Stirling numbers in type B

Bruce Sagan
Michigan State University
www.math.msu.edu/~sagan
joint work with Joshua Swanson

Permutation Patterns 2022
June 20, 2022

Basic definitions

Combinatorial interpretations

Other work and open problems

Outline

Basic definitions

Combinatorial interpretations

Other work and open problems

We will use the notation
$\mathbb{Z}=$ the integers,

We will use the notation
$\mathbb{Z}=$ the integers,
$\mathbb{N}=$ the nonnegative integers,

We will use the notation

$$
\begin{aligned}
\mathbb{Z} & =\text { the integers, } \\
\mathbb{N} & =\text { the nonnegative integers }, \\
{[n] } & =\{1,2, \ldots, n\} .
\end{aligned}
$$

We will use the notation

$$
\begin{aligned}
\mathbb{Z} & =\text { the integers, } \\
\mathbb{N} & =\text { the nonnegative integers } \\
{[n] } & =\{1,2, \ldots, n\}
\end{aligned}
$$

If q is a variable and $n \in \mathbb{N}$ then let

$$
[n]_{q}=1+q+q^{2}+\cdots+q^{n-1}
$$

We will use the notation

$$
\begin{aligned}
\mathbb{Z} & =\text { the integers, } \\
\mathbb{N} & =\text { the nonnegative integers, } \\
{[n] } & =\{1,2, \ldots, n\} .
\end{aligned}
$$

If q is a variable and $n \in \mathbb{N}$ then let

$$
\begin{aligned}
{[n]_{q} } & =1+q+q^{2}+\cdots+q^{n-1} \\
{[n]_{q}!} & =[1]_{q}[2]_{q} \cdots[n]_{q}
\end{aligned}
$$

We will use the notation

$$
\begin{aligned}
\mathbb{Z} & =\text { the integers, } \\
\mathbb{N} & =\text { the nonnegative integers } \\
{[n] } & =\{1,2, \ldots, n\}
\end{aligned}
$$

If q is a variable and $n \in \mathbb{N}$ then let

$$
\begin{aligned}
{[n]_{q} } & =1+q+q^{2}+\cdots+q^{n-1} \\
{[n]_{q}!} & =[1]_{q}[2]_{q} \cdots[n]_{q}
\end{aligned}
$$

If \mathfrak{S}_{n} is the symmetric group of permutations of [n] then an inversion of $\pi=\pi_{1} \ldots \pi_{n} \in \mathfrak{S}_{n}$ is a copy of the pattern 21.

We will use the notation

$$
\begin{aligned}
\mathbb{Z} & =\text { the integers, } \\
\mathbb{N} & =\text { the nonnegative integers, } \\
{[n] } & =\{1,2, \ldots, n\}
\end{aligned}
$$

If q is a variable and $n \in \mathbb{N}$ then let

$$
\begin{aligned}
{[n]_{q} } & =1+q+q^{2}+\cdots+q^{n-1} \\
{[n]_{q}!} & =[1]_{q}[2]_{q} \cdots[n]_{q}
\end{aligned}
$$

If \mathfrak{S}_{n} is the symmetric group of permutations of $[n]$ then an inversion of $\pi=\pi_{1} \ldots \pi_{n} \in \mathfrak{S}_{n}$ is a copy of the pattern 21 . So the number of inversions of π is

$$
\operatorname{inv} \pi=\#\left\{\left(\pi_{i}, \pi_{j}\right) \mid i<j \text { and } \pi_{i}>\pi_{j}\right\}
$$

We will use the notation

$$
\begin{aligned}
\mathbb{Z} & =\text { the integers, } \\
\mathbb{N} & =\text { the nonnegative integers } \\
{[n] } & =\{1,2, \ldots, n\}
\end{aligned}
$$

If q is a variable and $n \in \mathbb{N}$ then let

$$
\begin{aligned}
{[n]_{q} } & =1+q+q^{2}+\cdots+q^{n-1} \\
{[n]_{q}!} & =[1]_{q}[2]_{q} \cdots[n]_{q}
\end{aligned}
$$

If \mathfrak{S}_{n} is the symmetric group of permutations of $[n]$ then an inversion of $\pi=\pi_{1} \ldots \pi_{n} \in \mathfrak{S}_{n}$ is a copy of the pattern 21 . So the number of inversions of π is

$$
\operatorname{inv} \pi=\#\left\{\left(\pi_{i}, \pi_{j}\right) \mid i<j \text { and } \pi_{i}>\pi_{j}\right\}
$$

Theorem
We have

$$
\sum_{\pi \in \mathfrak{S}_{n}} q^{\operatorname{inv} \pi}=[n]_{q}!
$$

We will use the notation

$$
\begin{aligned}
\mathbb{Z} & =\text { the integers, } \\
\mathbb{N} & =\text { the nonnegative integers } \\
{[n] } & =\{1,2, \ldots, n\}
\end{aligned}
$$

