A q-analogue and a symmetric function analogue of a result of Carlitz, Scoville and Vaughan

Yifei Li

University of Illinois at Springfield
Permutation Patterns 2022
Valparaiso University
June 24, 2022

Carlitz, Scoville, and Vaughan's result

- The Bessel function $J_{0}(z)=\sum_{n=0}^{\infty}(-1)^{n} \frac{\left(z^{2} / 4\right)^{n}}{n!n!}$.
- Let $f(z)=\sum_{n=0}^{\infty}(-1)^{n} \frac{z^{n}}{n!n!}$, then $J_{0}(z)=f\left(z^{2} / 4\right)$.
- Write $\frac{1}{f(z)}=\sum_{n=0}^{\infty} \omega_{n} \frac{z^{n}}{n!n!}$.

It follows that $\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}^{2} \omega_{k}=0$, and ω_{k} 's are the the coefficients of the reciprocal Bessel function.

Carlitz, Scoville, and Vaughan's result

- The Bessel function $J_{0}(z)=\sum_{n=0}^{\infty}(-1)^{n} \frac{\left(z^{2} / 4\right)^{n}}{n!n!}$.
- Let $f(z)=\sum_{n=0}^{\infty}(-1)^{n} \frac{z^{n}}{n!n!}$, then $J_{0}(z)=f\left(z^{2} / 4\right)$.
- Write $\frac{1}{f(z)}=\sum_{n=0}^{\infty} \omega_{n} \frac{z^{n}}{n!n!}$.

It follows that $\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}^{2} \omega_{k}=0$, and ω_{k} 's are the the
coefficients of the reciprocal Bessel function.
Given $\sigma \in \mathcal{S}_{n}$, a permutation of $[n]:=\{1,2, \ldots, n\}, i$ is an ascent of σ if $\sigma(i)<\sigma(i+1)$. e.g. $\sigma=213, \sigma(2)=1<\sigma(3)=3,2$ is an ascent.

C-S-V result (1976)

Carlitz, Scoville and Vaughan proved that the number ω_{k} is the number of pairs of permutations of \mathcal{S}_{k} with no common ascent.

Carlitz, Scoville, and Vaughan's result

- The Bessel function $J_{0}(z)=\sum_{n=0}^{\infty}(-1)^{n} \frac{\left(z^{2} / 4\right)^{n}}{n!n!}$.
- Let $f(z)=\sum_{n=0}^{\infty}(-1)^{n} \frac{z^{n}}{n!n!}$, then $J_{0}(z)=f\left(z^{2} / 2\right)$.
- Write $\frac{1}{f(z)}=\sum_{n=0}^{\infty} \omega_{n} \frac{z^{n}}{n!n!}$.
- It follows that $\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}^{2} \omega_{k}=0$.

C-S-V result (1976)

Carlitz, Scoville and Vaughan proved that the number ω_{k} is the number of pairs of permutations of \mathcal{S}_{k} with no common ascent.

- For example, $\omega_{2}=3:(12,21),(21,12),(21,21)$.

Carlitz, Scoville, and Vaughan's result

- The Bessel function $J_{0}(z)=\sum_{n=0}^{\infty}(-1)^{n} \frac{\left(z^{2} / 4\right)^{n}}{n!n!}$.
- Let $f(z)=\sum_{n=0}^{\infty}(-1)^{n} \frac{z^{n}}{n!n!}$, then $J_{0}(z)=f\left(z^{2} / 2\right)$.
- Write $\frac{1}{f(z)}=\sum_{n=0}^{\infty} \omega_{n} \frac{z^{n}}{n!n!}$.
- It follows that $\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}^{2} \omega_{k}=0$.

C-S-V result (1976)

Carlitz, Scoville and Vaughan proved that the number ω_{k} is the number of pairs of permutations of \mathcal{S}_{k} with no common ascent.

- For example, $\omega_{2}=3$: $(12,21),(21,12),(21,21)$.
- Carlitz, Scoville and Vaughan's result provided a combinatorial interpretation of the coefficient ω_{k} in the reciprocal Bessel function.
- Their proof uses generating functions.

