n]q! = [n]q[n − 1]q...[2]q[1]q

The q-analogue of
(n
k

)
is
[n
k

]
q
=

[n]q!
[k]q![n−k]q!

.

For a permutation σ ∈ Sn, the inversion statistic is defined by
inv(σ) := |{(i , j) : 1 ≤ i < j ≤ n and σ(i) > σ(j)}|.
Notation: Let Dn be the set of all pairs of permutations
(σ, τ) ∈ Sn × Sn with no common ascent.
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q-analogue to
∑n

k=0(−1)k
(
n
k

)2
ωk = 0, the C-S-V result

Notation: Let Dn be the set of all pairs of permutations
(σ, τ) ∈ Sn × Sn with no common ascent.

inv(σ) := |{(i , j) : 1 ≤ i < j ≤ n and σ(i) > σ(j)}|

Theorem 1 (L.): a q-analogue to C-S-V result

The Segre product Bn(q) ◦ Bn(q) admits an EL-labeling.
Let Wn(q) be the total number of decreasing maximal chains of
Bn(q) ◦ Bn(q). Then

n∑
i=0

(−1)i
[
n

i

]2
q

Wi (q) = 0

and Wi (q) =
∑

(σ,τ)∈Di
qinv(σ)+inv(τ).
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Theorem 1 (L.): a q-analogue to C-S-V result

The Segre product Bn(q) ◦ Bn(q) admits an EL-labeling.
Let Wn(q) be the total number of decreasing maximal chains of
Bn(q) ◦ Bn(q). Then

n∑
i=0

(−1)i
[
n

i

]2
q

Wi (q) = 0 (1)

and Wi (q) =
∑

(σ,τ)∈Di
qinv(σ)+inv(τ).

Equation (1) implies that Wn(q) are the coefficients of the

reciprocal of q-Bessel function J
(1)
0 (z ; q)

Theorem 1 provides a combinatorial interpretation of those
coefficients Wn(q) and a method to compute Wn(q).
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q-analogue to C-S-V result

We can get C-S-V’s result by letting q = 1.

Our q-analogue offers topological approach by using the top
homology of Bn(q) ◦ Bn(q) \ {0̂, 1̂}.
The number (−1)nWn(q) is the reduced Euler characteristic
of Bn(q) ◦ Bn(q).

Wn(q) are the signless reduced Euler characteristic of
△(Bn(q) ◦ Bn(q)).
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A further generalization

A well-known symmetric function identity: for n ≥ 1,

n∑
i=0

(−1)ieihn−i = 0,

where ei and hn−i are the elementary and complete homogeneous
symmetric functions respectively.

The (Frobenius) characteristic ch maps a representation of Sn

to a symmetric function of degree n

ei is the characteristic of the representation of Si on the top
homology of Bi .

hn−i is the characteristic of the trivial representation of Sn−i .

The product Frobenius characteristic ch maps a repr. of
Sn × Sn to a symmetric function in two sets of variables
x = (x1, x2, . . . ) and y = (y1, y2, . . . ).
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An analogue to
∑n

i=0(−1)ieihn−i = 0

Theorem 2 (L.): a symmetric function analogue

Let Pn := Bn ◦Bn − {0̂, 1̂}. The action of Sn ×Sn on Pn induces a
representation on H̃n−2(Pn). Let ch(H̃n−2(Pn)) be the product
Frobenius characteristic of this representation. Then

n∑
i=0

(−1)ich(H̃i−2(Pi ))hn−i (x)hn−i (y) = 0. (2)

Equation (2) contains symmetric functions with variables
x = (x1, x2, . . . ) and y = (y1, y2, . . . ).

Specialize equation (2) by substituting (qi−1) for both xi and
yi . Denote the specialization of f by ps(f ).
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The connection between two analogues

H̃n−2(Pn) is the top homology of Bn ◦ Bn.

Wn(q) is the signless reduced Euler characteristic of
Bn(q) ◦ Bn(q).

Specializing equation (2) =⇒
1 Theorem 3 (L.): ps(ch(H̃n−2(Pn))) =

Wn(q)∏n
i=1 (1−qi )2

.

2 Theorem 1 (L.):
∑n

i=0(−1)i
[n
i

]2
q
Wi (q) = 0 q-analogue to

C-S-V result.

Remark:

Symmetric function analogue generalizes the q-analogue to
C-S-V identity and the symmetric function identity.

The symmetric function analogue a group theoretic result.

Yifei Li (University of Illinois at Springfield) A q-analogue and a symmetric function analogue 15 / 16



The connection between two analogues

H̃n−2(Pn) is the top homology of Bn ◦ Bn.

Wn(q) is the signless reduced Euler characteristic of
Bn(q) ◦ Bn(q).

Specializing equation (2) =⇒
1 Theorem 3 (L.): ps(ch(H̃n−2(Pn))) =

Wn(q)∏n
i=1 (1−qi )2

.

2 Theorem 1 (L.):
∑n

i=0(−1)i
[n
i

]2
q
Wi (q) = 0 q-analogue to

C-S-V result.

Remark:

Symmetric function analogue generalizes the q-analogue to
C-S-V identity and the symmetric function identity.

The symmetric function analogue a group theoretic result.

Yifei Li (University of Illinois at Springfield) A q-analogue and a symmetric function analogue 15 / 16



Thank You!
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