Stirling numbers in type B

Bruce Sagan Michigan State University www.math.msu.edu/~sagan joint work with Joshua Swanson

Permutation Patterns 2022 June 20, 2022

Basic definitions

Combinatorial interpretations

Other work and open problems

Outline

Basic definitions

Combinatorial interpretations

Other work and open problems

 $\mathbb{Z} =$ the integers,

 $\mathbb{Z} =$ the integers,

 $\mathbb{N} =$ the nonnegative integers,

 $\mathbb{Z} =$ the integers,

 $\mathbb{N} = \text{ the nonnegative integers},$

 $[n] = \{1, 2, \ldots, n\}.$

 $\mathbb{Z} =$ the integers, $\mathbb{N} =$ the nonnegative integers,

 $[n] = \{1, 2, \ldots, n\}.$

 $[n]_q = 1 + q + q^2 + \cdots + q^{n-1},$

If
$$q$$
 is a variable and $n \in \mathbb{N}$ then let

$$\mathbb{Z}= \ \, ext{the integers},$$
 $\mathbb{N}= \ \, ext{the nonnegative integers},$

 $[n]_a = 1 + q + q^2 + \cdots + q^{n-1},$

 $[n]_a! = [1]_a[2]_a \cdots [n]_a.$

 $[n] = \{1, 2, \ldots, n\}.$

If
$$q$$
 is a variable and $n \in \mathbb{N}$ then let

If
$$q$$
 is a variable and $n \in \mathbb{N}$ then let

$$\mathbb{Z} =$$
 the integers, $\mathbb{N} =$ the nonnegative integers, $[n] = \{1, 2, \dots, n\}.$

If q is a variable and $n \in \mathbb{N}$ then let

$$[n]_q = 1 + q + q^2 + \dots + q^{n-1},$$

 $[n]_q! = [1]_q[2]_q \dots [n]_q.$

If \mathfrak{S}_n is the symmetric group of permutations of [n] then an *inversion* of $\pi = \pi_1 \dots \pi_n \in \mathfrak{S}_n$ is a copy of the pattern 21.

 $\mathbb{Z} =$ the integers, $\mathbb{N} =$ the nonnegative integers, $[n] = \{1, 2, \dots, n\}.$

If q is a variable and $n \in \mathbb{N}$ then let

$$[n]_q = 1 + q + q^2 + \dots + q^{n-1},$$

 $[n]_q! = [1]_q[2]_q \dots [n]_q.$

If \mathfrak{S}_n is the symmetric group of permutations of [n] then an *inversion* of $\pi = \pi_1 \dots \pi_n \in \mathfrak{S}_n$ is a copy of the pattern 21. So the number of inversions of π is

inv
$$\pi = \#\{(\pi_i, \pi_j) \mid i < j \text{ and } \pi_i > \pi_j\}.$$

$$\mathbb{Z}=$$
 the integers, $\mathbb{N}=$ the nonnegative integers, $[n]=\{1,2,\ldots,n\}.$

If q is a variable and $n \in \mathbb{N}$ then let

$$[n]_q = 1 + q + q^2 + \dots + q^{n-1},$$

 $[n]_q! = [1]_q[2]_q \cdots [n]_q.$

If \mathfrak{S}_n is the symmetric group of permutations of [n] then an inversion of $\pi=\pi_1\dots\pi_n\in\mathfrak{S}_n$ is a copy of the pattern 21. So the number of inversions of π is

inv
$$\pi = \#\{(\pi_i, \pi_j) \mid i < j \text{ and } \pi_i > \pi_j\}.$$

Theorem *We have*

$$\sum_{n \in \mathbb{Z}} q^{\mathrm{inv}\,\pi} = [n]_q!.$$

$$\mathbb{Z} =$$
 the integers, $\mathbb{N} =$ the nonnegative integers, $[n] = \{1, 2, \dots, n\}.$

If q is a variable and $n \in \mathbb{N}$ then let

$$[n]_q = 1 + q + q^2 + \dots + q^{n-1},$$

 $[n]_q! = [1]_q[2]_q \dots [n]_q.$

If \mathfrak{S}_n is the symmetric group of permutations of [n] then an *inversion* of $\pi=\pi_1\dots\pi_n\in\mathfrak{S}_n$ is a copy of the pattern 21. So the number of inversions of π is

inv
$$\pi = \#\{(\pi_i, \pi_i) \mid i < j \text{ and } \pi_i > \pi_i\}.$$

Theorem We have

$$\sum_{n} q^{\operatorname{inv} \pi} = [n]_q!.$$

Setting q = 1 in this theorem recovers the fact that $\#\mathfrak{S}_n = n!$.

The *Stirling numbers of the 2nd kind* are defined for $n \in \mathbb{N}$ and $k \in \mathbb{Z}$ by $S(0, k) = \delta_{0,k}$ (Kronecker delta) and for $n \ge 1$

$$S(n, k) = S(n-1, k-1) + kS(n-1, k).$$

The *Stirling numbers of the 2nd kind* are defined for $n \in \mathbb{N}$ and $k \in \mathbb{Z}$ by $S(0, k) = \delta_{0,k}$ (Kronecker delta) and for $n \ge 1$

$$S(n, k) = S(n-1, k-1) + kS(n-1, k).$$

A partition of S into k blocks is $\rho = S_1/.../S_k$ were we have $S = \bigoplus_i S_i$ and $S_i \neq \emptyset$ for all i.