Methods and Motivation

- $\omega_{n}=\#$ of pairs of permutations of \mathcal{S}_{n} with no common ascent.
- A common idea of Combinatorics: Counting the same thing twice in different ways.

Methods and Motivation

- $\omega_{n}=\#$ of pairs of permutations of \mathcal{S}_{n} with no common ascent.
- A common idea of Combinatorics: Counting the same thing twice in different ways.
- Obtain C-S-V result by counting the ω_{n} in 2 ways:
(1) \# of decreasing maximal chains in $B_{n} \circ B_{n}$.
(2) The möbius number μ of the poset $B_{n} \circ B_{n}$

Given P a poset,
$\mu(s, s)=1$, for all $s \in P$,
$\mu(s, u)=-\sum_{s \leq t<u} \mu(s, t)$, for all $s<u$ in P.
(3) $\omega_{n}=$ (1) $=^{\prime}(2) \Longrightarrow$ C-S-V identity: $\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}^{2} \omega_{k}=0$.

Rewrite C-S-V: $\omega_{n}=-\sum_{k=0}^{n-1}(-1)^{k}\binom{n}{k}^{2} \omega_{k}$.

Methods and Motivation

- $\omega_{n}=\#$ of pairs of permutations of \mathcal{S}_{n} with no common ascent.
- A common idea of Combinatorics: Counting the same thing twice in different ways.
- Obtain C-S-V result by counting the ω_{n} in 2 ways:
(1) \# of decreasing maximal chains in $B_{n} \circ B_{n}$.
(2) The möbius number μ of the poset $B_{n} \circ B_{n}$

Given P a poset,
$\mu(s, s)=1$, for all $s \in P$,
$\mu(s, u)=-\sum_{s \leq t<u} \mu(s, t)$, for all $s<u$ in P.
(3) $\omega_{n}=$ (1) $=^{\prime}(2) \Longrightarrow$ C-S-V identity: $\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}^{2} \omega_{k}=0$.

Rewrite C-S-V: $\omega_{n}=-\sum_{k=0}^{n-1}(-1)^{k}\binom{n}{k}^{2} \omega_{k}$.

- Change B_{n} to its q-analogue poset $\longrightarrow q$-analogue of C-S-V result

The q-analogue of B_{n}

- Let $B_{n}:=$ all subsets of $\{1,2, \ldots, n\}$ ordered by inclusion, also called Boolean Algebra.
- Let $B_{n}(q):=$ all subspaces of \mathbb{F}_{q}^{n}, an n-dimensional vector space over \mathbb{F}_{q}, ordered by containment.
- $B_{n}(q)$ is a q-analogue of B_{n}.

The q-analogue of B_{n}

- Let $B_{n}:=$ all subsets of $\{1,2, \ldots, n\}$ ordered by inclusion, also called Boolean Algebra.
- Let $B_{n}(q):=$ all subspaces of \mathbb{F}_{q}^{n}, an n-dimensional vector space over \mathbb{F}_{q}, ordered by containment.
- $B_{n}(q)$ is a q-analogue of B_{n}.

An edge labeling of $B_{n}(q)$

- An edge labeling of $B_{2}(2)$:

- A chain c is increasing if its label is strictly increasing and decreasing if its label is weakly decreasing (non-increasing).
- The left most chain of $B_{2}(2)$ is increasing with a label 12 and the other two chains are decreasing.
- $\mu\left(B_{2}(2)\right)=2=\#$ of decreasing maximal chains.

Segre Product Poset $B_{2}(2) \circ B_{2}(2)$

Segre Product Poset

$$
B_{n}(q) \circ B_{n}(q):=\left\{(a, b) \in B_{n}(q) \times B_{n}(q) \text { and } \operatorname{dim}(a)=\operatorname{dim}(b)\right\}
$$

Segre Product Poset $B_{2}(2) \circ B_{2}(2)$

Segre Product Poset

$$
B_{n}(q) \circ B_{n}(q):=\left\{(a, b) \in B_{n}(q) \times B_{n}(q) \text { and } \operatorname{dim}(a)=\operatorname{dim}(b)\right\}
$$

- The left most chain of $B_{2}(2) \circ B_{2}(2)$ is increasing with label $(12,12)$.
- The labels of decreasing (non-increasing) chains in $B_{n}(q) \circ B_{n}(q)$ are pairs of permutations $(\sigma, \omega) \in \mathcal{S}_{n} \times \mathcal{S}_{n}$ with no common ascent. e.g. The second chain has label $(12,21)$.

