
Shuffle Sorting Permutations

Lara Pudwell1 Rebecca Smith2

1Valparaiso University

2SUNY Brockport

Day of Lara’s Birth, 2022



The Plan:

Introduction

The PRE Algorithm

The MIN Algorithm

The PRE-REV Algorithm

The MIN-REV Algorithm



The Plan:

Introduction

The PRE Algorithm

The MIN Algorithm

The PRE-REV Algorithm

The MIN-REV Algorithm



The Plan:

Introduction

The PRE Algorithm

The MIN Algorithm

The PRE-REV Algorithm

The MIN-REV Algorithm



The Plan:

Introduction

The PRE Algorithm

The MIN Algorithm

The PRE-REV Algorithm

The MIN-REV Algorithm



The Plan:

Introduction

The PRE Algorithm

The MIN Algorithm

The PRE-REV Algorithm

The MIN-REV Algorithm



Introduction



Definition
An ascent of permutation π is an index i where πi < πi+1, while a
descent is an index i where πi > πi+1.

We denote the number of ascents of π by asc(π) and the number
of descents by des(π).

Example

Given the permutation π = 35841726, notice asc(π) = 4 and
des(π) = 3.



Definition
An ascent of permutation π is an index i where πi < πi+1, while a
descent is an index i where πi > πi+1.

We denote the number of ascents of π by asc(π) and the number
of descents by des(π).

Example

Given the permutation π = 35841726, notice asc(π) = 4 and
des(π) = 3.



Definition
An ascent of permutation π is an index i where πi < πi+1, while a
descent is an index i where πi > πi+1.

We denote the number of ascents of π by asc(π) and the number
of descents by des(π).

Example

Given the permutation π = 35841726, notice asc(π) = 4 and
des(π) = 3.



Definition
A sorting function is a function f : Sn → Sn such that for all
π ∈ Sn, there exists i ∈ N such that f i (π) = 123 · · · n.

We develop four sorting functions motivated by shuffling cards.

In particular, a common way to shuffle is to cut a deck into two
non-empty parts and then to riffle the two parts together, so that
each part remains in order, but the two parts are interleaved.



Definition
A sorting function is a function f : Sn → Sn such that for all
π ∈ Sn, there exists i ∈ N such that f i (π) = 123 · · · n.

We develop four sorting functions motivated by shuffling cards.

In particular, a common way to shuffle is to cut a deck into two
non-empty parts and then to riffle the two parts together, so that
each part remains in order, but the two parts are interleaved.



To create shuffling algorithms that are both well-defined and
sorting functions, we

I Determine where the cut is made and

I Create rules on how to riffle the parts.

In all four algorithms, the cut will be made immediately following
the longest increasing prefix of the permutation.

Notation
Given a permutation π with first descent at πi−1 > πi , let
π′ = π1 · · ·πi−1 and π′′ = πi · · ·πn.

Example

For the permutation π = 35841726, we have π′ = 358 and
π′′ = 41726.



To create shuffling algorithms that are both well-defined and
sorting functions, we

I Determine where the cut is made and

I Create rules on how to riffle the parts.

In all four algorithms, the cut will be made immediately following
the longest increasing prefix of the permutation.

Notation
Given a permutation π with first descent at πi−1 > πi , let
π′ = π1 · · ·πi−1 and π′′ = πi · · ·πn.

Example

For the permutation π = 35841726, we have π′ = 358 and
π′′ = 41726.



To create shuffling algorithms that are both well-defined and
sorting functions, we

I Determine where the cut is made and

I Create rules on how to riffle the parts.

In all four algorithms, the cut will be made immediately following
the longest increasing prefix of the permutation.

Notation
Given a permutation π with first descent at πi−1 > πi , let
π′ = π1 · · ·πi−1 and π′′ = πi · · ·πn.

Example

For the permutation π = 35841726, we have π′ = 358 and
π′′ = 41726.



To create shuffling algorithms that are both well-defined and
sorting functions, we

I Determine where the cut is made and

I Create rules on how to riffle the parts.

In all four algorithms, the cut will be made immediately following
the longest increasing prefix of the permutation.

Notation
Given a permutation π with first descent at πi−1 > πi , let
π′ = π1 · · ·πi−1 and π′′ = πi · · ·πn.

Example

For the permutation π = 35841726, we have π′ = 358 and
π′′ = 41726.



Definition
A stack is a last-in, first-out data structure with push and pop
operations.
A queue is a first-in, first-out data structure.

When we cut a deck and riffle it together, we may view this as a
system of two queues.

When we cut a deck, then reverse the second half before riffling,
this acts a system of a queue and a stack.



Definition
A stack is a last-in, first-out data structure with push and pop
operations.
A queue is a first-in, first-out data structure.

When we cut a deck and riffle it together, we may view this as a
system of two queues.

