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Introduction to Parking Functions

Consider n parking spaces on a one-way street arranged in increasing
order.

There are n cars, each with a preferred spot. Let πi , with 1 ≤ πi ≤ n,
be the preference of car i , for 1 ≤ i ≤ n.

Car i parks at spot πi if it is available; otherwise it takes the next
available spot to the right if it exists.

Definition

A parking function is a sequence π = (π1, . . . , πn) with 1 ≤ πi ≤ n so that
all cars can park. Let PFn be the set of parking functions of size n.

Parking functions are combinatorial objects with applications to
combinatorics, probability, and computer science. We would like to explore
them by asking: “What does a typical parking function look like?”
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Introduction to Parking Functions (cont.)

Example

π = 13531 is a parking function since this sequence of preferences results
in the parking

1 1 3 3 5

Note that Sn ⊂ PFn and that parking functions are invariant under
permutations.

Equivalently, π is a parking function if and only if π(i) ≤ i , i ∈ [n],
where (π(1), . . . , π(n)) is π sorted in weakly increasing order.
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History and Previous Results

Introduced by Konheim and Weiss (’66) in their study of the hash
storage structure. They showed that

|PFn| = (n + 1)n−1

Connections to various combinatorial objects:
1 (Stanley, ’97-’98). set partitions and hyperplane arrangements.
2 (Pitman-Stanley, ’02). volume polynomials of polytopes.
3 (Haiman, ’94). symmetric functions.
4 (Cori-Rossin, ’00). abelian sandpiles.

Some variants and generalizations:
1 (Kung-Yan, ’03). u-parking functions (π(i) ≤ ui ).
2 (Postnikov-Shapiro, ’04). G -parking functions, where G is a digraph.
3 (Gorsky-Mazin-Vazirani, ’16). rational parking functions
4 (Ehrenborg-Happ, ’16). parking with variable car sizes.
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History and Previous Results (cont.)

Probabilistic questions have also been considered, but tend to be
harder.

I (Chassaing-Marckert, ’01). Found bijection with rooted labeled trees
on n + 1 vertices. Showed that the queue length in a BFS on a
uniformly random tree converges to Brownian excursion.

I (Flajolet-Poblete-Viola, ’98; Janson, ’01). Considered generalized
parking functions (m cars, n spots, m ≤ n) and showed that the
distribution of the displacement statistic

A(π) =

(
n + 1

2

)
− (π1 + · · ·+ πn)

converges to normal, Poisson, or Airy distributions, depending on the
ratio between m and n.

I (Diaconis-Hicks, ’17). Studied the asymptotic distribution of
coordinates (among other statistics).

I (Kenyon-Yin, ’21). Extended results to generalized and u-parking
functions.
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Equivalence of Ensembles

Let Fn = {f : [n]→ [n]} be the set of mappings from [n] to [n].

Note that PFn ⊆ Fn and |PFn|
|Fn| = (n+1)n−1

nn � 1
n .

It is natural to expect that for some statistics, the distribution of
statistics in the “micro-canonical ensemble”, PFn, should be close to
those in the “canonical ensemble”, Fn.

(Diaconis-Hicks, ’17). The ensembles PFn and Fn have the same
limiting distributions for:

I Number of repeats: R(π) = |{i : πi = πi+1}|
I Number of “lucky” cars, L(π), able to park in their preferred spot
I Number of 1’s: N1(π) = |{i : πi = 1}|

(Diaconis-Hicks, ’17). The ensembles have exactly the same
distributions for: descents, ascents, inversions (and more)
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Equivalence of Ensembles (cont.)

Let Ni (π) and Ni (f ) be the number of i ’s in π ∈ PFn and f ∈ Fn,
respectively.

I For random parking functions, P(Nn(π) = 1) ∼ 1
e and

P(Nn(π) = 0) ∼ 1− 1
e .

I For random mappings, Ni (f ) is approximately Poisson(1) distributed
for all i . In particular, P(Nn(f ) = 0) ∼ 1

e .

This provides an example of a distinct difference between PFn and
Fn.

Diaconis and Hicks asked for other statistics on random parking
functions for which the “equivalence of ensembles” heuristic holds.

One suggestion they gave was to look at the cycle structure of
random parking functions.
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Parking Function Multi-Shuffle

Parking completions provide the link between enumeration and probability.
First we define the parking function multi-shuffle.

Fix π`+1, . . . , πn. Define

Aπ`+1,...,πn := {u = (u1, . . . , u`) : π = (u1, . . . , u`, π`+1, . . . , πn) ∈ PFn}.

By a switch of coordinates, π ∈ PFn if and only if its rearrangement is
in PFn, so we may assume that u = (u1, . . . , u`) is in increasing order.

If Aπ`+1,...,πn is nonempty, then there exists a unique maximal element
(in component-wise partial order) u ∈ [n]` with ui ≥ i for all
1 ≤ i ≤ `, and so Aπ`+1,...,πn = [u].

Thus given the last n − ` parking preferences, it suffices to find the
maximal possible first ` preferences.
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Parking Function Multi-Shuffle (cont.)