Edge-Lexicographical labeling (EL-labeling)

An EL-labeling is an edge labeling that satisfies the following two conditions:
(1) There is a unique increasing maximal chain in every closed interval,
(2) and its label lexicographically precedes all other maximal chains in the same interval.

Edge-Lexicographical labeling (EL-labeling)

An EL-labeling is an edge labeling that satisfies the following two conditions:
(1) There is a unique increasing maximal chain in every closed interval,
(2) and its label lexicographically precedes all other maximal chains in the same interval.

An EL-labeling of $B_{2}(2) \circ B_{2}(2)$:

Decreasing maximal chains in an EL-labeling

Theorem (Björner, Wachs, and Hall)

Suppose P is a pure poset for which $\hat{P}:=P \cup\{\hat{0}, \hat{1}\}$ admits an EL-labeling. Then the number of decreasing maximal chains of \hat{P} is $\mu(\hat{P})$, the möbius number of \hat{P}, without the ' - ' sign.

Decreasing maximal chains in an EL-labeling

Theorem (Björner, Wachs, and Hall)

Suppose P is a pure poset for which $\hat{P}:=P \cup\{\hat{0}, \hat{1}\}$ admits an EL-labeling. Then the number of decreasing maximal chains of \hat{P} is $\mu(\hat{P})$, the möbius number of \hat{P}, without the ' - ' sign.

- $[n]_{q}=q^{n-1}+q^{n-2}+\ldots+1$ is the q-analogue of the natural number n
- $[n]_{q}!=[n]_{q}[n-1]_{q} \ldots[2]_{q}[1]_{q}$
- The q-analogue of $\binom{n}{k}$ is $\left[\begin{array}{l}n \\ k\end{array}\right]_{q}=\frac{[n]_{q}!}{[k] q![n-k]_{q}!}$.
- For a permutation $\sigma \in \mathcal{S}_{n}$, the inversion statistic is defined by $\operatorname{inv}(\sigma):=\mid\{(i, j): 1 \leq i<j \leq n$ and $\sigma(i)>\sigma(j)\} \mid$.

Decreasing maximal chains in an EL-labeling

Theorem (Björner, Wachs, and Hall)

Suppose P is a pure poset for which $\hat{P}:=P \cup\{\hat{0}, \hat{1}\}$ admits an EL-labeling. Then the number of decreasing maximal chains of \hat{P} is $\mu(\hat{P})$, the möbius number of \hat{P}, without the ' - ' sign.

- $[n]_{q}=q^{n-1}+q^{n-2}+\ldots+1$ is the q-analogue of the natural number n
- $[n]_{q}!=[n]_{q}[n-1]_{q} \ldots[2]_{q}[1]_{q}$
- The q-analogue of $\binom{n}{k}$ is $\left[\begin{array}{l}n \\ k\end{array}\right]_{q}=\frac{[n]_{q}!}{[k]_{q}![n-k]_{q}!}$.
- For a permutation $\sigma \in \mathcal{S}_{n}$, the inversion statistic is defined by $\operatorname{inv}(\sigma):=\mid\{(i, j): 1 \leq i<j \leq n$ and $\sigma(i)>\sigma(j)\} \mid$.
- Notation: Let \mathcal{D}_{n} be the set of all pairs of permutations $(\sigma, \tau) \in \mathcal{S}_{n} \times \mathcal{S}_{n}$ with no common ascent.

q-analogue to $\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}^{2} \omega_{k}=0$, the C-S-V result

- Notation: Let \mathcal{D}_{n} be the set of all pairs of permutations $(\sigma, \tau) \in \mathcal{S}_{n} \times \mathcal{S}_{n}$ with no common ascent.
- $\operatorname{inv}(\sigma):=\mid\{(i, j): 1 \leq i<j \leq n$ and $\sigma(i)>\sigma(j)\} \mid$