When we cut a deck, then reverse the second half before riffling,
this acts a system of a queue and a stack.



Definition
A stack is a last-in, first-out data structure with push and pop
operations.
A queue is a first-in, first-out data structure.

When we cut a deck and riffle it together, we may view this as a
system of two queues.

When we cut a deck, then reverse the second half before riffling,
this acts a system of a queue and a stack.



The PRE Algorithm



Prefix-preserving Shuffle: PRE

Given a permutation π = π′π′′, the algorithm PRE acts according
to the following rules:

1. If the next available entry b of π′′ is smaller than the next
available entry a of π′ but larger than the current last entry of
output (or b < a and output is currently empty), then pop b
to the output.

2. Else, if π′ and π′′ both still have entries, pop a to the output.

3. Once one of π′ and π′′ is empty, pop the remaining entries of
the other sequence to the output.



Proposition

Any permutation π is sorted after exactly des(π) iterations of
algorithm PRE.

Idea of Proof:

I The descent between πi−1 and πi is removed.

I Any further descents must be contained entirely in π′′, but
these entries cannot be output until the end.

I No new descents will be introduced.



Example

Apply PRE to π = 35841726.

We shuffle π′ = 358 and π′′ = 41726 to get:

← 358

← 41726

34581726



Example

Apply PRE to π = 35841726.

We shuffle π′ = 358 and π′′ = 41726 to get:

←

3

58

← 41726

3

4581726



Example

Apply PRE to π = 35841726.

We shuffle π′ = 358 and π′′ = 41726 to get:

←

3

58

←

4

1726

34

581726



Example

Apply PRE to π = 35841726.

We shuffle π′ = 358 and π′′ = 41726 to get:

←

35

8

←

4

1726

345

81726



Example

Apply PRE to π = 35841726.

We shuffle π′ = 358 and π′′ = 41726 to get:

←

358

←

4

1726

3458

1726



Example

Apply PRE to π = 35841726.

We shuffle π′ = 358 and π′′ = 41726 to get:

←

358

←

41

726

34581

726



Example

Apply PRE to π = 35841726.

We shuffle π′ = 358 and π′′ = 41726 to get:

←

358

←

417

26

345817

26



Example

Apply PRE to π = 35841726.

We shuffle π′ = 358 and π′′ = 41726 to get:

←

358

←

4172

6

3458172

6



Example

Apply PRE to π = 35841726.

We shuffle π′ = 358 and π′′ = 41726 to get:

←

358

←

41726

34581726



The MIN Algorithm



Minimum-first Shuffle: MIN

Given a permutation π = π′π′′, the algorithm MIN acts according
to the following rules:

1. If the next available entry a of π′ is smaller than the next
available entry b of π′′, then pop a to the output.

2. Else, if π′ and π′′ both still have entries, pop b to the output.

3. Once one of π′ and π′′ is empty, pop the remaining entries of
the other sequence to the output.



Proposition

Any permutation π is sorted after exactly des(π) iterations of
algorithm MIN.

Idea of Proof:

I The descent between πi−1 and πi is removed.

I Any further descents must be contained entirely in π′′. And
any second element of a descent in π′′ will be output
immediately following the entry before it in π′′.

I No new descents will be introduced.



Example

Apply MIN to π = 35841726.

We shuffle π′ = 358 and π′′ = 41726 to get:

← 358

← 41726

34157268



Example

Apply MIN to π = 35841726.

We shuffle π′ = 358 and π′′ = 41726 to get:

←

3

58

← 41726

3

4157268



Example

Apply MIN to π = 35841726.

We shuffle π′ = 358 and π′′ = 41726 to get:

←

3

58

←

4

1726

34

157268



Example

Apply MIN to π = 35841726.

We shuffle π′ = 358 and π′′ = 41726 to get:

←

3

58

←

41

726

341

57268



Example

Apply MIN to π = 35841726.

We shuffle π′ = 358 and π′′ = 41726 to get:

←

35

8

←

41

726

3415

7268



Example

Apply MIN to π = 35841726.

We shuffle π′ = 358 and π′′ = 41726 to get:

←

35

8

←

417

26

34157

268



Example

Apply MIN to π = 35841726.

We shuffle π′ = 358 and π′′ = 41726 to get:

←

35

8

←

4172

6

341572

68



Example

Apply MIN to π = 35841726.

We shuffle π′ = 358 and π′′ = 41726 to get:

←

35

8

←

41726

3415726

8



Example

Apply MIN to π = 35841726.

We shuffle π′ = 358 and π′′ = 41726 to get:

←

358

←

41726

34157268



Corollary

The number of permutations in Sn that are sortable after exactly k
passes of algorithm PRE or k passes of MIN is given by the
Eulerian numbers (OEIS A008292).



