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Introduction



Definition
An ascent of permutation π is an index i where πi < πi+1, while a
descent is an index i where πi > πi+1.

We denote the number of ascents of π by asc(π) and the number
of descents by des(π).

Example

Given the permutation π = 35841726, notice asc(π) = 4 and
des(π) = 3.
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Definition
A sorting function is a function f : Sn → Sn such that for all
π ∈ Sn, there exists i ∈ N such that f i (π) = 123 · · · n.

We develop four sorting functions motivated by shuffling cards.

In particular, a common way to shuffle is to cut a deck into two
non-empty parts and then to riffle the two parts together, so that
each part remains in order, but the two parts are interleaved.
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To create shuffling algorithms that are both well-defined and
sorting functions, we

I Determine where the cut is made and

I Create rules on how to riffle the parts.

In all four algorithms, the cut will be made immediately following
the longest increasing prefix of the permutation.

Notation
Given a permutation π with first descent at πi−1 > πi , let
π′ = π1 · · ·πi−1 and π′′ = πi · · ·πn.

Example

For the permutation π = 35841726, we have π′ = 358 and
π′′ = 41726.
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Definition
A stack is a last-in, first-out data structure with push and pop
operations.
A queue is a first-in, first-out data structure.

When we cut a deck and riffle it together, we may view this as a
system of two queues.

When we cut a deck, then reverse the second half before riffling,
this acts a system of a queue and a stack.
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The PRE Algorithm



Prefix-preserving Shuffle: PRE

Given a permutation π = π′π′′, the algorithm PRE acts according
to the following rules:

1. If the next available entry b of π′′ is smaller than the next
available entry a of π′ but larger than the current last entry of
output (or b < a and output is currently empty), then pop b
to the output.

2. Else, if π′ and π′′ both still have entries, pop a to the output.

3. Once one of π′ and π′′ is empty, pop the remaining entries of
the other sequence to the output.



Proposition

Any permutation π is sorted after exactly des(π) iterations of
algorithm PRE.

Idea of Proof:

I The descent between πi−1 and πi is removed.

I Any further descents must be contained entirely in π′′, but
these entries cannot be output until the end.

I No new descents will be introduced.



Example

Apply PRE to π = 35841726.

We shuffle π′ = 358 and π′′ = 41726 to get:

← 358

← 41726

34581726
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Example

Apply PRE to π = 35841726.

We shuffle π′ = 358 and π′′ = 41726 to get:
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8
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4

1726

345
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Example

Apply PRE to π = 35841726.

We shuffle π′ = 358 and π′′ = 41726 to get:

←

358

←

4

1726

3458

1726



Example

Apply PRE to π = 35841726.

We shuffle π′ = 358 and π′′ = 41726 to get:

←

358

←

41

726

34581

726



Example

Apply PRE to π = 35841726.

We shuffle π′ = 358 and π′′ = 41726 to get:

←

358

←

417

26

345817

26



Example

Apply PRE to π = 35841726.

We shuffle π′ = 358 and π′′ = 41726 to get:

←

358

←

4172

6

3458172

6



Example

Apply PRE to π = 35841726.

We shuffle π′ = 358 and π′′ = 41726 to get:

←

358

←

41726

34581726



The MIN Algorithm



Minimum-first Shuffle: MIN

Given a permutation π = π′π′′, the algorithm MIN acts according
to the following rules:

1. If the next available entry a of π′ is smaller than the next
available entry b of π′′, then pop a to the output.

2. Else, if π′ and π′′ both still have entries, pop b to the output.

3. Once one of π′ and π′′ is empty, pop the remaining entries of
the other sequence to the output.



Proposition

Any permutation π is sorted after exactly des(π) iterations of
algorithm MIN.

Idea of Proof:

I The descent between πi−1 and πi is removed.

I Any further descents must be contained entirely in π′′. And
any second element of a descent in π′′ will be output
immediately following the entry before it in π′′.

I No new descents will be introduced.



Example

Apply MIN to π = 35841726.

We shuffle π′ = 358 and π′′ = 41726 to get:

← 358

← 41726

34157268



Example

Apply MIN to π = 35841726.
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3
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Example

Apply MIN to π = 35841726.

We shuffle π′ = 358 and π′′ = 41726 to get:

←

3

58

←

4

1726

34

157268



Example

Apply MIN to π = 35841726.

We shuffle π′ = 358 and π′′ = 41726 to get:

←

3

58

←

41

726

341

57268



Example

Apply MIN to π = 35841726.

We shuffle π′ = 358 and π′′ = 41726 to get:

←

35

8

←

41

726

3415

7268



Example

Apply MIN to π = 35841726.

We shuffle π′ = 358 and π′′ = 41726 to get:

←

35

8

←

417

26

34157

268



Example

Apply MIN to π = 35841726.

We shuffle π′ = 358 and π′′ = 41726 to get:

←

35

8

←

4172

6

341572

68



Example

Apply MIN to π = 35841726.