The *Stirling numbers of the 2nd kind* are defined for $n \in \mathbb{N}$ and $k \in \mathbb{Z}$ by $S(0, k) = \delta_{0,k}$ (Kronecker delta) and for $n \ge 1$

$$S(n, k) = S(n-1, k-1) + kS(n-1, k).$$

A partition of S into k blocks is $\rho = S_1/.../S_k$ were we have $S = \bigoplus_i S_i$ and $S_i \neq \emptyset$ for all i. Let S([n], k) be the set of ρ partitioning [n] into k blocks.

The *Stirling numbers of the 2nd kind* are defined for $n \in \mathbb{N}$ and $k \in \mathbb{Z}$ by $S(0, k) = \delta_{0,k}$ (Kronecker delta) and for $n \geq 1$

$$S(n, k) = S(n-1, k-1) + kS(n-1, k).$$

A partition of S into k blocks is $\rho = S_1/.../S_k$ were we have $S = \bigoplus_i S_i$ and $S_i \neq \emptyset$ for all i. Let S([n], k) be the set of ρ partitioning [n] into k blocks.

Theorem

$$S(n,k) = \#S([n],k).$$

The *Stirling numbers of the 2nd kind* are defined for $n \in \mathbb{N}$ and $k \in \mathbb{Z}$ by $S(0, k) = \delta_{0,k}$ (Kronecker delta) and for $n \geq 1$

$$S(n, k) = S(n-1, k-1) + kS(n-1, k).$$

A partition of S into k blocks is $\rho = S_1/.../S_k$ were we have $S = \bigoplus_i S_i$ and $S_i \neq \emptyset$ for all i. Let S([n], k) be the set of ρ partitioning [n] into k blocks.

Theorem

$$S(n,k) = \#S([n],k).$$

Ex. If n = 3 then

k	1	2	3
S([3], k)	123	1/23, 2/13, 3/12	1/2/3
S(3, k)	1	3	1

$$n \ge 1$$

$$S[n,k] = S[n-1,k-1] + [k]_a S[n-1,k].$$

$$S[n, k] = S[n-1, k-1] + [k]_q S[n-1, k].$$

The S[n, k] were discovered by Carlitz (1948) and since studied by many authors (Garsia, Gould, Milne, S, Steingrímsson, Remmel, Wachs, White, Zeng, Zhang, etc.).

$$S[n, k] = S[n-1, k-1] + [k]_{\alpha}S[n-1, k].$$

The S[n, k] were discovered by Carlitz (1948) and since studied by many authors (Garsia, Gould, Milne, S, Steingrímsson, Remmel, Wachs, White, Zeng, Zhang, etc.). The *type B Stirling numbers of the second kind* are $S_B(0, k) = \delta_{0,k}$ and for $n \ge 1$

$$S_B(n,k) = S_B(n-1,k-1) + (2k+1)S_B(n-1,k),$$

$$S[n, k] = S[n-1, k-1] + [k]_{\alpha}S[n-1, k].$$

The S[n,k] were discovered by Carlitz (1948) and since studied by many authors (Garsia, Gould, Milne, S, Steingrímsson, Remmel, Wachs, White, Zeng, Zhang, etc.). The *type B Stirling numbers of the second kind* are $S_B(0,k) = \delta_{0,k}$ and for $n \ge 1$

$$S_B(n,k) = S_B(n-1,k-1) + (2k+1)S_B(n-1,k),$$

with q-analogue $S_B[n,k]$ obtained by replacing 2k+1 by $[2k+1]_q$ in the $S_B(n,k)$ recursion.

$$S[n,k] = S[n-1,k-1] + [k]_q S[n-1,k].$$

The S[n,k] were discovered by Carlitz (1948) and since studied by many authors (Garsia, Gould, Milne, S, Steingrímsson, Remmel, Wachs, White, Zeng, Zhang, etc.). The *type B Stirling numbers of the second kind* are $S_B(0,k) = \delta_{0,k}$ and for $n \ge 1$

$$S_B(n,k) = S_B(n-1,k-1) + (2k+1)S_B(n-1,k),$$

with q-analogue $S_B[n,k]$ obtained by replacing 2k+1 by $[2k+1]_q$ in the $S_B(n,k)$ recursion. The case q=1 is implicit of work of Dowling and Zaslavsky, and explicit in papers of Dolgachev-Lunts and Reiner.

$$S[n,k] = S[n-1,k-1] + [k]_q S[n-1,k].$$

The S[n,k] were discovered by Carlitz (1948) and since studied by many authors (Garsia, Gould, Milne, S, Steingrímsson, Remmel, Wachs, White, Zeng, Zhang, etc.). The *type B Stirling numbers of the second kind* are $S_B(0,k) = \delta_{0,k}$ and for $n \ge 1$

$$S_B(n,k) = S_B(n-1,k-1) + (2k+1)S_B(n-1,k),$$

with q-analogue $S_B[n,k]$ obtained by replacing 2k+1 by $[2k+1]_q$ in the $S_B(n,k)$ recursion. The case q=1 is implicit of work of Dowling and Zaslavsky, and explicit in papers of Dolgachev-Lunts and Reiner. For general q, they only appear in a preprint of Swanson and Wallach.