Theorem 1 (L.): a q-analogue to C-S-V result

The Segre product $B_{n}(q) \circ B_{n}(q)$ admits an EL-labeling. Let $W_{n}(q)$ be the total number of decreasing maximal chains of $B_{n}(q) \circ B_{n}(q)$. Then

$$
\sum_{i=0}^{n}(-1)^{i}\left[\begin{array}{l}
n \\
i
\end{array}\right]_{q}^{2} W_{i}(q)=0
$$

and $W_{i}(q)=\sum_{(\sigma, \tau) \in \mathcal{D}_{i}} q^{i n v(\sigma)+i n v(\tau)}$.

q-analogue to $\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}^{2} \omega_{k}=0$, the C-S-V result

Theorem 1 (L.): a q-analogue to C-S-V result

The Segre product $B_{n}(q) \circ B_{n}(q)$ admits an EL-labeling.
Let $W_{n}(q)$ be the total number of decreasing maximal chains of $B_{n}(q) \circ B_{n}(q)$. Then

$$
\sum_{i=0}^{n}(-1)^{i}\left[\begin{array}{l}
n \tag{1}\\
i
\end{array}\right]_{q}^{2} W_{i}(q)=0
$$

and $W_{i}(q)=\sum_{(\sigma, \tau) \in \mathcal{D}_{i}} q^{i n v(\sigma)+\operatorname{inv}(\tau)}$.

- Equation (1) implies that $W_{n}(q)$ are the coefficients of the reciprocal of q-Bessel function $J_{0}^{(1)}(z ; q)$
- Theorem 1 provides a combinatorial interpretation of those coefficients $W_{n}(q)$ and a method to compute $W_{n}(q)$.

q-analogue to C-S-V result

- We can get C-S-V's result by letting $q=1$.
- Our q-analogue offers topological approach by using the top homology of $B_{n}(q) \circ B_{n}(q) \backslash\{\hat{0}, \hat{1}\}$.
- The number $(-1)^{n} W_{n}(q)$ is the reduced Euler characteristic of $B_{n}(q) \circ B_{n}(q)$.

q-analogue to C-S-V result

- We can get C-S-V's result by letting $q=1$.
- Our q-analogue offers topological approach by using the top homology of $B_{n}(q) \circ B_{n}(q) \backslash\{\hat{0}, \hat{1}\}$.
- The number $(-1)^{n} W_{n}(q)$ is the reduced Euler characteristic of $B_{n}(q) \circ B_{n}(q)$.
$W_{n}(q)$ are the signless reduced Euler characteristic of $\triangle\left(B_{n}(q) \circ B_{n}(q)\right)$.

A further generalization

A well-known symmetric function identity: for $n \geq 1$,

$$
\sum_{i=0}^{n}(-1)^{i} e_{i} h_{n-i}=0
$$

where e_{i} and h_{n-i} are the elementary and complete homogeneous symmetric functions respectively.

A further generalization

A well-known symmetric function identity: for $n \geq 1$,

$$
\sum_{i=0}^{n}(-1)^{i} e_{i} h_{n-i}=0
$$

where e_{i} and h_{n-i} are the elementary and complete homogeneous symmetric functions respectively.

- The (Frobenius) characteristic ch maps a representation of \mathcal{S}_{n} to a symmetric function of degree n
- e_{i} is the characteristic of the representation of \mathcal{S}_{i} on the top homology of B_{i}.
- h_{n-i} is the characteristic of the trivial representation of \mathcal{S}_{n-i}.

A further generalization

A well-known symmetric function identity: for $n \geq 1$,

$$
\sum_{i=0}^{n}(-1)^{i} e_{i} h_{n-i}=0
$$

where e_{i} and h_{n-i} are the elementary and complete homogeneous symmetric functions respectively.

- The (Frobenius) characteristic ch maps a representation of \mathcal{S}_{n} to a symmetric function of degree n
- e_{i} is the characteristic of the representation of \mathcal{S}_{i} on the top homology of B_{i}.
- h_{n-i} is the characteristic of the trivial representation of \mathcal{S}_{n-i}.
- The product Frobenius characteristic ch maps a repr. of $\mathcal{S}_{n} \times \mathcal{S}_{n}$ to a symmetric function in two sets of variables $x=\left(x_{1}, x_{2}, \ldots\right)$ and $y=\left(y_{1}, y_{2}, \ldots\right)$.