We shuffle π′ = 358 and π′′ = 41726 to get:

←

35

8

←

41726

3415726

8



Example

Apply MIN to π = 35841726.

We shuffle π′ = 358 and π′′ = 41726 to get:

←

358

←

41726

34157268



Corollary

The number of permutations in Sn that are sortable after exactly k
passes of algorithm PRE or k passes of MIN is given by the
Eulerian numbers (OEIS A008292).



The PRE-REV Algorithm



Prefix-preserving Reverse Shuffle: PRE-REV

Given a permutation π = π′π′′, the algorithm PRE-REV acts
according to the following rules:

1. If the next available entry b of (π′′)rev is smaller than the next
available entry a of π′ but larger than the current last entry of
output (or b < a and output is currently empty), then pop b
to the output.

2. Else, if π′ and (π′′)rev both still have entries, pop a to the
output.

3. Once one of π′ and (π′′)rev is empty, pop the remaining
entries of the other sequence to the output.



Proposition

Algorithm PRE-REV is a sorting function.



Notation
Define prefix-suffix decomposition of π as follows: Let
π(1) = π′ = π1 · · ·πi−1 be the longest increasing prefix of π and let
πrev(1) = (π′′)rev be the reversal of πi · · ·πn.

If πrev(1) is empty, then we are done.

Otherwise, given π(1), . . . , π(`), set π(`+1) to be the longest
increasing prefix of πrev(`) and recursively define πrev(`+1) to be the
reversal of the remaining digits.



Example

The permutation π = 562793841 has

π(1) = π′ = 56 πrev(1) = (π′′)rev = 1483972

π(2) = 148 πrev(2) = 2793

π(3) = 279 πrev(3) = 3

π(4) = 3

Theorem
Consider π ∈ Sn. If there are k + 1 parts in the prefix-suffix
decomposition of π, then algorithm PRE-REV requires k iterations
to sort π.
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The permutation π = 562793841 has

π(1) = π′ = 56 πrev(1) = (π′′)rev = 1483972

π(2) = 148 πrev(2) = 2793

π(3) = 279 πrev(3) = 3

π(4) = 3

Theorem
Consider π ∈ Sn. If there are k + 1 parts in the prefix-suffix
decomposition of π, then algorithm PRE-REV requires k iterations
to sort π.



Example

Apply PRE-REV to to π = 35841726.

We shuffle π′ = 358 and π′′ = 41726 to get:

←358

41726 →

35682714



Example

Apply PRE-REV to to π = 35841726.

We shuffle π′ = 358 and π′′ = 41726 to get:

←

3

58

41726 →

3

5682714



Example

Apply PRE-REV to to π = 35841726.

We shuffle π′ = 358 and π′′ = 41726 to get:

←

35

8

41726 →

35

682714



Example

Apply PRE-REV to to π = 35841726.

We shuffle π′ = 358 and π′′ = 41726 to get:

←

35

8

4172

6

→

356

82714



Example

Apply PRE-REV to to π = 35841726.

We shuffle π′ = 358 and π′′ = 41726 to get:

←

358

4172

6

→

3568

2714



Example

Apply PRE-REV to to π = 35841726.

We shuffle π′ = 358 and π′′ = 41726 to get:

←

358

417

26

→

35682

714



Example

Apply PRE-REV to to π = 35841726.

We shuffle π′ = 358 and π′′ = 41726 to get:

←

358

41

726

→

356827

14



Example

Apply PRE-REV to to π = 35841726.

We shuffle π′ = 358 and π′′ = 41726 to get:

←

358

4

1726

→

3568271

4



Example

Apply PRE-REV to to π = 35841726.

We shuffle π′ = 358 and π′′ = 41726 to get:

←

358

41726

→

35682714



n\k 0 1 2 3 4 5 6 7

1 1

2 1 1

3 1 3 2

4 1 7 13 3

5 1 15 58 40 6

6 1 31 221 325 132 10

7 1 63 774 2086 1711 385 20

8 1 127 2577 11655 16841 7931 1153 35

Table: The number of permutations of length n sortable by exactly k
applications of PRE-REV for small n and k .



The MIN-REV Algorithm



Minimum-first Reverse Shuffle: MIN-REV

Given a permutation π = π′π′′, the algorithm MIN acts according
to the following rules:

1. If the next available entry a of π′ is smaller than the next
available entry b of (π′′)rev , then pop a to the output.

2. Else, if π′ and (π′′)rev both still have entries, pop b to the
output.

3. Once one of π′ and (π′′)rev is empty, pop the remaining
entries of the other sequence to the output.



Proposition

Algorithm MIN-REV is a sorting function.

Theorem
Consider a non-identity permutation π ∈ Sn. Suppose there are d
descents before n and a ascents after n. Then π requires exactly
max(2d , 2a + 1) applications of MIN-REV to be sorted.



Proposition

Algorithm MIN-REV is a sorting function.

Theorem
Consider a non-identity permutation π ∈ Sn. Suppose there are d
descents before n and a ascents after n. Then π requires exactly
max(2d , 2a + 1) applications of MIN-REV to be sorted.