$$S[n,k] = S[n-1,k-1] + [k]_q S[n-1,k].$$

The S[n,k] were discovered by Carlitz (1948) and since studied by many authors (Garsia, Gould, Milne, S, Steingrímsson, Remmel, Wachs, White, Zeng, Zhang, etc.). The *type B Stirling numbers of the second kind* are $S_B(0,k) = \delta_{0,k}$ and for $n \ge 1$

$$S_B(n,k) = S_B(n-1,k-1) + (2k+1)S_B(n-1,k),$$

with q-analogue $S_B[n,k]$ obtained by replacing 2k+1 by $[2k+1]_q$ in the $S_B(n,k)$ recursion. The case q=1 is implicit of work of Dowling and Zaslavsky, and explicit in papers of Dolgachev-Lunts and Reiner. For general q, they only appear in a preprint of Swanson and Wallach. Some of our results, including some in this talk, have been independently found by Bagno, Garber, and Komatsu.

Outline

Basic definitions

Combinatorial interpretations

Other work and open problems

$$\langle n \rangle = \{-n, -n+1, \ldots, n-1, n\}.$$

$$\langle n \rangle = \{-n, -n+1, \ldots, n-1, n\}.$$

A type B partition of $\langle n \rangle$ is $\rho = S_0/S_1/S_2/\dots/S_{2k}$

$$\langle n \rangle = \{-n, -n+1, \ldots, n-1, n\}.$$

A type B partition of $\langle n \rangle$ is $\rho = S_0/S_1/S_2/.../S_{2k}$ with $1. \ 0 \in S_0$ and if $i \in S_0$ then $-i \in S_0$,

$$\langle n \rangle = \{-n, -n+1, \ldots, n-1, n\}.$$

A type B partition of $\langle n \rangle$ is $\rho = S_0/S_1/S_2/\dots/S_{2k}$ with

1. $0 \in S_0$ and if $i \in S_0$ then $-i \in S_0$, and

2. for $i \ge 1$ we have $S_{2i} = -S_{2i-1}$,

where
$$-S = \{-s : s \in S\}$$
.

$$\langle n \rangle = \{-n, -n+1, \ldots, n-1, n\}.$$

A type B partition of $\langle n \rangle$ is $\rho = S_0/S_1/S_2/\dots/S_{2k}$ with

- 1. $0 \in S_0$ and if $i \in S_0$ then $-i \in S_0$, and
- 2. for i > 1 we have $S_{2i} = -S_{2i-1}$,

where $-S = \{-s : s \in S\}$. Call S_{2i} and S_{2i-1} paired.

$$\langle n \rangle = \{-n, -n+1, \ldots, n-1, n\}.$$

A type B partition of $\langle n \rangle$ is $\rho = S_0/S_1/S_2/\dots/S_{2k}$ with

1. $0 \in S_0$ and if $i \in S_0$ then $-i \in S_0$, and

2. for $i \ge 1$ we have $S_{2i} = -S_{2i-1}$,

where $-S = \{-s : s \in S\}$. Call S_{2i} and S_{2i-1} paired. Let $S_B(\langle n \rangle, k)$ be the set of such ρ .

$$\langle n \rangle = \{-n, -n+1, \ldots, n-1, n\}.$$

A type B partition of $\langle n \rangle$ is $\rho = S_0/S_1/S_2/.../S_{2k}$ with

1. $0 \in S_0$ and if $i \in S_0$ then $-i \in S_0$, and

2. for i > 1 we have $S_{2i} = -S_{2i-1}$,

where $-S = \{-s : s \in S\}$. Call S_{2i} and S_{2i-1} paired. Let $S_B(\langle n \rangle, k)$ be the set of such ρ . Write \overline{s} for -s.

$$\langle n \rangle = \{-n, -n+1, \ldots, n-1, n\}.$$

A type B partition of $\langle n \rangle$ is $\rho = S_0/S_1/S_2/\dots/S_{2k}$ with

- 1. $0 \in S_0$ and if $i \in S_0$ then $-i \in S_0$, and
- 2. for $i \ge 1$ we have $S_{2i} = -S_{2i-1}$,

where $-S = \{-s : s \in S\}$. Call S_{2i} and S_{2i-1} paired. Let $S_B(\langle n \rangle, k)$ be the set of such ρ . Write \overline{s} for -s.

Ex. An element of $S_B(\langle 5 \rangle, 2)$ is

$$\rho = 0\overline{1}1\overline{3}3 \ / \ \overline{4}/4 \ / \ 2\overline{5}/\overline{2}5.$$

$$\langle n \rangle = \{-n, -n+1, \ldots, n-1, n\}.$$

A type B partition of $\langle n \rangle$ is $\rho = S_0/S_1/S_2/\dots/S_{2k}$ with

- 1. $0 \in S_0$ and if $i \in S_0$ then $-i \in S_0$. and
- 2. for i > 1 we have $S_{2i} = -S_{2i-1}$,

where $-S = \{-s : s \in S\}$. Call S_{2i} and S_{2i-1} paired. Let $S_B(\langle n \rangle, k)$ be the set of such ρ . Write \overline{s} for -s.