If q is a variable and $n \in \mathbb{N}$ then let

$$
\begin{aligned}
{[n]_{q} } & =1+q+q^{2}+\cdots+q^{n-1} \\
{[n]_{q}!} & =[1]_{q}[2]_{q} \cdots[n]_{q}
\end{aligned}
$$

If \mathfrak{S}_{n} is the symmetric group of permutations of $[n]$ then an inversion of $\pi=\pi_{1} \ldots \pi_{n} \in \mathfrak{S}_{n}$ is a copy of the pattern 21 . So the number of inversions of π is

$$
\operatorname{inv} \pi=\#\left\{\left(\pi_{i}, \pi_{j}\right) \mid i<j \text { and } \pi_{i}>\pi_{j}\right\}
$$

Theorem
We have

$$
\sum_{\pi \in \mathfrak{S}_{n}} q^{\mathrm{inv} \pi}=[n]_{q}!
$$

Setting $q=1$ in this theorem recovers the fact that $\# \mathfrak{S}_{n}=n!$.

The Stirling numbers of the $2 n d$ kind are defined for $n \in \mathbb{N}$ and $k \in \mathbb{Z}$ by $S(0, k)=\delta_{0, k}$ (Kronecker delta) and for $n \geq 1$

$$
S(n, k)=S(n-1, k-1)+k S(n-1, k) .
$$

The Stirling numbers of the $2 n d$ kind are defined for $n \in \mathbb{N}$ and $k \in \mathbb{Z}$ by $S(0, k)=\delta_{0, k}$ (Kronecker delta) and for $n \geq 1$

$$
S(n, k)=S(n-1, k-1)+k S(n-1, k)
$$

A partition of S into k blocks is $\rho=S_{1} / \ldots / S_{k}$ were we have $S=\uplus_{i} S_{i}$ and $S_{i} \neq \emptyset$ for all i.

The Stirling numbers of the $2 n d$ kind are defined for $n \in \mathbb{N}$ and $k \in \mathbb{Z}$ by $S(0, k)=\delta_{0, k}$ (Kronecker delta) and for $n \geq 1$

$$
S(n, k)=S(n-1, k-1)+k S(n-1, k)
$$

A partition of S into k blocks is $\rho=S_{1} / \ldots / S_{k}$ were we have $S=\uplus_{i} S_{i}$ and $S_{i} \neq \emptyset$ for all i. Let $S([n], k)$ be the set of ρ partitioning $[n]$ into k blocks.

The Stirling numbers of the $2 n d$ kind are defined for $n \in \mathbb{N}$ and $k \in \mathbb{Z}$ by $S(0, k)=\delta_{0, k}$ (Kronecker delta) and for $n \geq 1$

$$
S(n, k)=S(n-1, k-1)+k S(n-1, k)
$$

A partition of S into k blocks is $\rho=S_{1} / \ldots / S_{k}$ were we have $S=\uplus_{i} S_{i}$ and $S_{i} \neq \emptyset$ for all i. Let $S([n], k)$ be the set of ρ partitioning $[n]$ into k blocks.

Theorem

$$
S(n, k)=\# S([n], k)
$$

The Stirling numbers of the $2 n d$ kind are defined for $n \in \mathbb{N}$ and $k \in \mathbb{Z}$ by $S(0, k)=\delta_{0, k}$ (Kronecker delta) and for $n \geq 1$

$$
S(n, k)=S(n-1, k-1)+k S(n-1, k)
$$

A partition of S into k blocks is $\rho=S_{1} / \ldots / S_{k}$ were we have $S=\uplus_{i} S_{i}$ and $S_{i} \neq \emptyset$ for all i. Let $S([n], k)$ be the set of ρ partitioning $[n]$ into k blocks.

Theorem

$$
S(n, k)=\# S([n], k)
$$

Ex. If $n=3$ then

k	1	2	3
$S([3], k)$	123	$1 / 23,2 / 13,3 / 12$	$1 / 2 / 3$
$S(3, k)$	1	3	1

The q-Stirling numbers of the $2 n d$ kind are $S[0, k]=\delta_{0, k}$ and for $n \geq 1$

$$
S[n, k]=S[n-1, k-1]+[k]_{q} S[n-1, k] .
$$

The q-Stirling numbers of the $2 n d$ kind are $S[0, k]=\delta_{0, k}$ and for $n \geq 1$

$$
S[n, k]=S[n-1, k-1]+[k]_{q} S[n-1, k] .
$$

The $S[n, k]$ were discovered by Carlitz (1948) and since studied by many authors (Garsia, Gould, Milne, S, Steingrímsson, Remmel, Wachs, White, Zeng, Zhang, etc.).