An analogue to $\sum_{i=0}^{n}(-1)^{i} e_{i} h_{n-i}=0$

Theorem 2 (L.): a symmetric function analogue

Let $P_{n}:=B_{n} \circ B_{n} \approx\{\hat{\sim}, \hat{1}\}$. The action of $\mathcal{S}_{n} \times \mathcal{S}_{n}$ on P_{n} induces a representation on $\widetilde{H}_{n-2}\left(P_{n}\right)$. Let $\operatorname{ch}\left(\widetilde{H}_{n-2}\left(P_{n}\right)\right)$ be the product Frobenius characteristic of this representation. Then

$$
\begin{equation*}
\sum_{i=0}^{n}(-1)^{i} \operatorname{ch}\left(\widetilde{H}_{i-2}\left(P_{i}\right)\right) h_{n-i}(x) h_{n-i}(y)=0 \tag{2}
\end{equation*}
$$

An analogue to $\sum_{i=0}^{n}(-1)^{i} e_{i} h_{n-i}=0$

Theorem 2 (L.): a symmetric function analogue

Let $P_{n}:=B_{n} \circ B_{n} \bar{\sim}\{\hat{0}, \hat{1}\}$. The action of $\mathcal{S}_{n} \times \mathcal{S}_{n}$ on P_{n} induces a representation on $\widetilde{H}_{n-2}\left(P_{n}\right)$. Let $\operatorname{ch}\left(\widetilde{H}_{n-2}\left(P_{n}\right)\right)$ be the product Frobenius characteristic of this representation. Then

$$
\begin{equation*}
\sum_{i=0}^{n}(-1)^{i} \operatorname{ch}\left(\tilde{H}_{i-2}\left(P_{i}\right)\right) h_{n-i}(x) h_{n-i}(y)=0 \tag{2}
\end{equation*}
$$

- Equation (2) contains symmetric functions with variables

$$
x=\left(x_{1}, x_{2}, \ldots\right) \text { and } y=\left(y_{1}, y_{2}, \ldots\right)
$$

- Specialize equation (2) by substituting $\left(q^{i-1}\right)$ for both x_{i} and y_{i}. Denote the specialization of f by $p s(f)$.

The connection between two analogues

- $\widetilde{H}_{n-2}\left(P_{n}\right)$ is the top homology of $B_{n} \circ B_{n}$.
- $W_{n}(q)$ is the signless reduced Euler characteristic of $B_{n}(q) \circ B_{n}(q)$.

Specializing equation (2) \Longrightarrow
(1) Theorem 3 (L.): $p s\left(\operatorname{ch}\left(\widetilde{H}_{n-2}\left(P_{n}\right)\right)\right)=\frac{W_{n}(q)}{\prod_{i=1}^{n}\left(1-q^{i}\right)^{2}}$.
(2) Theorem 1 (L.): $\sum_{i=0}^{n}(-1)^{i}\left[\begin{array}{l}n \\ i\end{array}\right]_{q}^{2} W_{i}(q)=0 q$-analogue to C-S-V result.

The connection between two analogues

- $\widetilde{H}_{n-2}\left(P_{n}\right)$ is the top homology of $B_{n} \circ B_{n}$.
- $W_{n}(q)$ is the signless reduced Euler characteristic of $B_{n}(q) \circ B_{n}(q)$.

Specializing equation (2) \Longrightarrow
(1) Theorem 3 (L.): $p s\left(\operatorname{ch}\left(\widetilde{H}_{n-2}\left(P_{n}\right)\right)\right)=\frac{W_{n}(q)}{\prod_{i=1}^{n}\left(1-q^{i}\right)^{2}}$.
(2) Theorem 1 (L.): $\sum_{i=0}^{n}(-1)^{i}\left[\begin{array}{l}n \\ i\end{array}\right]_{q}^{2} W_{i}(q)=0 q$-analogue to C-S-V result.

Remark:

- Symmetric function analogue generalizes the q-analogue to C-S-V identity and the symmetric function identity.
- The symmetric function analogue a group theoretic result.

Thank You!