Ex. An element of $S_B(\langle 5 \rangle, 2)$ is

Ex. An element of
$$S_B(\langle 5 \rangle, 2)$$
 is

$$\rho = 0\overline{1}1\overline{3}3 \ / \ \overline{4}/4 \ / \ 2\overline{5}/\overline{2}5.$$

Theorem

$$S_B(n,k) = \#S_B(\langle n \rangle, k).$$

$$\langle n \rangle = \{-n, -n+1, \ldots, n-1, n\}.$$

A type B partition of $\langle n \rangle$ is $\rho = S_0/S_1/S_2/.../S_{2k}$ with

- 1. $0 \in S_0$ and if $i \in S_0$ then $-i \in S_0$, and
- 2. for $i \ge 1$ we have $S_{2i} = -S_{2i-1}$,

where $-S = \{-s : s \in S\}$. Call S_{2i} and S_{2i-1} paired. Let $S_B(\langle n \rangle, k)$ be the set of such ρ . Write \overline{s} for -s.

Ex. An element of $S_B(\langle 5 \rangle, 2)$ is

$$\rho = 0\overline{1}1\overline{3}3 \ / \ \overline{4}/4 \ / \ 2\overline{5}/\overline{2}5.$$

Theorem

$$S_B(n,k) = \#S_B(\langle n \rangle, k).$$

Proof. Show that $\#S_B(\langle n \rangle, k)$ has the same recursion as $S_B(n, k)$.

$$\langle n \rangle = \{-n, -n+1, \ldots, n-1, n\}.$$

A type B partition of $\langle n \rangle$ is $\rho = S_0/S_1/S_2/.../S_{2k}$ with

- 1. $0 \in S_0$ and if $i \in S_0$ then $-i \in S_0$, and
- 2. for $i \ge 1$ we have $S_{2i} = -S_{2i-1}$,

where $-S = \{-s : s \in S\}$. Call S_{2i} and S_{2i-1} paired. Let $S_B(\langle n \rangle, k)$ be the set of such ρ . Write \overline{s} for -s.

Ex. An element of $S_B(\langle 5 \rangle, 2)$ is

$$\rho = 0\overline{1}1\overline{3}3 \ / \ \overline{4}/4 \ / \ 2\overline{5}/\overline{2}5.$$

Theorem

$$S_B(n, k) = \#S_B(\langle n \rangle, k).$$

Proof. Show that $\#S_B(\langle n \rangle, k)$ has the same recursion as $S_B(n, k)$. Given $\rho \in S_B(\langle n \rangle, k)$, let ρ' be ρ with $\pm n$ removed.

If $n \in \mathbb{N}$ then we will use the notation

$$\langle n \rangle = \{-n, -n+1, \ldots, n-1, n\}.$$

A type B partition of $\langle n \rangle$ is $\rho = S_0/S_1/S_2/.../S_{2k}$ with

- 1. $0 \in S_0$ and if $i \in S_0$ then $-i \in S_0$, and
- 2. for $i \ge 1$ we have $S_{2i} = -S_{2i-1}$,

where $-S = \{-s : s \in S\}$. Call S_{2i} and S_{2i-1} paired. Let $S_B(\langle n \rangle, k)$ be the set of such ρ . Write \overline{s} for -s.

Ex. An element of $S_B(\langle 5 \rangle, 2)$ is

$$\rho = 0\overline{1}1\overline{3}3 \ / \ \overline{4}/4 \ / \ 2\overline{5}/\overline{2}5.$$

Theorem

$$S_B(n, k) = \#S_B(\langle n \rangle, k).$$

Proof. Show that $\#S_B(\langle n \rangle, k)$ has the same recursion as $S_B(n, k)$. Given $\rho \in S_B(\langle n \rangle, k)$, let ρ' be ρ with $\pm n$ removed. If $\pm n$ are singletons in ρ then $\rho' \in S_B(\langle n-1 \rangle, k-1)$.

If $n \in \mathbb{N}$ then we will use the notation

$$\langle n \rangle = \{-n, -n+1, \ldots, n-1, n\}.$$

A type B partition of $\langle n \rangle$ is $\rho = S_0/S_1/S_2/.../S_{2k}$ with

- 1. $0 \in S_0$ and if $i \in S_0$ then $-i \in S_0$, and
- 2. for $i \ge 1$ we have $S_{2i} = -S_{2i-1}$,

where $-S = \{-s : s \in S\}$. Call S_{2i} and S_{2i-1} paired. Let $S_B(\langle n \rangle, k)$ be the set of such ρ . Write \overline{s} for -s.

Ex. An element of $S_B(\langle 5 \rangle, 2)$ is

$$\rho = 0\overline{1}1\overline{3}3 \ / \ \overline{4}/4 \ / \ 2\overline{5}/\overline{2}5.$$

Theorem

$$S_B(n, k) = \#S_B(\langle n \rangle, k).$$

Proof. Show that $\#S_B(\langle n \rangle, k)$ has the same recursion as $S_B(n, k)$. Given $\rho \in S_B(\langle n \rangle, k)$, let ρ' be ρ with $\pm n$ removed. If $\pm n$ are singletons in ρ then $\rho' \in S_B(\langle n-1 \rangle, k-1)$. \bullet Otherwise $\rho' \in S_B(\langle n-1 \rangle, k)$,

If $n \in \mathbb{N}$ then we will use the notation

$$\langle n \rangle = \{-n, -n+1, \ldots, n-1, n\}.$$

A type B partition of $\langle n \rangle$ is $\rho = S_0/S_1/S_2/.../S_{2k}$ with

- 1. $0 \in S_0$ and if $i \in S_0$ then $-i \in S_0$, and
- 2. for $i \ge 1$ we have $S_{2i} = -S_{2i-1}$,

where $-S = \{-s : s \in S\}$. Call S_{2i} and S_{2i-1} paired. Let $S_B(\langle n \rangle, k)$ be the set of such ρ . Write \overline{s} for -s.