Definition

Let 1 ≤ ` ≤ n and let u = (u1, . . . , u`) ∈ [n]` be in increasing order. We
say that (π`+1, . . . , πn) is a parking function multi-shuffle of
(α1, . . . , α`+1), where α1 ∈ PFu1−1, α2 ∈ PFu2−u1−1,...,
α` ∈ PFu`−u`−1−1, α`+1 ∈ PFn−u` if π`+1, . . . , πn is any permutation of
the union of the `+ 1 words α1, α2 + (u1, . . . , u1),..., α`+1 + (u`, . . . , u`).
We denote this as
(π`+1, . . . , πn) ∈ MS(u1 − 1, u2 − u1 − 1, . . . , u` − u`−1 − 1, n − u`).

Example

For n = 8 and u1 = 4, we have that (2, 5, 1, 6, 8, 2, 7) is a parking function
multi-shuffle of α1 = (2, 1, 2) ∈ PF3 and α2 = (1, 2, 4, 3) ∈ PF4.
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Parking Completions

Theorem (Diaconis-Hicks, ’17; Yin, ’21)

Let 1 ≤ ` ≤ n and let u = (u1, . . . , u`) ∈ [n]` be in increasing order. Then
Aπ`+1,...,πn = [u] if and only if
(π`+1, . . . , πn) ∈ MS(u1 − 1, u2 − u1 − 1, . . . , u` − u`−1 − 1, n − u`).

Consider the original parking problem. Suppose ` of the n spots are
already occupied, with preferences given by v = (v1, . . . , v`), where
we can assume that the entries are in increasing order by permutation
invariance.

We want to find parking preferences for the remaining n − ` cars so
that they can all successfully park.

The set of successful preference sequences are the parking
completions for v = (v1, . . . , v`), denoted by PCn(v).
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Parking Completions (cont.)

Theorem (Adeniran et al, ’20; Yin, ’21)

Let 1 ≤ ` ≤ n and let v = (v1, . . . , v`) ∈ [n]` be in increasing order. The
number of parking completions for v = (v1, . . . , v`) is

|PCn(v)| =
∑

s∈Ln(v)

(
n − `

s

) `+1∏
i=1

(si + 1)si−1,

where

Ln(v) =

{
s = (s1, . . . , s`+1) ∈ N`+1

∣∣∣∣∣s1 + · · ·+ si ≥ vi − i ∀i ∈ [`],
`+1∑
i=1

si = n − `

}

Note that this quantity stays constant if all vi ≤ i and decreases as
each vi increases past i since there are fewer resulting summands.
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Expected Number of k-Cycles

Let Ck(π) be the number of k-cycles of π ∈ PFn.

For example, π = 6 1 2 4 1 9 1 6 8 4 2 10 ∈ PF12 has one 3-cycle (6 9 8)
and one fixed point at 4.

We can decompose Ck(π) into a sum of indicator random variables:

Ck(π) =
∑
α∈Ak

1{α is a k-cycle in π}

where Ak = {(i1, . . . , ik) : 1 ≤ i1 < · · · < ik ≤ n}.

Proposition (P., ’22+)

Let π ∈ PFn be a uniformly random parking function. Then
E (Ck(π)) ∼ 1

k for all k ∈ [n].
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Expected Number of k-Cycles (cont.)

Proof Sketch:

By linearity of expectation,

E(Ck(π)) =
∑

1≤i1<···<ik≤n

P(π1 = i1, . . . , πk = ik)

=
1

|PFn|
∑

1≤i1<···<ik≤n

(k − 1)!|PCn((i1, . . . , ik))|.

Applying the parking completion theorem yields∑
1≤i1<···<ik≤n

|PCn((i1, . . . , ik))|

=
∑

1≤i1<···<ik≤n

∑
s∈Ln((i1,...,ik ))

(
n − k

s

)
k+1∏
i=1

(si + 1)si−1
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Expected Number of k-Cycles (cont.)

A change of variables and some technical computations give:∑
1≤i1<···<ik≤n

|PCn((i1, . . . , ik))|

=

n−k∑
s1=0

n−k−s1∑
s2=0

· · ·
n−k−

∑k−1
i=1 si∑

sk=0

(
n − k

s1, . . . , sk , n − k −
∑k

i=1 si

)

×

(
n − k −

k∑
i=1

si + 1

)n−k−
∑k

i=1 si k∏
i=1

(si + 1)si−1

 nk−1

k!
(1 + o(1))

The expression in the bracket can be handled using Abel’s
multinomial theorem (Pitman, ’02). So finally we get:

1

|PFn|
∑

1≤i1<···<ik≤n

(k − 1)!|PCn((i1, . . . , ik))| =
(n + 1)n−knk−1

(n + 1)n−1k
(1 + o(1))
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Asymptotic Distribution of Cycles

Our main result is:

Theorem (P., ’22+)

Let π ∈ PFn be a uniformly random parking function. The process of
cycle counts converges in distribution to a process of independent Poisson
random variables

(C1,C2, . . .)
D−→ (Y1,Y2, . . .)

as n→∞, where Yk ∼ Poisson(1/k).