The q-Stirling numbers of the $2 n d$ kind are $S[0, k]=\delta_{0, k}$ and for $n \geq 1$

$$
S[n, k]=S[n-1, k-1]+[k]_{q} S[n-1, k] .
$$

The $S[n, k]$ were discovered by Carlitz (1948) and since studied by many authors (Garsia, Gould, Milne, S, Steingrímsson, Remmel, Wachs, White, Zeng, Zhang, etc.). The type B Stirling numbers of the second kind are $S_{B}(0, k)=\delta_{0, k}$ and for $n \geq 1$

$$
S_{B}(n, k)=S_{B}(n-1, k-1)+(2 k+1) S_{B}(n-1, k),
$$

The q-Stirling numbers of the $2 n d$ kind are $S[0, k]=\delta_{0, k}$ and for $n \geq 1$

$$
S[n, k]=S[n-1, k-1]+[k]_{q} S[n-1, k] .
$$

The $S[n, k]$ were discovered by Carlitz (1948) and since studied by many authors (Garsia, Gould, Milne, S, Steingrímsson, Remmel, Wachs, White, Zeng, Zhang, etc.). The type B Stirling numbers of the second kind are $S_{B}(0, k)=\delta_{0, k}$ and for $n \geq 1$

$$
S_{B}(n, k)=S_{B}(n-1, k-1)+(2 k+1) S_{B}(n-1, k),
$$

with q-analogue $S_{B}[n, k]$ obtained by replacing $2 k+1$ by $[2 k+1]_{q}$ in the $S_{B}(n, k)$ recursion.

The q-Stirling numbers of the $2 n d$ kind are $S[0, k]=\delta_{0, k}$ and for $n \geq 1$

$$
S[n, k]=S[n-1, k-1]+[k]_{q} S[n-1, k] .
$$

The $S[n, k]$ were discovered by Carlitz (1948) and since studied by many authors (Garsia, Gould, Milne, S, Steingrímsson, Remmel, Wachs, White, Zeng, Zhang, etc.). The type B Stirling numbers of the second kind are $S_{B}(0, k)=\delta_{0, k}$ and for $n \geq 1$

$$
S_{B}(n, k)=S_{B}(n-1, k-1)+(2 k+1) S_{B}(n-1, k),
$$

with q-analogue $S_{B}[n, k]$ obtained by replacing $2 k+1$ by $[2 k+1]_{q}$ in the $S_{B}(n, k)$ recursion. The case $q=1$ is implicit of work of Dowling and Zaslavsky, and explicit in papers of Dolgachev-Lunts and Reiner.

The q-Stirling numbers of the $2 n d$ kind are $S[0, k]=\delta_{0, k}$ and for $n \geq 1$

$$
S[n, k]=S[n-1, k-1]+[k]_{q} S[n-1, k] .
$$

The $S[n, k]$ were discovered by Carlitz (1948) and since studied by many authors (Garsia, Gould, Milne, S, Steingrímsson, Remmel, Wachs, White, Zeng, Zhang, etc.). The type B Stirling numbers of the second kind are $S_{B}(0, k)=\delta_{0, k}$ and for $n \geq 1$

$$
S_{B}(n, k)=S_{B}(n-1, k-1)+(2 k+1) S_{B}(n-1, k),
$$

with q-analogue $S_{B}[n, k]$ obtained by replacing $2 k+1$ by $[2 k+1]_{q}$ in the $S_{B}(n, k)$ recursion. The case $q=1$ is implicit of work of Dowling and Zaslavsky, and explicit in papers of Dolgachev-Lunts and Reiner. For general q, they only appear in a preprint of Swanson and Wallach.

The q-Stirling numbers of the $2 n d$ kind are $S[0, k]=\delta_{0, k}$ and for $n \geq 1$

$$
S[n, k]=S[n-1, k-1]+[k]_{q} S[n-1, k] .
$$

The $S[n, k]$ were discovered by Carlitz (1948) and since studied by many authors (Garsia, Gould, Milne, S, Steingrímsson, Remmel, Wachs, White, Zeng, Zhang, etc.). The type B Stirling numbers of the second kind are $S_{B}(0, k)=\delta_{0, k}$ and for $n \geq 1$

$$
S_{B}(n, k)=S_{B}(n-1, k-1)+(2 k+1) S_{B}(n-1, k),
$$

with q-analogue $S_{B}[n, k]$ obtained by replacing $2 k+1$ by $[2 k+1]_{q}$ in the $S_{B}(n, k)$ recursion. The case $q=1$ is implicit of work of Dowling and Zaslavsky, and explicit in papers of Dolgachev-Lunts and Reiner. For general q, they only appear in a preprint of Swanson and Wallach. Some of our results, including some in this talk, have been independently found by Bagno, Garber, and Komatsu.

Outline

Basic definitions

Combinatorial interpretations

Other work and open problems

If $n \in \mathbb{N}$ then we will use the notation

$$
\langle n\rangle=\{-n,-n+1, \ldots, n-1, n\}
$$

If $n \in \mathbb{N}$ then we will use the notation

$$
\langle n\rangle=\{-n,-n+1, \ldots, n-1, n\} .
$$

A type B partition of $\langle n\rangle$ is $\rho=S_{0} / S_{1} / S_{2} / \ldots / S_{2 k}$

If $n \in \mathbb{N}$ then we will use the notation

$$
\langle n\rangle=\{-n,-n+1, \ldots, n-1, n\} .
$$

A type B partition of $\langle n\rangle$ is $\rho=S_{0} / S_{1} / S_{2} / \ldots / S_{2 k}$ with 1. $0 \in S_{0}$ and if $i \in S_{0}$ then $-i \in S_{0}$,

If $n \in \mathbb{N}$ then we will use the notation

$$
\langle n\rangle=\{-n,-n+1, \ldots, n-1, n\} .
$$

A type B partition of $\langle n\rangle$ is $\rho=S_{0} / S_{1} / S_{2} / \ldots / S_{2 k}$ with

1. $0 \in S_{0}$ and if $i \in S_{0}$ then $-i \in S_{0}$, and
2. for $i \geq 1$ we have $S_{2 i}=-S_{2 i-1}$,
where $-S=\{-s: s \in S\}$.