Ex. An element of $S_B(\langle 5 \rangle, 2)$ is

$$\rho = 0\overline{1}1\overline{3}3 / \overline{4}/4 / 2\overline{5}/\overline{2}5.$$

Theorem

$$S_B(n, k) = \#S_B(\langle n \rangle, k).$$

Proof. Show that $\#S_B(\langle n \rangle, k)$ has the same recursion as $S_B(n, k)$. Given $\rho \in S_B(\langle n \rangle, k)$, let ρ' be ρ with $\pm n$ removed. If $\pm n$ are singletons in ρ then $\rho' \in S_B(\langle n-1 \rangle, k-1)$. Otherwise $\rho' \in S_B(\langle n-1 \rangle, k)$, and each such ρ' gives rise to 2k+1 possible ρ since n can be inserted in any block of ρ' .

Let $|S| = \{|s| \ : \ s \in S\}$, so $|S_{2i}| = |S_{2i-1}|$ for $i \ge 1$.

We will always write signed partitions in standard form

We will always write signed partitions in *standard form* where 1. $m_{2i} \in S_{2i}$ for all i,

We will always write signed partitions in *standard form* where

- 1. $m_{2i} \in S_{2i}$ for all i, and

2. $0 = m_0 < m_2 < m_4 < \cdots < m_{2k}$

We will always write signed partitions in *standard form* where

- 1. $m_{2i} \in S_{2i}$ for all i, and 2. $0 m_0 < m_2 < m_4 < \dots < m_9$
- 2. $0 = m_0 < m_2 < m_4 < \cdots < m_{2k}$.

Ex. The partition
$$\rho=0\overline{1}1\overline{3}3$$
 / $\overline{4}/4$ / $2\overline{5}/\overline{2}5$ has standard form
$$\rho=0\overline{1}1\overline{3}3$$
 / $\overline{2}5/2\overline{5}$ / $\overline{4}/4$.

We will always write signed partitions in *standard form* where $1. m_{2i} \in S_{2i}$ for all i, and

- 2. $0 = m_0 < m_2 < m_4 < \cdots < m_{2k}$.
- 2. $0 = m_0 < m_2 < m_4 < \cdots < m_{2k}$

Ex. The partition
$$\rho=0\overline{1}1\overline{3}3$$
 / $\overline{4}/4$ / $2\overline{5}/\overline{2}5$ has standard form
$$\rho=0\overline{1}1\overline{3}3$$
 / $\overline{2}5/2\overline{5}$ / $\overline{4}/4$.

An *inversion* of ρ in standard form is a pair (s, S_j)

We will always write signed partitions in *standard form* where

- 1. $m_{2i} \in S_{2i}$ for all i, and 2. $0 = m_0 < m_2 < m_4 < \cdots < m_{2k}$.
- 2. $0 = m_0 < m_2 < m_4 < \cdots < m_{2k}$

Ex. The partition
$$\rho=0\overline{1}1\overline{3}3$$
 / $\overline{4}/4$ / $2\overline{5}/\overline{2}5$ has standard form
$$\rho=0\overline{1}1\overline{3}3$$
 / $\overline{2}5/2\overline{5}$ / $\overline{4}/4$.

An *inversion* of ρ in standard form is a pair (s, S_j) satisfying 1. $s \in S_i$ for some i < j,

We will always write signed partitions in *standard form* where $1. m_{2i} \in S_{2i}$ for all i, and

- 2. $0 = m_0 < m_2 < m_4 < \cdots < m_{2k}$.
- $2. \ 0 = m_0 < m_2 < m_4 < \cdots < m_{2k}$

Ex. The partition
$$\rho=0\overline{1}1\overline{3}3$$
 / $\overline{4}/4$ / $2\overline{5}/\overline{2}5$ has standard form
$$\rho=0\overline{1}1\overline{3}3$$
 / $\overline{2}5/2\overline{5}$ / $\overline{4}/4$.

An *inversion* of ρ in standard form is a pair (s, S_j) satisfying 1. $s \in S_i$ for some i < j, and 2. $s > m_i$.

We will always write signed partitions in *standard form* where $1. m_{2i} \in S_{2i}$ for all i, and

- 2. $0 = m_0 < m_2 < m_4 < \cdots < m_{2k}$.
- 2. $0 = m_0 < m_2 < m_4 < \cdots < m_{2k}$

Ex. The partition
$$\rho=0\overline{1}1\overline{3}3$$
 / $\overline{4}/4$ / $2\overline{5}/\overline{2}5$ has standard form
$$\rho=0\overline{1}1\overline{3}3$$
 / $\overline{2}5/2\overline{5}$ / $\overline{4}/4$.

An *inversion* of ρ in standard form is a pair (s, S_j) satisfying

- 1. $s \in S_i$ for some i < j, and
- 2. $s > m_i$.

Let $\operatorname{inv} \rho$ be the number of inversions of ρ .