We prove something stronger. Recall that the total variation distance
between two random variables X ,Y is

dTV (X ,Y ) = sup
A⊆Ω
|P(X ∈ A)− P(Y ∈ A)|.

Let W = (C1, . . . ,Cd) and Y = (Y1, . . . ,Yd). Suppose d = o(n1/5).

Then dTV (W ,Y ) = O
(

d5

n−d

)
→ 0 as n→∞.
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A Brief Introduction to Stein’s Method

Our proof uses Stein’s method. Main advantage: provides explicit error
bounds for the distributional approximation.

Introduced by Charles Stein in 1972 as a novel approach to proving
CLTs for sums of dependent random variables.

Developed for many target distributions: e.g. Poisson (Chen, ’75),
Gamma (Luk, ’94), Dickman (Bhattacharjee-Goldstein, ’19).

The starting point is Stein’s lemma; e.g. for Poisson approximation:
I Let Af (k) = λf (k + 1)− kf (k) be the characterizing operator of the

Poisson distribution.
I Then Y ∼ Poisson(λ) if and only if E (Af (Y )) = 0 for all bounded

functions f .
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A Brief Introduction to Stein’s Method (cont.)

Let Y ∼ Poisson(λ) and A ⊆ N ∪ {0}. The Stein equation for the
Poisson distribution

λfA(k + 1)− kfA(k) = 1{k∈A} − P(Y ∈ A)

has a unique bounded solution fA.

As a corollary: If W ≥ 0 is an integer-valued random variable with
mean λ, then

dTV (W ,Y ) = sup
A⊆Ω
|E [λfA(W + 1)−WfA(W )]|.

Bounding the distance between the distributions of W and Y is
reduced to bounding E [λfA(W + 1)−WfA(W )]. If W is
approximately Poisson, then this should be close to 0.
Several approaches:

I dependency graphs (Chen, ’75; Arratia-Goldstein-Gordon, ’90)
I exchangeable pairs (Stein, ’86; Chatterjee-Diaconis-Meckes, ’05)
I size-bias couplings (Barbour-Holst-Janson, ’92)
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Stein’s Method and Exchangeable Pairs

We use the following multivariate version:

Theorem (Chatterjee-Diaconis-Meckes, ’05)

Let W = (W1, . . . ,Wd) be a random vector with EWi = λi . Let
Z = (Z1, . . . ,Zd) have independent coordinates with Zi ∼ Poisson(λi ).
Let W ′ = (W ′

1, . . . ,W
′
d) be defined on the same probability space as W

with (W ,W ′) an exchangeable pair. Then

dTV (W ,Z ) ≤
d∑

k=1

αk [E |λk − ckP(Ak)|+ E |Wk − ckP(Bk)|],

with αk = min{1, 1.4λ−1/2
k }, any choice of the {ck}, and

Ak = {W ′
k = Wk + 1,Wj = W ′

j for k + 1 ≤ j ≤ d},
Bk = {W ′

k = Wk − 1,Wj = W ′
j for k + 1 ≤ j ≤ d}.
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Proof Sketch

The pair (W ,W ′) of random variables is an exchangeable pair if
(W ,W ′) =d (W ′,W ).

To construct an exchangeable pair, one typically applies a “small
perturbation” to the original variable W . Let π′ be the parking
function obtained by applying a random transposition to our initial
parking function π. Set C ′k = Ck(π′). Then (Ck ,C

′
k) is an

exchangeable pair.

For fixed k, we upper bound the summands. This involves finding
expressions for P(Ak) and P(Bk).

We do this geometrically by considering the digraph representation of
π. There are n labeled vertices with a directed edge from i to πi so
that each vertex has outdegree one.
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Digraph Representation (cont.)

For example, π = 6 1 2 4 1 9 1 6 8 4 2 10 ∈ PF12 has the following
digraph representation:

9

6

8

1

5
7

2

3

11

12

10

4

Digraphs of parking functions consist of connected components,
where each connected component is comprised of rooted trees
arranged in a cycle.

The idea is to determine the transpositions which increase or decrease
the number of k-cycles by one, but neither create nor destroy any
j-cycles for k + 1 ≤ j ≤ d . This involves a lot of case analysis.
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Final Remarks

In a work in progress, we are carrying out the Diaconis-Hicks
probabilistic program for rational parking functions. Diaconis and
Hicks state “These are at the forefront of current research with
applications to things like the cohomology of affine Springer fibers”.

One can also conduct a probabilistic study on u-parking functions and
G -parking functions.

Harris et al considered k-Naples parking functions, where the cars can
move backwards to check vacant spots before moving forward. There
are no probabilistic developments in this direction.

Adeniran and Pudwell introduced the notion of pattern-avoiding
parking functions. A parallel probabilistic study on these objects is
fully warranted.

Thank you! Questions?

J. E. Paguyo Cycle Structure of Random Parking Functions 21 / 21