If $n \in \mathbb{N}$ then we will use the notation

$$
\langle n\rangle=\{-n,-n+1, \ldots, n-1, n\} .
$$

A type B partition of $\langle n\rangle$ is $\rho=S_{0} / S_{1} / S_{2} / \ldots / S_{2 k}$ with

1. $0 \in S_{0}$ and if $i \in S_{0}$ then $-i \in S_{0}$, and
2. for $i \geq 1$ we have $S_{2 i}=-S_{2 i-1}$,
where $-S=\{-s: s \in S\}$. Call $S_{2 i}$ and $S_{2 i-1}$ paired.

If $n \in \mathbb{N}$ then we will use the notation

$$
\langle n\rangle=\{-n,-n+1, \ldots, n-1, n\}
$$

A type B partition of $\langle n\rangle$ is $\rho=S_{0} / S_{1} / S_{2} / \ldots / S_{2 k}$ with

1. $0 \in S_{0}$ and if $i \in S_{0}$ then $-i \in S_{0}$, and
2. for $i \geq 1$ we have $S_{2 i}=-S_{2 i-1}$,
where $-S=\{-s: s \in S\}$. Call $S_{2 i}$ and $S_{2 i-1}$ paired. Let $S_{B}(\langle n\rangle, k)$ be the set of such ρ.

If $n \in \mathbb{N}$ then we will use the notation

$$
\langle n\rangle=\{-n,-n+1, \ldots, n-1, n\}
$$

A type B partition of $\langle n\rangle$ is $\rho=S_{0} / S_{1} / S_{2} / \ldots / S_{2 k}$ with

1. $0 \in S_{0}$ and if $i \in S_{0}$ then $-i \in S_{0}$, and
2. for $i \geq 1$ we have $S_{2 i}=-S_{2 i-1}$,
where $-S=\{-s: s \in S\}$. Call $S_{2 i}$ and $S_{2 i-1}$ paired. Let $S_{B}(\langle n\rangle, k)$ be the set of such ρ. Write \bar{s} for $-s$.

If $n \in \mathbb{N}$ then we will use the notation

$$
\langle n\rangle=\{-n,-n+1, \ldots, n-1, n\}
$$

A type B partition of $\langle n\rangle$ is $\rho=S_{0} / S_{1} / S_{2} / \ldots / S_{2 k}$ with

1. $0 \in S_{0}$ and if $i \in S_{0}$ then $-i \in S_{0}$, and
2. for $i \geq 1$ we have $S_{2 i}=-S_{2 i-1}$,
where $-S=\{-s: s \in S\}$. Call $S_{2 i}$ and $S_{2 i-1}$ paired. Let $S_{B}(\langle n\rangle, k)$ be the set of such ρ. Write \bar{s} for $-s$.
Ex. An element of $S_{B}(\langle 5\rangle, 2)$ is

$$
\rho=0 \overline{1} 1 \overline{3} 3 / \overline{4} / 4 / 2 \overline{5} / \overline{2} 5
$$

If $n \in \mathbb{N}$ then we will use the notation

$$
\langle n\rangle=\{-n,-n+1, \ldots, n-1, n\}
$$

A type B partition of $\langle n\rangle$ is $\rho=S_{0} / S_{1} / S_{2} / \ldots / S_{2 k}$ with

1. $0 \in S_{0}$ and if $i \in S_{0}$ then $-i \in S_{0}$, and
2. for $i \geq 1$ we have $S_{2 i}=-S_{2 i-1}$,
where $-S=\{-s: s \in S\}$. Call $S_{2 i}$ and $S_{2 i-1}$ paired. Let $S_{B}(\langle n\rangle, k)$ be the set of such ρ. Write \bar{s} for $-s$.
Ex. An element of $S_{B}(\langle 5\rangle, 2)$ is

$$
\rho=0 \overline{1} 1 \overline{3} 3 / \overline{4} / 4 / 2 \overline{5} / \overline{2} 5
$$

Theorem

$$
S_{B}(n, k)=\# S_{B}(\langle n\rangle, k) .
$$

If $n \in \mathbb{N}$ then we will use the notation

$$
\langle n\rangle=\{-n,-n+1, \ldots, n-1, n\}
$$

A type B partition of $\langle n\rangle$ is $\rho=S_{0} / S_{1} / S_{2} / \ldots / S_{2 k}$ with