We will always write signed partitions in *standard form* where

- 1. $m_{2i} \in S_{2i}$ for all i, and 2. $0 = m_0 < m_2 < m_4 < \cdots < m_{2k}$.
- 2. $0 = m_0 < m_2 < m_4 < \cdots < m_{2k}$

Ex. The partition
$$\rho=0\overline{1}1\overline{3}3$$
 / $\overline{4}/4$ / $2\overline{5}/\overline{2}5$ has standard form
$$\rho=0\overline{1}1\overline{3}3$$
 / $\overline{2}5/2\overline{5}$ / $\overline{4}/4$.

An *inversion* of ρ in standard form is a pair (s, S_j) satisfying

- 1. $s \in S_i$ for some i < j, and
- 2. $s > m_j$.

Let $\operatorname{inv} \rho$ be the number of inversions of ρ .

Ex. We have $inv(0\overline{1}1\overline{3}3 / \overline{2}5/2\overline{5} / \overline{4}/4) = 5$ with inversions

$$(3, S_1), (3, S_2), (5, S_2), (5, S_3), (5, S_4).$$

Let
$$|S|=\{|s|\ :\ s\in S\}$$
, so $|S_{2i}|=|S_{2i-1}|$ for $i\geq 1$. For all i let $m_i=\min|S_i|$.

We will always write signed partitions in *standard form* where

- 1. $m_{2i} \in S_{2i}$ for all i, and
- 2. $0 = m_0 < m_2 < m_4 < \cdots < m_{2k}$

Ex. The partition $\rho=0\overline{1}1\overline{3}3$ / $\overline{4}/4$ / $2\overline{5}/\overline{2}5$ has standard form $\rho=0\overline{1}1\overline{3}3$ / $\overline{2}5/2\overline{5}$ / $\overline{4}/4$.

An *inversion* of ρ in standard form is a pair (s, S_j) satisfying

- 1. $s \in S_i$ for some i < j, and
- 2. $s > m_j$.

Let $\operatorname{inv} \rho$ be the number of inversions of ρ .

Ex. We have $inv(0\overline{1}1\overline{3}3\ /\ \overline{2}5/2\overline{5}\ /\ \overline{4}/4)=5$ with inversions

$$(3, S_1), (3, S_2), (5, S_2), (5, S_3), (5, S_4).$$

Theorem (S-Swanson)

$$S_B[n,k] = \sum_{\rho \in S_B(\langle n \rangle,k)} q^{\operatorname{inv} \rho}.$$

Outline

Basic definitions

Combinatorial interpretations

Other work and open problems

 $h_k(n) = \text{ sum of all monomials in } \mathbf{x} \text{ of degree } k.$

$$h_k(n) = \text{ sum of all monomials in } \mathbf{x} \text{ of degree } k.$$

Theorem (S-Swanson)

$$S_B[n,k] = h_{n-k}([1]_q,[3]_q,\ldots,[2k+1]_q)$$

$$h_k(n) = \text{ sum of all monomials in } \mathbf{x} \text{ of degree } k.$$

Theorem (S-Swanson)

$$S_B[n,k] = h_{n-k}([1]_q,[3]_q,\ldots,[2k+1]_q)$$

and

$$\sum_{n\geq k} S_B[n,k]t^n = \frac{t^k}{(1-[1]_qt)(1-[3]_qt)\cdots(1-[2k+1]_qt)}.$$

$$h_k(n) = \text{ sum of all monomials in } \mathbf{x} \text{ of degree } k.$$

Theorem (S-Swanson)

$$S_B[n,k] = h_{n-k}([1]_q,[3]_q,\ldots,[2k+1]_q)$$

and

$$\sum_{n\geq k} S_B[n,k]t^n = \frac{t^k}{(1-[1]_qt)(1-[3]_qt)\cdots(1-[2k+1]_qt)}.$$

We also have new identities involving symmetric polynomials.

$$h_k(n) = \text{ sum of all monomials in } \mathbf{x} \text{ of degree } k.$$

Theorem (S-Swanson)

$$S_B[n, k] = h_{n-k}([1]_q, [3]_q, \dots, [2k+1]_q)$$

and

$$\sum_{n\geq k} S_B[n,k]t^n = \frac{t^k}{(1-[1]_qt)(1-[3]_qt)\cdots(1-[2k+1]_qt)}.$$

We also have new identities involving symmetric polynomials.

Why type B?

$$h_k(n) = \text{ sum of all monomials in } \mathbf{x} \text{ of degree } k.$$

Theorem (S-Swanson)

$$S_B[n,k] = h_{n-k}([1]_q,[3]_q,\ldots,[2k+1]_q)$$

and

$$\sum_{n\geq k} S_B[n,k]t^n = \frac{t^k}{(1-[1]_qt)(1-[3]_qt)\cdots(1-[2k+1]_qt)}.$$

We also have new identities involving symmetric polynomials.

Why type B? If $\rho = S_1/.../S_k$ and $\sigma = T_1/.../T_\ell$ are partitions of the same set then ρ is a refinement of σ if every S_i is contained in some T_i .

$$h_k(n) = \text{ sum of all monomials in } \mathbf{x} \text{ of degree } k.$$

Theorem (S-Swanson)

$$S_B[n, k] = h_{n-k}([1]_q, [3]_q, \dots, [2k+1]_q)$$

and

$$\sum_{n\geq k} S_B[n,k]t^n = \frac{t^k}{(1-[1]_qt)(1-[3]_qt)\cdots(1-[2k+1]_qt)}.$$

We also have new identities involving symmetric polynomials.

