This talk is based on joint work with Chenette, Philipps, Pudwell

Occurrences of a specific pattern in hypercube
orientations

Manda Riehl
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Math, then bio?

Bio, then math
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Fitness Landscapes (Crona and Wiesner)

The typical allele (unmutated type) will be called the wild type.
Populations have members with mutations, and those mutants can have
better or worse fitness for their environment.
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Fitness Landscapes (Crona and Wiesner)

The typical allele (unmutated type) will be called the wild type.
Populations have members with mutations, and those mutants can have
better or worse fitness for their environment.

Over generations, we expect the population fitness to increase from the
pressures of natural selection.
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Fitness Landscapes (Crona and Wiesner)

The typical allele (unmutated type) will be called the wild type.
Populations have members with mutations, and those mutants can have
better or worse fitness for their environment.

Over generations, we expect the population fitness to increase from the
pressures of natural selection.

We can imagine these mutations occurring on some axes (2 in the
following figure) and the fitness changes by height. This is a landscape.
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Fitness Landscapes

Selection
usually
pushes

populations
to the top

Fitness




Which landscape is most likely?




Why do we care?

We can predict evolution under specific pressures.
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Why do we care?

We can predict evolution under specific pressures.

We can combat antibiotic resistance, particularly
multiply-resistant populations.
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Discrete Landscapes
atn

(000)

Here we have 3 genes, with increasing fitness
marked with arrows.
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Discrete Landscapes
atn

(000)

Here we have 3 genes, with increasing fitness
marked with arrows.
It's acyclic!
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Which animal is this?




Reciprocal Sign Epistasis (RSE)

Two mutations, each beneficial, but both is worse
than either individually
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Or two mutations, each deleterious, but together
beneficial.
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Or two mutations, each deleterious, but together
beneficial.

Both are square faces of a hypercube with no
maximal path of nontrivial length.
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One early theorem in this area by Poelwijk et.al.
states:

Theorem
A fitness landscape cannot have more than one
peak without an occurrence of RSE.

06/22/22 A pattern in acyclic hypercubes




Extension of Poelwijk

Theorem (CPPR '21)

In any dimension, a lattice with k peaks contains at
least k — 1 RSEs.
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Extension of Poelwijk

Theorem (CPPR '21)

In any dimension, a lattice with k peaks contains at
least k — 1 RSEs.

Sketch of proof:

By induction: Take an n-dimensional acyclic
hypercube @, with k > 2 peaks.
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Extension of Poelwijk

Theorem (CPPR '21)

In any dimension, a lattice with k peaks contains at
least k — 1 RSEs.

Sketch of proof:

By induction: Take an n-dimensional acyclic
hypercube @, with k > 2 peaks. Pick two of them,
identify the sub-lattice between them, call it Qx,
with one peak at the bottom and the other at the
top.

A pattern in acyclic hypercubes




Extension of Poelwijk

Theorem (CPPR '21)

In any dimension, a lattice with k peaks contains at
least k — 1 RSEs.

Sketch of proof:

By induction: Take an n-dimensional acyclic
hypercube @, with k > 2 peaks. Pick two of them,
identify the sub-lattice between them, call it Qx,
with one peak at the bottom and the other at the
top.R* has at least 1 RSE, and in that RSE some
label has a bit 0 change to 1 in position 1.
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Define Qg_l to be the hypercube with 0 in position
i and Q,}_l with 1.
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Define Qg_l to be the hypercube with 0 in position
i and Q,}_l with 1.

Q;?—l has j > 0 peaks (therefore at least j — 1
RSE), and Q,;l_l has k — j > 0 peaks (therefore at
least k —j — 1 RSE.




Define Qg_l to be the hypercube with 0 in position
i and Q,}_l with 1.

Q;?—l has j > 0 peaks (therefore at least j — 1
RSE), and Q,;l_l has k — j > 0 peaks (therefore at
least k —j — 1 RSE.