1. $0 \in S_{0}$ and if $i \in S_{0}$ then $-i \in S_{0}$, and
2. for $i \geq 1$ we have $S_{2 i}=-S_{2 i-1}$,
where $-S=\{-s: s \in S\}$. Call $S_{2 i}$ and $S_{2 i-1}$ paired. Let $S_{B}(\langle n\rangle, k)$ be the set of such ρ. Write \bar{s} for $-s$.
Ex. An element of $S_{B}(\langle 5\rangle, 2)$ is

$$
\rho=0 \overline{1} 1 \overline{3} 3 / \overline{4} / 4 / 2 \overline{5} / \overline{2} 5 .
$$

Theorem

$$
S_{B}(n, k)=\# S_{B}(\langle n\rangle, k) .
$$

Proof. Show that $\# S_{B}(\langle n\rangle, k)$ has the same recursion as $S_{B}(n, k)$.

If $n \in \mathbb{N}$ then we will use the notation

$$
\langle n\rangle=\{-n,-n+1, \ldots, n-1, n\}
$$

A type B partition of $\langle n\rangle$ is $\rho=S_{0} / S_{1} / S_{2} / \ldots / S_{2 k}$ with

1. $0 \in S_{0}$ and if $i \in S_{0}$ then $-i \in S_{0}$, and
2. for $i \geq 1$ we have $S_{2 i}=-S_{2 i-1}$,
where $-S=\{-s: s \in S\}$. Call $S_{2 i}$ and $S_{2 i-1}$ paired. Let $S_{B}(\langle n\rangle, k)$ be the set of such ρ. Write \bar{s} for $-s$.
Ex. An element of $S_{B}(\langle 5\rangle, 2)$ is

$$
\rho=0 \overline{1} 1 \overline{3} 3 / \overline{4} / 4 / 2 \overline{5} / \overline{2} 5
$$

Theorem

$$
S_{B}(n, k)=\# S_{B}(\langle n\rangle, k) .
$$

Proof. Show that $\# S_{B}(\langle n\rangle, k)$ has the same recursion as $S_{B}(n, k)$. Given $\rho \in S_{B}(\langle n\rangle, k)$, let ρ^{\prime} be ρ with $\pm n$ removed.

If $n \in \mathbb{N}$ then we will use the notation

$$
\langle n\rangle=\{-n,-n+1, \ldots, n-1, n\} .
$$

A type B partition of $\langle n\rangle$ is $\rho=S_{0} / S_{1} / S_{2} / \ldots / S_{2 k}$ with

1. $0 \in S_{0}$ and if $i \in S_{0}$ then $-i \in S_{0}$, and
2. for $i \geq 1$ we have $S_{2 i}=-S_{2 i-1}$,
where $-S=\{-s: s \in S\}$. Call $S_{2 i}$ and $S_{2 i-1}$ paired. Let $S_{B}(\langle n\rangle, k)$ be the set of such ρ. Write \bar{s} for $-s$.
Ex. An element of $S_{B}(\langle 5\rangle, 2)$ is

$$
\rho=0 \overline{1} 1 \overline{3} 3 / \overline{4} / 4 / 2 \overline{5} / \overline{2} 5
$$

Theorem

$$
S_{B}(n, k)=\# S_{B}(\langle n\rangle, k) .
$$

Proof. Show that $\# S_{B}(\langle n\rangle, k)$ has the same recursion as $S_{B}(n, k)$. Given $\rho \in S_{B}(\langle n\rangle, k)$, let ρ^{\prime} be ρ with $\pm n$ removed. If $\pm n$ are singletons in ρ then $\rho^{\prime} \in S_{B}(\langle n-1\rangle, k-1)$.

If $n \in \mathbb{N}$ then we will use the notation

$$
\langle n\rangle=\{-n,-n+1, \ldots, n-1, n\} .
$$

A type B partition of $\langle n\rangle$ is $\rho=S_{0} / S_{1} / S_{2} / \ldots / S_{2 k}$ with

1. $0 \in S_{0}$ and if $i \in S_{0}$ then $-i \in S_{0}$, and
2. for $i \geq 1$ we have $S_{2 i}=-S_{2 i-1}$,
where $-S=\{-s: s \in S\}$. Call $S_{2 i}$ and $S_{2 i-1}$ paired. Let $S_{B}(\langle n\rangle, k)$ be the set of such ρ. Write \bar{s} for $-s$.
Ex. An element of $S_{B}(\langle 5\rangle, 2)$ is

$$
\rho=0 \overline{1} 1 \overline{3} 3 / \overline{4} / 4 / 2 \overline{5} / \overline{2} 5
$$

Theorem

$$
S_{B}(n, k)=\# S_{B}(\langle n\rangle, k) .
$$

Proof. Show that $\# S_{B}(\langle n\rangle, k)$ has the same recursion as $S_{B}(n, k)$. Given $\rho \in S_{B}(\langle n\rangle, k)$, let ρ^{\prime} be ρ with $\pm n$ removed. If $\pm n$ are singletons in ρ then $\rho^{\prime} \in S_{B}(\langle n-1\rangle, k-1)$. Otherwise $\rho^{\prime} \in S_{B}(\langle n-1\rangle, k)$,