Why type B? If $\rho = S_1/\dots/S_k$ and $\sigma = T_1/\dots/T_\ell$ are partitions of the same set then ρ is a refinement of σ if every S_i is contained in some T_j . Let Π_n^B be the poset $\biguplus_k S_B(\langle n \rangle, k)$ ordered by refinement.

$$h_k(n) = \text{ sum of all monomials in } \mathbf{x} \text{ of degree } k.$$

Theorem (S-Swanson)

$$S_B[n, k] = h_{n-k}([1]_q, [3]_q, \dots, [2k+1]_q)$$

and

$$\sum_{n\geq k} S_B[n,k]t^n = \frac{t^k}{(1-[1]_qt)(1-[3]_qt)\cdots(1-[2k+1]_qt)}.$$

We also have new identities involving symmetric polynomials.

Why type B? If $\rho = S_1/.../S_k$ and $\sigma = T_1/.../T_\ell$ are partitions of the same set then ρ is a refinement of σ if every S_i is contained in some T_j . Let Π_n^B be the poset $\bigoplus_k S_B(\langle n \rangle, k)$ ordered by refinement.

Theorem

 Π_n^B is isomorphic to the intersection lattice of Coxeter group B_n .

Exponential generating functions.

$$\sum_{n\geq 0} S(n,k) \frac{x^n}{n!} = \frac{1}{k!} (e^x - 1)^k.$$

$$\sum_{n\geq 0} S(n,k) \frac{x^n}{n!} = \frac{1}{k!} (e^x - 1)^k.$$

We given type B analogues and q-analogues of this formula.

$$\sum_{n=1}^{\infty} S(n,k) \frac{x^n}{n!} = \frac{1}{k!} (e^x - 1)^k.$$

We given type B analogues and q-analogues of this formula. Write [n] for $[n]_q$ if no confusion will result.

$$\sum S(n,k) \frac{x^n}{n!} = \frac{1}{k!} (e^x - 1)^k.$$

We given type B analogues and q-analogues of this formula. Write [n] for $[n]_q$ if no confusion will result. Let

$$\left|\begin{array}{c} n \\ k \end{array}\right| = \frac{[n]!}{[k]![n-k]!},$$

$$\sum S(n,k) \frac{x^n}{n!} = \frac{1}{k!} (e^x - 1)^k.$$

We given type B analogues and q-analogues of this formula. Write [n] for $[n]_q$ if no confusion will result. Let

$$\begin{bmatrix} n \\ k \end{bmatrix} = \frac{[n]!}{[k]![n-k]!},$$

$$\exp_q(x) = \sum_{n>0} \frac{x^n}{[n]!}.$$

$$\sum S(n,k) \frac{x^n}{n!} = \frac{1}{k!} (e^x - 1)^k.$$

We given type B analogues and q-analogues of this formula. Write [n] for $[n]_q$ if no confusion will result. Let

$$\begin{bmatrix} n \\ k \end{bmatrix} = \frac{[n]!}{[k]![n-k]!},$$

$$\exp(x) = \sum_{k=0}^{\infty} x^{n}$$

$$\exp_q(x) = \sum_{n \ge 0} \frac{x^n}{[n]!}.$$

Theorem (S-Swanson)

1.
$$\sum S_B(n,k) \frac{x^n}{n!} = \frac{1}{2^k k!} e^x (e^{2x} - 1)^k$$
.

$$\sum_{n \ge 0} S(n,k) \frac{x^n}{n!} = \frac{1}{k!} (e^x - 1)^k.$$

We given type B analogues and q-analogues of this formula. Write [n] for $[n]_q$ if no confusion will result. Let

$$\begin{bmatrix} n \\ k \end{bmatrix} = \frac{[n]!}{[k]![n-k]!},$$

$$\exp_q(x) = \sum_{n>0} \frac{x^n}{[n]!}.$$

Theorem (S-Swanson)

1.
$$\sum_{n \geq 0} S_B(n,k) \frac{x^n}{n!} = \frac{1}{2^k k!} e^x (e^{2x} - 1)^k$$
.

2.
$$\sum_{n \geq 0} S[n, k] \frac{x^n}{[n]!} = \frac{1}{q^{\binom{k}{2}}[k]!} \sum_{i=0}^k (-1)^{k-i} q^{\binom{k-i}{2}} \begin{bmatrix} k \\ i \end{bmatrix} \exp_q([i]x).$$

$$\sum S(n,k) \frac{x^n}{n!} = \frac{1}{k!} (e^x - 1)^k.$$

We given type B analogues and q-analogues of this formula. Write [n] for $[n]_q$ if no confusion will result. Let

$$\begin{bmatrix} n \\ k \end{bmatrix} = \frac{[n]!}{[k]![n-k]!},$$

$$\exp_q(x) = \sum_{n \ge 0} \frac{x^n}{[n]!}.$$

Theorem (S-Swanson)

1.
$$\sum_{n\geq 0} S_B(n,k) \frac{x^n}{n!} = \frac{1}{2^k k!} e^x (e^{2x} - 1)^k$$
.