So total we have at least
—1)+4+(k—j—1)+1=k—1RSEs.
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We computationally study which combinations of
peaks and RSEs are possible. Our results can
therefore be described as theorems on the joint
distribution of two patterns (peaks and RSEs) in
acyclic Boolean lattices, and likewise finding the
maximum number of RSEs can be considered a
form of pattern packing.
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Our primary focus is on which combinations of peak
counts and RSE counts are possible, in other words
the nonzero entries in the joint distribution of the
two patterns peak and RSE.
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Peaks

0O 1 2 3 4

0(0 91 0 0 O

1/0 84 42 0 O

2/0 093 0 O

RSEs 3|0 0 12 8 0
410 0 090

5/0 0 0 0O

6/0 0 0 0 1

Table: For dimension 3, number of acyclic orientations with each
(number of RSEs, number of peaks).




Peaks

0 1 2 3 4 5 6 7 8
00 299511 0 0 0 0 0o 0 0
{0 913656 227580 0 0 0 0o 0 0
2|0 1590669 1042032 11211 0 0 0o 0 0
3| 0 1482852 2474108 153132 0 0 0o 0 0
410 974148 3355704 614796 0 0 0o 0 0
510 376440 2623086 1367388 12876 0 0o 0 0
6|0 127548 1459384 1523046 75708 0 0o 0 0
710 27936 524706 1211520 196788 0 0o 0 0
810 1485 192600 614094 248253 297 0o 0 0
910 0 22470 287724 231820 4828 0o 0 0
10 |0 0 6180 72684 133764 12012 0o 0 0
1|0 0 0 19980 72144 15444 0o 0 0
RSEs 12 |0 0 75 2430 21488 14361 25 0 0
13|10 0 0 612 8670 9276 306 0O 0
14 |0 0 0 0 1116 5220 744 0 0
1510 0 0 0 480 1696 650 0 0
16 |0 0 0 0 0 936 798 0 0
17 |0 0 0 0 0 0 216 0 0
18 | 0 0 0 0 0 35 264 25 0
1910 0 0 0 0 0 42 36 0
20|10 0 0 0 0 0 0o 0 0
21 |0 0 0 0 0 0 0 28 0
2210 0 0 0 0 0 0o 0 0
23|10 0 0 0 0 0 0o 0 0
2410 0 0 0 0 0 0 0 1




Theorem (CPPR '21)

Single-peaked n-dimensional lattices exist with r,
RSEs, where

ry=2"3(n*—5n+8) — 1. (1)
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Theorem (CPPR '21)

Single-peaked n-dimensional lattices exist with r,
RSEs, where

ry=2"3(n*—5n+8) — 1. (1)

Notably, the most significant term in this expression
is 2732, The total number of faces is

27=3(n? — n), which has the same most significant
term. This means that, in high enough dimensions,
an arbitrarily large proportion of the faces in a
lattice can be RSEs while still having only one peak.
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Theorem (CPPR '21)

A single-peaked n-dimensional lattice cannot have
more than

2"3(n? —n—2|n/2)) (2)
RSE faces.
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Conjecture (CPPR '21)

The maximum number of RSEs in a single-peaked
n-dimensional lattice is 2"~3(n? — 4n + 4).

n 2131415 6 7 8
Lower bound (known to be possible) | 0 | 1| 7 | 31| 111|351 | 1023
Conjectured maximum 0|18 |36|128 400 | 1152
Upper bound (more is impossible) | 0|4 |16 | 64 | 192 | 576 | 1536
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Theorem (CPPR '21)

For n > 4, an n-dimensional lattice with

271 — (n — 1) peaks can have 2" 2(3) — (3) RSEs
but not 272 (g) — (’2’) — 1 RSEs.
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Theorem
For n > 4, if an n-dimensional lattice has at least
2"=2(5) = (n— 1) — (n — 2) RSEs, then it must
have exactly:

27=2(2) (every face),

2n2(3) = (n—1), or

22(5) = (n—=1)—(n—-2)
RSEs.




We also came up with a variety of explicit
construction algorithms, mostly involving adding
connecting edges between two smaller lattices, to
give an explicit examples of a wide variety of
RSE/peak combinations.
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Thank you alll Thank you Laral
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A 3 drug cycle alternating the antibiotics
cefepime, ceftazidime, and cefprozil
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