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Math, then bio?

Bio, then math
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Fitness Landscapes (Crona and Wiesner)

The typical allele (unmutated type) will be called the wild type.
Populations have members with mutations, and those mutants can have
better or worse fitness for their environment.

Over generations, we expect the population fitness to increase from the
pressures of natural selection.

We can imagine these mutations occurring on some axes (2 in the
following figure) and the fitness changes by height. This is a landscape.
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Fitness Landscapes
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Which landscape is most likely?
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Why do we care?

We can predict evolution under specific pressures.

We can combat antibiotic resistance, particularly
multiply-resistant populations.
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Discrete Landscapes

Here we have 3 genes, with increasing fitness
marked with arrows.
It’s acyclic!
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Which animal is this?
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Reciprocal Sign Epistasis (RSE)

Two mutations, each beneficial, but both is worse
than either individually
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Or two mutations, each deleterious, but together
beneficial.
Both are square faces of a hypercube with no
maximal path of nontrivial length.
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One early theorem in this area by Poelwijk et.al.
states:

Theorem

A fitness landscape cannot have more than one
peak without an occurrence of RSE.
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Extension of Poelwijk

Theorem (CPPR ’21)

In any dimension, a lattice with k peaks contains at
least k − 1 RSEs.

Sketch of proof:
By induction: Take an n-dimensional acyclic
hypercube Qn with k > 2 peaks. Pick two of them,
identify the sub-lattice between them, call it Q∗,
with one peak at the bottom and the other at the
top.Q∗ has at least 1 RSE, and in that RSE some
label has a bit 0 change to 1 in position i .
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Define Q0
n−1 to be the hypercube with 0 in position

i and Q1
n−1 with 1.

Q0
n−1 has j > 0 peaks (therefore at least j − 1

RSE), and Q1
n−1 has k − j > 0 peaks (therefore at

least k − j − 1 RSE.
So total we have at least
(j − 1) + (k − j − 1) + 1 = k − 1 RSEs.
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Visual Example
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Visual Example
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Visual Example
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We computationally study which combinations of
peaks and RSEs are possible. Our results can
therefore be described as theorems on the joint
distribution of two patterns (peaks and RSEs) in
acyclic Boolean lattices, and likewise finding the
maximum number of RSEs can be considered a
form of pattern packing.
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Our primary focus is on which combinations of peak
counts and RSE counts are possible, in other words
the nonzero entries in the joint distribution of the
two patterns peak and RSE.
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Peaks
0 1 2 3 4

RSEs

0 0 91 0 0 0
1 0 84 42 0 0
2 0 0 93 0 0
3 0 0 12 8 0
4 0 0 0 9 0
5 0 0 0 0 0
6 0 0 0 0 1

Table: For dimension 3, number of acyclic orientations with each
(number of RSEs, number of peaks).
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Theorem (CPPR ’21)

Single-peaked n-dimensional lattices exist with rn
RSEs, where

rn = 2n−3(n2 − 5n + 8)− 1. (1)

Notably, the most significant term in this expression
is 2n−3n2. The total number of faces is
2n−3(n2 − n), which has the same most significant
term. This means that, in high enough dimensions,
an arbitrarily large proportion of the faces in a
lattice can be RSEs while still having only one peak.
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Theorem (CPPR ’21)

A single-peaked n-dimensional lattice cannot have
more than

2n−3(n2 − n − 2bn/2c) (2)

RSE faces.
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Conjecture (CPPR ’21)

The maximum number of RSEs in a single-peaked
n-dimensional lattice is 2n−3(n2 − 4n + 4).

n 2 3 4 5 6 7 8

Lower bound (known to be possible) 0 1 7 31 111 351 1023
Conjectured maximum 0 1 8 36 128 400 1152

Upper bound (more is impossible) 0 4 16 64 192 576 1536
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Theorem (CPPR ’21)

For n ≥ 4, an n-dimensional lattice with
2n−1 − (n − 1) peaks can have 2n−2

(
n
2

)
−
(
n
2

)
RSEs

but not 2n−2
(
n
2

)
−
(
n
2

)
− 1 RSEs.
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Theorem

For n ≥ 4, if an n-dimensional lattice has at least
2n−2

(
n
2

)
− (n − 1)− (n − 2) RSEs, then it must

have exactly:

2n−2
(
n
2

)
(every face),

2n−2
(
n
2

)
− (n − 1), or

2n−2
(
n
2

)
− (n − 1)− (n − 2)

RSEs.
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We also came up with a variety of explicit
construction algorithms, mostly involving adding
connecting edges between two smaller lattices, to
give an explicit examples of a wide variety of
RSE/peak combinations.
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RSEs \ Peaks 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0 g X X X X X X X X X X X X X X X
1 g G X X X X X X X X X X X X X X
2 g G G X X X X X X X X X X X X X
3 g G G X X X X X X X X X X X X
4 g G G P X X X X X X X X X X X
5 g G G G X X X X X X X X X X
6 g G G G X X X X X X X X X
7 g G G G P X X X X X X X X
8 g G G G G X X X X X X X
9 g G G G G X X X X X X

10 g G G G G P X X X X X
11 g G G G G P X X X X
12 g G G G G G X X X
13 g G G G G G X X
14 g G G G G G P X
15 g G G G G G P X
16 g G G G G G P X
17 B G G G G G P X
18 B G G G G G G P X
19 B G G G G G G P X
20 B G G G G G G P X
21 B g G G G G G P X
22 B g G G G G G P X
23 B g G G G G G P P X
24 B g G G G G G G P X
25 B B G G G G G G P X
26 B B G G G G G G P X
27 B B G G G G G G P X
28 B B g G G G G G P X
29 B B g G G G G G P P X
30 B B B G G G G G P P X
31 B B B G G G G G P P X
32 B B B G G G G G P P X
33 F B B G G G G G P P X
34 B B g G G G G P P X
35 F B g G G G G P P P X
36 B B B G G G G P P P X
37 F B B G G G G P P P X
38 F F B G G G G P P P X
39 F F B g G G G P P P X
40 F F F g G G G P P P X
41 F F F G P G P P P X
42 F F F g G G G P P P P X
43 F F F G G G P P P P X
44 F F F P P P P P P P X
45 F F O G G P P P P X
46 F F O P P P P P P X
47 F F O P P P P P P X
48 F F P G P P P P X
49 F F O P P P P P X
50 F O P P P P P X
51 F O P P P P P P X
52 F F P P P P P P X
53 F O P P P P P P X
54 F P P P P P P X
55 O P P P P P X
56 F F P P P P P X
57 O O P P P P X
58 P P P P P X
59 O P P P P X
60 O P P P P P X
61 O P P P P X
62 P P P P P X
63 O P P P P X
64 P P P P X
65 X P P P X
66 X O P P P X
67 X P P P X
68 X P P X
69 X X P P X
70 X O P P X
71 X P P X
72 X P X
73 X P P X
74 X X X X X X X X X X X X X X X X
75 X X X X X X X X X X X X X X X X
76 X P X
77 X X X X X X X X X X X X X X X X
78 X X X X X X X X X X X X X X X X
79 X X X X X X X X X X X X X X X X
80 X X X X X X X X X X X X X X X P
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Thank you all! Thank you Lara!
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A 3 drug cycle alternating the antibiotics
cefepime, ceftazidime, and cefprozil
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