2.
$$\sum_{n\geq 0} S[n,k] \frac{x^n}{[n]!} = \frac{1}{q^{\binom{k}{2}}[k]!} \sum_{i=0}^k (-1)^{k-i} q^{\binom{k-i}{2}} \begin{bmatrix} k \\ i \end{bmatrix} \exp_q([i]x).$$

Open Problem: Find $\sum_{n>0} s_B[n,k] x^n/[n]!$.

$$[n,k]x^n/[n]!$$

Coinvariant algebras.

$$\mathsf{R}_n = \frac{\mathbb{Q}[\mathsf{x}_1,\ldots,\mathsf{x}_n]}{\langle h_1(n),\ldots,h_n(n)\rangle}.$$

$$R_n = \frac{\mathbb{Q}[x_1, \dots, x_n]}{\langle h_1(n), \dots, h_n(n) \rangle}.$$

This algebra has Artin basis

$$\{x_1^{m_1} \cdots x_n^{m_n} \mid 0 \le m_i < i \text{ for all } i \in [n]\}.$$

$$\mathsf{R}_n = \frac{\mathbb{Q}[\mathsf{x}_1,\ldots,\mathsf{x}_n]}{\langle h_1(n),\ldots,h_n(n)\rangle}.$$

This algebra has *Artin basis*

$$\{x_1^{m_1} \cdots x_n^{m_n} \mid 0 \le m_i < i \text{ for all } i \in [n]\}.$$

If $(R_n)_d$ is the degree d graded piece of R_n then its Hilbert series is

If
$$(R_n)_d$$
 is the degree d graded piece of R_n then its Hilbert series is
$$\sum \dim(R_n)_d \ q^d = [n]!.$$

$$\mathsf{R}_n = \frac{\mathbb{Q}[x_1,\ldots,x_n]}{\langle h_1(n),\ldots,h_n(n)\rangle}.$$

This algebra has Artin basis

$$\{x_1^{m_1} \cdots x_n^{m_n} \mid 0 \le m_i < i \text{ for all } i \in [n]\}.$$

If $(R_n)_d$ is the degree d graded piece of R_n then its Hilbert series is

$$\sum_{d>0} \dim(\mathsf{R}_n)_d \ q^d = [n]!.$$

Zabrocki considered a super coinvariant algebra of \mathfrak{S}_n , SR_n , which has a 2nd set of anticommuting variables $\{\theta_1,\ldots,\theta_n\}$.

$$\mathsf{R}_n = \frac{\mathbb{Q}[\mathsf{x}_1,\ldots,\mathsf{x}_n]}{\langle h_1(n),\ldots,h_n(n)\rangle}.$$

This algebra has Artin basis

$$\{x_1^{m_1} \cdots x_n^{m_n} \mid 0 \le m_i < i \text{ for all } i \in [n]\}.$$

If $(R_n)_d$ is the degree d graded piece of R_n then its Hilbert series is

$$\sum_{d\geq 0} \dim(\mathsf{R}_n)_d \ q^d = [n]!.$$

Zabrocki considered a super coinvariant algebra of \mathfrak{S}_n , SR_n , which has a 2nd set of anticommuting variables $\{\theta_1,\ldots,\theta_n\}$.

Conjecture (Zabrocki)

$$\sum_{d,f>0} \dim(SR_n)_{d,f} q^d t^f = \sum_{k>0} [k]! S[n,k] t^{n-k}.$$

$$R_n = \frac{\mathbb{Q}[x_1,\ldots,x_n]}{\langle h_1(n),\ldots,h_n(n)\rangle}.$$

This algebra has Artin basis

$$\{x_1^{m_1} \cdots x_n^{m_n} \mid 0 \le m_i < i \text{ for all } i \in [n]\}.$$

If $(R_n)_d$ is the degree d graded piece of R_n then its Hilbert series is

$$\sum_{d\geq 0} \dim(\mathsf{R}_n)_d \ q^d = [n]!.$$

Zabrocki considered a super coinvariant algebra of \mathfrak{S}_n , SR_n , which has a 2nd set of anticommuting variables $\{\theta_1, \ldots, \theta_n\}$.

Conjecture (Zabrocki)

$$\sum_{d,f>0} \dim(SR_n)_{d,f} q^d t^f = \sum_{k>0} [k]! S[n,k] t^{n-k}.$$

Swanson and Wallach made a similar conjecture in type B.

$$\mathsf{R}_n = \frac{\mathbb{Q}[\mathsf{x}_1,\ldots,\mathsf{x}_n]}{\langle h_1(n),\ldots,h_n(n)\rangle}.$$

This algebra has Artin basis

$$\{x_1^{m_1} \cdots x_n^{m_n} \mid 0 \le m_i < i \text{ for all } i \in [n]\}.$$

If $(R_n)_d$ is the degree d graded piece of R_n then its Hilbert series is

$$\sum_{d>0} \dim(\mathsf{R}_n)_d \ q^d = [n]!.$$

Zabrocki considered a super coinvariant algebra of \mathfrak{S}_n , SR_n , which has a 2nd set of anticommuting variables $\{\theta_1,\ldots,\theta_n\}$.

Conjecture (Zabrocki)

$$\sum_{d,f\geq 0} \dim(\mathsf{SR}_n)_{d,f} q^d t^f = \sum_{k\geq 0} [k]! S[n,k] t^{n-k}.$$

Swanson and Wallach made a similar conjecture in type B. We conjecture analogues of the Artin basis in both type A and B which, if correct, would prove both conjectures.

THANKS FOR

LISTENING!