The PRE-REV Algorithm



Prefix-preserving Reverse Shuffle: PRE-REV

Given a permutation π = π′π′′, the algorithm PRE-REV acts
according to the following rules:

1. If the next available entry b of (π′′)rev is smaller than the next
available entry a of π′ but larger than the current last entry of
output (or b < a and output is currently empty), then pop b
to the output.

2. Else, if π′ and (π′′)rev both still have entries, pop a to the
output.

3. Once one of π′ and (π′′)rev is empty, pop the remaining
entries of the other sequence to the output.



Proposition

Algorithm PRE-REV is a sorting function.



Notation
Define prefix-suffix decomposition of π as follows: Let
π(1) = π′ = π1 · · ·πi−1 be the longest increasing prefix of π and let
πrev(1) = (π′′)rev be the reversal of πi · · ·πn.

If πrev(1) is empty, then we are done.

Otherwise, given π(1), . . . , π(`), set π(`+1) to be the longest
increasing prefix of πrev(`) and recursively define πrev(`+1) to be the
reversal of the remaining digits.



Example

The permutation π = 562793841 has

π(1) = π′ = 56 πrev(1) = (π′′)rev = 1483972

π(2) = 148 πrev(2) = 2793

π(3) = 279 πrev(3) = 3

π(4) = 3

Theorem
Consider π ∈ Sn. If there are k + 1 parts in the prefix-suffix
decomposition of π, then algorithm PRE-REV requires k iterations
to sort π.



Example

The permutation π = 562793841 has

π(1) = π′ = 56 πrev(1) = (π′′)rev = 1483972

π(2) = 148 πrev(2) = 2793

π(3) = 279 πrev(3) = 3

π(4) = 3

Theorem
Consider π ∈ Sn. If there are k + 1 parts in the prefix-suffix
decomposition of π, then algorithm PRE-REV requires k iterations
to sort π.



Example

Apply PRE-REV to to π = 35841726.

We shuffle π′ = 358 and π′′ = 41726 to get:

←358

41726 →

35682714



Example

Apply PRE-REV to to π = 35841726.

We shuffle π′ = 358 and π′′ = 41726 to get:

←

3

58

41726 →

3

5682714



Example

Apply PRE-REV to to π = 35841726.

We shuffle π′ = 358 and π′′ = 41726 to get:

←

35

8

41726 →

35

682714



Example

Apply PRE-REV to to π = 35841726.

We shuffle π′ = 358 and π′′ = 41726 to get:

←

35

8

4172

6

→

356

82714



Example

Apply PRE-REV to to π = 35841726.

We shuffle π′ = 358 and π′′ = 41726 to get:

←

358

4172

6

→

3568

2714



Example

Apply PRE-REV to to π = 35841726.

We shuffle π′ = 358 and π′′ = 41726 to get:

←

358

417

26

→

35682

714



Example

Apply PRE-REV to to π = 35841726.

We shuffle π′ = 358 and π′′ = 41726 to get:

←

358

41

726

→

356827

14



Example

Apply PRE-REV to to π = 35841726.

We shuffle π′ = 358 and π′′ = 41726 to get:

←

358

4

1726

→

3568271

4



Example

Apply PRE-REV to to π = 35841726.

We shuffle π′ = 358 and π′′ = 41726 to get:

←

358

41726

→

35682714



n\k 0 1 2 3 4 5 6 7

1 1

2 1 1

3 1 3 2

4 1 7 13 3

5 1 15 58 40 6

6 1 31 221 325 132 10

7 1 63 774 2086 1711 385 20

8 1 127 2577 11655 16841 7931 1153 35

Table: The number of permutations of length n sortable by exactly k
applications of PRE-REV for small n and k .



The MIN-REV Algorithm



Minimum-first Reverse Shuffle: MIN-REV

Given a permutation π = π′π′′, the algorithm MIN acts according
to the following rules:

1. If the next available entry a of π′ is smaller than the next
available entry b of (π′′)rev , then pop a to the output.

2. Else, if π′ and (π′′)rev both still have entries, pop b to the
output.

3. Once one of π′ and (π′′)rev is empty, pop the remaining
entries of the other sequence to the output.



Proposition

Algorithm MIN-REV is a sorting function.

Theorem
Consider a non-identity permutation π ∈ Sn. Suppose there are d
descents before n and a ascents after n. Then π requires exactly
max(2d , 2a + 1) applications of MIN-REV to be sorted.



Proposition

Algorithm MIN-REV is a sorting function.

Theorem
Consider a non-identity permutation π ∈ Sn. Suppose there are d
descents before n and a ascents after n. Then π requires exactly
max(2d , 2a + 1) applications of MIN-REV to be sorted.



Example

Apply MIN-REV to to π = 35841726.

We shuffle π′ = 358 and π′′ = 41726 to get:

← 358

41726 →

35627148



Example

Apply MIN-REV to to π = 35841726.