If $n \in \mathbb{N}$ then we will use the notation

$$
\langle n\rangle=\{-n,-n+1, \ldots, n-1, n\} .
$$

A type B partition of $\langle n\rangle$ is $\rho=S_{0} / S_{1} / S_{2} / \ldots / S_{2 k}$ with

1. $0 \in S_{0}$ and if $i \in S_{0}$ then $-i \in S_{0}$, and
2. for $i \geq 1$ we have $S_{2 i}=-S_{2 i-1}$,
where $-S=\{-s: s \in S\}$. Call $S_{2 i}$ and $S_{2 i-1}$ paired. Let $S_{B}(\langle n\rangle, k)$ be the set of such ρ. Write \bar{s} for $-s$.
Ex. An element of $S_{B}(\langle 5\rangle, 2)$ is

$$
\rho=0 \overline{1} 1 \overline{3} 3 / \overline{4} / 4 / 2 \overline{5} / \overline{2} 5
$$

Theorem

$$
S_{B}(n, k)=\# S_{B}(\langle n\rangle, k) .
$$

Proof. Show that $\# S_{B}(\langle n\rangle, k)$ has the same recursion as $S_{B}(n, k)$. Given $\rho \in S_{B}(\langle n\rangle, k)$, let ρ^{\prime} be ρ with $\pm n$ removed. If $\pm n$ are singletons in ρ then $\rho^{\prime} \in S_{B}(\langle n-1\rangle, k-1)$. Otherwise $\rho^{\prime} \in S_{B}(\langle n-1\rangle, k)$, and each such ρ^{\prime} gives rise to $2 k+1$ possible ρ since n can be inserted in any block of ρ^{\prime}.

Let $|S|=\{|s|: s \in S\}$, so $\left|S_{2 i}\right|=\left|S_{2 i-1}\right|$ for $i \geq 1$.

Let $|S|=\{|s|: s \in S\}$, so $\left|S_{2 i}\right|=\left|S_{2 i-1}\right|$ for $i \geq 1$. For all i let $m_{i}=\min \left|S_{i}\right|$.

Let $|S|=\{|s|: s \in S\}$, so $\left|S_{2 i}\right|=\left|S_{2 i-1}\right|$ for $i \geq 1$. For all i let

$$
m_{i}=\min \left|S_{i}\right|
$$

We will always write signed partitions in standard form

$$
\text { Let }|S|=\{|s|: s \in S\} \text {, so }\left|S_{2 i}\right|=\left|S_{2 i-1}\right| \text { for } i \geq 1 \text {. For all } i \text { let }
$$

$$
m_{i}=\min \left|S_{i}\right|
$$

We will always write signed partitions in standard form where 1. $m_{2 i} \in S_{2 i}$ for all i,

$$
\text { Let }|S|=\{|s|: s \in S\} \text {, so }\left|S_{2 i}\right|=\left|S_{2 i-1}\right| \text { for } i \geq 1 \text {. For all } i \text { let }
$$

$$
m_{i}=\min \left|S_{i}\right|
$$

We will always write signed partitions in standard form where

1. $m_{2 i} \in S_{2 i}$ for all i, and
2. $0=m_{0}<m_{2}<m_{4}<\cdots<m_{2 k}$.

Let $|S|=\{|s|: s \in S\}$, so $\left|S_{2 i}\right|=\left|S_{2 i-1}\right|$ for $i \geq 1$. For all i let

$$
m_{i}=\min \left|S_{i}\right|
$$

We will always write signed partitions in standard form where 1. $m_{2 i} \in S_{2 i}$ for all i, and
2. $0=m_{0}<m_{2}<m_{4}<\cdots<m_{2 k}$.

Ex. The partition $\rho=0 \overline{1} 1 \overline{3} 3 / \overline{4} / 4 / 2 \overline{5} / \overline{2} 5$ has standard form

$$
\rho=0 \overline{1} 1 \overline{3} 3 / \overline{2} 5 / 2 \overline{5} / \overline{4} / 4 .
$$

Let $|S|=\{|s|: s \in S\}$, so $\left|S_{2 i}\right|=\left|S_{2 i-1}\right|$ for $i \geq 1$. For all i let

$$
m_{i}=\min \left|S_{i}\right|
$$

We will always write signed partitions in standard form where

1. $m_{2 i} \in S_{2 i}$ for all i, and
2. $0=m_{0}<m_{2}<m_{4}<\cdots<m_{2 k}$.

Ex. The partition $\rho=0 \overline{1} 1 \overline{3} 3 / \overline{4} / 4 / 2 \overline{5} / \overline{2} 5$ has standard form

$$
\rho=0 \overline{1} 1 \overline{3} 3 / \overline{2} 5 / 2 \overline{5} / \overline{4} / 4 .
$$

An inversion of ρ in standard form is a pair $\left(s, S_{j}\right)$

Let $|S|=\{|s|: s \in S\}$, so $\left|S_{2 i}\right|=\left|S_{2 i-1}\right|$ for $i \geq 1$. For all i let

$$
m_{i}=\min \left|S_{i}\right|
$$

We will always write signed partitions in standard form where

1. $m_{2 i} \in S_{2 i}$ for all i, and
2. $0=m_{0}<m_{2}<m_{4}<\cdots<m_{2 k}$.