Example

Apply MIN-REV to to π = 35841726.

We shuffle π′ = 358 and π′′ = 41726 to get:

← 358

41726 →

35627148



Example

Apply MIN-REV to to π = 35841726.

We shuffle π′ = 358 and π′′ = 41726 to get:

←

3

58

41726 →

3

5627148



Example

Apply MIN-REV to to π = 35841726.

We shuffle π′ = 358 and π′′ = 41726 to get:

←

35

8

41726 →

35

627148



Example

Apply MIN-REV to to π = 35841726.

We shuffle π′ = 358 and π′′ = 41726 to get:

←

35

8

4172

6

→

356

27148



Example

Apply MIN-REV to to π = 35841726.

We shuffle π′ = 358 and π′′ = 41726 to get:

←

35

8

417

26

→

3562

7148



Example

Apply MIN-REV to to π = 35841726.

We shuffle π′ = 358 and π′′ = 41726 to get:

←

35

8

41

726

→

35627

148



Example

Apply MIN-REV to to π = 35841726.

We shuffle π′ = 358 and π′′ = 41726 to get:

←

35

8

4

1726

→

356271

48



Example

Apply MIN-REV to to π = 35841726.

We shuffle π′ = 358 and π′′ = 41726 to get:

←

35

8

41726

→

3562714

8



Example

Apply MIN-REV to to π = 35841726.

We shuffle π′ = 358 and π′′ = 41726 to get:

←

358

41726

→

35627148



n\k 0 1 2 3 4 5 6 7 8 9 10 11

1 1

2 1 1

3 1 3 1 1

4 1 7 7 7 1 1

5 1 15 33 39 15 15 1 1

6 1 31 131 211 141 141 31 31 1 1

7 1 63 473 1123 1128 1148 488 488 63 63 1 1

Table: The number of permutations of length n sortable by exactly k applications
of MIN-REV for small n and k.



Proposition

Both the PRE-REV-sortable permutations and the
MIN-REV-sortable permutations are precisely the unimodal
permutations, i.e. the {213, 312}-avoiding permutations.



Example

The permutation π = 24816753 requires five iterations of the
MIN-REV algorithm to be sorted:

MIN − REV (π) = 23457618

MIN − REV 2(π) = 23457816

MIN − REV 3(π) = 23456178

MIN − REV 4(π) = 23456871

MIN − REV 5(π) = 12345678

However, as π = 24816753 only requires two applications of the
PRE-REV algorithm.

PRE − REV (π) = 23457861

PRE − REV 2(π) = 12345678



Proposition

Every permutation sortable after two iterations of algorithm
MIN-REV is also sortable after two iterations of algorithm
PRE-REV.

Proof.
The permutations sortable only after exactly two iterations of
algorithm MIN-REV have one descent before n and no ascents
after n. That is, they consist of two increasing sequences followed
by a decreasing sequence. The prefix-suffix decomposition of such
permutations have exactly these three parts.



Proposition

Every permutation sortable after two iterations of algorithm
MIN-REV is also sortable after two iterations of algorithm
PRE-REV.

Proof.
The permutations sortable only after exactly two iterations of
algorithm MIN-REV have one descent before n and no ascents
after n. That is, they consist of two increasing sequences followed
by a decreasing sequence. The prefix-suffix decomposition of such
permutations have exactly these three parts.



Theorem
The permutations of length n that are sortable by after two

iterations of algorithm PRE-REV, but not two iterations of
MIN-REV are counted by S(n, 3).

Proof.
The permutations sortable by PRE-REV, but not MIN-REV are

those of the form π = π1 · · · n
∣∣∣∣πi · · ·πj−1∣∣∣∣πj · · ·πn where

π1 · · ·πi−1 = n is the maximum length increasing prefix, πi · · ·πj−1
is a nonempty increasing subsequence, and πj · · ·πn is a nonempty
decreasing subsequence where πj is a peak of p and each of these
sequences is nonempty.
These three sequences of entries are in bijection with (unlabeled)
sets containing the corresponding entries since n is always in the
first sequence and of the other two, {πj , . . . , πn} contains the
largest remaining entry.



Theorem
The permutations of length n that are sortable by after two

iterations of algorithm PRE-REV, but not two iterations of
MIN-REV are counted by S(n, 3).

Proof.
The permutations sortable by PRE-REV, but not MIN-REV are

those of the form π = π1 · · · n
∣∣∣∣πi · · ·πj−1∣∣∣∣πj · · ·πn where

π1 · · ·πi−1 = n is the maximum length increasing prefix, πi · · ·πj−1
is a nonempty increasing subsequence, and πj · · ·πn is a nonempty
decreasing subsequence where πj is a peak of p and each of these
sequences is nonempty.
These three sequences of entries are in bijection with (unlabeled)
sets containing the corresponding entries since n is always in the
first sequence and of the other two, {πj , . . . , πn} contains the
largest remaining entry.



Thank you!
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