We shuffle π′ = 358 and π′′ = 41726 to get:

←

3

58

41726 →

3

5627148



Example

Apply MIN-REV to to π = 35841726.

We shuffle π′ = 358 and π′′ = 41726 to get:

←

35

8

41726 →

35

627148



Example

Apply MIN-REV to to π = 35841726.

We shuffle π′ = 358 and π′′ = 41726 to get:

←

35

8

4172

6

→

356

27148



Example

Apply MIN-REV to to π = 35841726.

We shuffle π′ = 358 and π′′ = 41726 to get:

←

35

8

417

26

→

3562

7148



Example

Apply MIN-REV to to π = 35841726.

We shuffle π′ = 358 and π′′ = 41726 to get:

←

35

8

41

726

→

35627

148



Example

Apply MIN-REV to to π = 35841726.

We shuffle π′ = 358 and π′′ = 41726 to get:

←

35

8

4

1726

→

356271

48



Example

Apply MIN-REV to to π = 35841726.

We shuffle π′ = 358 and π′′ = 41726 to get:

←

35

8

41726

→

3562714

8



Example

Apply MIN-REV to to π = 35841726.

We shuffle π′ = 358 and π′′ = 41726 to get:

←

358

41726

→

35627148



n\k 0 1 2 3 4 5 6 7 8 9 10 11

1 1

2 1 1

3 1 3 1 1

4 1 7 7 7 1 1

5 1 15 33 39 15 15 1 1

6 1 31 131 211 141 141 31 31 1 1

7 1 63 473 1123 1128 1148 488 488 63 63 1 1

Table: The number of permutations of length n sortable by exactly k applications
of MIN-REV for small n and k.



Proposition

Both the PRE-REV-sortable permutations and the
MIN-REV-sortable permutations are precisely the unimodal
permutations, i.e. the {213, 312}-avoiding permutations.



Example

The permutation π = 24816753 requires five iterations of the
MIN-REV algorithm to be sorted:

MIN − REV (π) = 23457618

MIN − REV 2(π) = 23457816

MIN − REV 3(π) = 23456178

MIN − REV 4(π) = 23456871

MIN − REV 5(π) = 12345678

However, as π = 24816753 only requires two applications of the
PRE-REV algorithm.

PRE − REV (π) = 23457861

PRE − REV 2(π) = 12345678



Proposition

Every permutation sortable after two iterations of algorithm
MIN-REV is also sortable after two iterations of algorithm
PRE-REV.

Proof.
The permutations sortable only after exactly two iterations of
algorithm MIN-REV have one descent before n and no ascents
after n. That is, they consist of two increasing sequences followed
by a decreasing sequence. The prefix-suffix decomposition of such
permutations have exactly these three parts.



Proposition

Every permutation sortable after two iterations of algorithm
MIN-REV is also sortable after two iterations of algorithm
PRE-REV.

Proof.
The permutations sortable only after exactly two iterations of
algorithm MIN-REV have one descent before n and no ascents
after n. That is, they consist of two increasing sequences followed
by a decreasing sequence. The prefix-suffix decomposition of such
permutations have exactly these three parts.



Theorem
The permutations of length n that are sortable by after two

iterations of algorithm PRE-REV, but not two iterations of
MIN-REV are counted by S(n, 3).

Proof.
The permutations sortable by PRE-REV, but not MIN-REV are

those of the form π = π1 · · · n
∣∣∣∣πi · · ·πj−1∣∣∣∣πj · · ·πn where

π1 · · ·πi−1 = n is the maximum length increasing prefix, πi · · ·πj−1
is a nonempty increasing subsequence, and πj · · ·πn is a nonempty
decreasing subsequence where πj is a peak of p and each of these
sequences is nonempty.
These three sequences of entries are in bijection with (unlabeled)
sets containing the corresponding entries since n is always in the
first sequence and of the other two, {πj , . . . , πn} contains the
largest remaining entry.



Theorem
The permutations of length n that are sortable by after two

iterations of algorithm PRE-REV, but not two iterations of
MIN-REV are counted by S(n, 3).

Proof.
The permutations sortable by PRE-REV, but not MIN-REV are

those of the form π = π1 · · · n
∣∣∣∣πi · · ·πj−1∣∣∣∣πj · · ·πn where

π1 · · ·πi−1 = n is the maximum length increasing prefix, πi · · ·πj−1
is a nonempty increasing subsequence, and πj · · ·πn is a nonempty
decreasing subsequence where πj is a peak of p and each of these
sequences is nonempty.
These three sequences of entries are in bijection with (unlabeled)
sets containing the corresponding entries since n is always in the
first sequence and of the other two, {πj , . . . , πn} contains the
largest remaining entry.



Thank you!


	Introduction
	The PRE Algorithm
	The MIN Algorithm
	The PRE-REV Algorithm
	The MIN-REV Algorithm