Ex. The partition $\rho=0 \overline{1} 1 \overline{3} 3 / \overline{4} / 4 / 2 \overline{5} / \overline{2} 5$ has standard form

$$
\rho=0 \overline{1} 1 \overline{3} 3 / \overline{2} 5 / 2 \overline{5} / \overline{4} / 4 .
$$

An inversion of ρ in standard form is a pair $\left(s, S_{j}\right)$ satisfying

1. $s \in S_{i}$ for some $i<j$,

Let $|S|=\{|s|: s \in S\}$, so $\left|S_{2 i}\right|=\left|S_{2 i-1}\right|$ for $i \geq 1$. For all i let

$$
m_{i}=\min \left|S_{i}\right|
$$

We will always write signed partitions in standard form where

1. $m_{2 i} \in S_{2 i}$ for all i, and
2. $0=m_{0}<m_{2}<m_{4}<\cdots<m_{2 k}$.

Ex. The partition $\rho=0 \overline{1} 1 \overline{3} 3 / \overline{4} / 4 / 2 \overline{5} / \overline{2} 5$ has standard form

$$
\rho=0 \overline{1} 1 \overline{3} 3 / \overline{2} 5 / 2 \overline{5} / \overline{4} / 4 .
$$

An inversion of ρ in standard form is a pair $\left(s, S_{j}\right)$ satisfying

1. $s \in S_{i}$ for some $i<j$, and
2. $s>m_{j}$.

Let $|S|=\{|s|: s \in S\}$, so $\left|S_{2 i}\right|=\left|S_{2 i-1}\right|$ for $i \geq 1$. For all i let

$$
m_{i}=\min \left|S_{i}\right|
$$

We will always write signed partitions in standard form where

1. $m_{2 i} \in S_{2 i}$ for all i, and
2. $0=m_{0}<m_{2}<m_{4}<\cdots<m_{2 k}$.

Ex. The partition $\rho=0 \overline{1} 1 \overline{3} 3 / \overline{4} / 4 / 2 \overline{5} / \overline{2} 5$ has standard form

$$
\rho=0 \overline{1} 1 \overline{3} 3 / \overline{2} 5 / 2 \overline{5} / \overline{4} / 4 .
$$

An inversion of ρ in standard form is a pair $\left(s, S_{j}\right)$ satisfying

1. $s \in S_{i}$ for some $i<j$, and
2. $s>m_{j}$.

Let inv ρ be the number of inversions of ρ.

Let $|S|=\{|s|: s \in S\}$, so $\left|S_{2 i}\right|=\left|S_{2 i-1}\right|$ for $i \geq 1$. For all i let

$$
m_{i}=\min \left|S_{i}\right|
$$

We will always write signed partitions in standard form where 1. $m_{2 i} \in S_{2 i}$ for all i, and
2. $0=m_{0}<m_{2}<m_{4}<\cdots<m_{2 k}$.

Ex. The partition $\rho=0 \overline{1} 1 \overline{3} 3 / \overline{4} / 4 / 2 \overline{5} / \overline{2} 5$ has standard form

$$
\rho=0 \overline{1} 1 \overline{3} 3 / \overline{2} 5 / 2 \overline{5} / \overline{4} / 4
$$

An inversion of ρ in standard form is a pair $\left(s, S_{j}\right)$ satisfying

1. $s \in S_{i}$ for some $i<j$, and
2. $s>m_{j}$.

Let inv ρ be the number of inversions of ρ.
Ex. We have $\operatorname{inv}(0 \overline{1} 1 \overline{3} 3 / \overline{2} 5 / 2 \overline{5} / \overline{4} / 4)=5$ with inversions

$$
\left(3, S_{1}\right),\left(3, S_{2}\right),\left(5, S_{2}\right),\left(5, S_{3}\right),\left(5, S_{4}\right)
$$

Let $|S|=\{|s|: s \in S\}$, so $\left|S_{2 i}\right|=\left|S_{2 i-1}\right|$ for $i \geq 1$. For all i let

$$
m_{i}=\min \left|S_{i}\right|
$$

We will always write signed partitions in standard form where 1. $m_{2 i} \in S_{2 i}$ for all i, and
2. $0=m_{0}<m_{2}<m_{4}<\cdots<m_{2 k}$.

Ex. The partition $\rho=0 \overline{1} 1 \overline{3} 3 / \overline{4} / 4 / 2 \overline{5} / \overline{2} 5$ has standard form

$$
\rho=0 \overline{1} 1 \overline{3} 3 / \overline{2} 5 / 2 \overline{5} / \overline{4} / 4
$$

An inversion of ρ in standard form is a pair $\left(s, S_{j}\right)$ satisfying

1. $s \in S_{i}$ for some $i<j$, and
2. $s>m_{j}$.

Let inv ρ be the number of inversions of ρ.
Ex. We have $\operatorname{inv}(0 \overline{1} 1 \overline{3} 3 / \overline{2} 5 / 2 \overline{5} / \overline{4} / 4)=5$ with inversions

$$
\left(3, S_{1}\right),\left(3, S_{2}\right),\left(5, S_{2}\right),\left(5, S_{3}\right),\left(5, S_{4}\right)
$$

Theorem (S-Swanson)

$$
S_{B}[n, k]=\sum_{\rho \in S_{B}(\langle n\rangle, k)} q^{\operatorname{inv} \rho} .
$$

Outline

Basic definitions

Combinatorial interpretations

Other work and open problems

Symmetric polynomials. If $\mathbf{x}=\left\{x_{1}, \ldots, x_{n}\right\}$ is a set of variables then the k th complete homogenenous symmetric polynomial in \mathbf{x} is

$$
h_{k}(n)=\text { sum of all monomials in } \mathbf{x} \text { of degree } k .
$$

Symmetric polynomials. If $\mathbf{x}=\left\{x_{1}, \ldots, x_{n}\right\}$ is a set of variables then the k th complete homogenenous symmetric polynomial in \mathbf{x} is

$$
h_{k}(n)=\text { sum of all monomials in } \mathrm{x} \text { of degree } k
$$

Theorem (S-Swanson)

$$
S_{B}[n, k]=h_{n-k}\left([1]_{q},[3]_{q}, \ldots,[2 k+1]_{q}\right)
$$

Symmetric polynomials. If $\mathbf{x}=\left\{x_{1}, \ldots, x_{n}\right\}$ is a set of variables then the k th complete homogenenous symmetric polynomial in \mathbf{x} is

$$
h_{k}(n)=\text { sum of all monomials in } \mathbf{x} \text { of degree } k .
$$

Theorem (S-Swanson)

$$
S_{B}[n, k]=h_{n-k}\left([1]_{q},[3]_{q}, \ldots,[2 k+1]_{q}\right)
$$

and

$$
\sum_{n \geq k} S_{B}[n, k] t^{n}=\frac{t^{k}}{\left(1-[1]_{q} t\right)\left(1-[3]_{q} t\right) \cdots\left(1-[2 k+1]_{q} t\right)}
$$

Symmetric polynomials. If $\mathbf{x}=\left\{x_{1}, \ldots, x_{n}\right\}$ is a set of variables then the k th complete homogenenous symmetric polynomial in \mathbf{x} is

$$
h_{k}(n)=\text { sum of all monomials in } \mathrm{x} \text { of degree } k
$$

Theorem (S-Swanson)

$$
S_{B}[n, k]=h_{n-k}\left([1]_{q},[3]_{q}, \ldots,[2 k+1]_{q}\right)
$$

and

$$
\sum_{n \geq k} S_{B}[n, k] t^{n}=\frac{t^{k}}{\left(1-[1]_{q} t\right)\left(1-[3]_{q} t\right) \cdots\left(1-[2 k+1]_{q} t\right)}
$$

We also have new identities involving symmetric polynomials.

Symmetric polynomials. If $\mathbf{x}=\left\{x_{1}, \ldots, x_{n}\right\}$ is a set of variables then the k th complete homogenenous symmetric polynomial in \mathbf{x} is

$$
h_{k}(n)=\text { sum of all monomials in } \mathrm{x} \text { of degree } k
$$

Theorem (S-Swanson)

$$
S_{B}[n, k]=h_{n-k}\left([1]_{q},[3]_{q}, \ldots,[2 k+1]_{q}\right)
$$

and

$$
\sum_{n \geq k} S_{B}[n, k] t^{n}=\frac{t^{k}}{\left(1-[1]_{q} t\right)\left(1-[3]_{q} t\right) \cdots\left(1-[2 k+1]_{q} t\right)}
$$

We also have new identities involving symmetric polynomials.
Why type B ?

Symmetric polynomials. If $\mathbf{x}=\left\{x_{1}, \ldots, x_{n}\right\}$ is a set of variables then the k th complete homogenenous symmetric polynomial in \mathbf{x} is

$$
h_{k}(n)=\text { sum of all monomials in } \mathbf{x} \text { of degree } k .
$$

Theorem (S-Swanson)

$$
S_{B}[n, k]=h_{n-k}\left([1]_{q},[3]_{q}, \ldots,[2 k+1]_{q}\right)
$$

and

$$
\sum_{n \geq k} S_{B}[n, k] t^{n}=\frac{t^{k}}{\left(1-[1]_{q} t\right)\left(1-[3]_{q} t\right) \cdots\left(1-[2 k+1]_{q} t\right)} .
$$

We also have new identities involving symmetric polynomials.
Why type B ? If $\rho=S_{1} / \ldots / S_{k}$ and $\sigma=T_{1} / \ldots / T_{\ell}$ are partitions of the same set then ρ is a refinement of σ if every S_{i} is contained in some T_{j}.

Symmetric polynomials. If $\mathbf{x}=\left\{x_{1}, \ldots, x_{n}\right\}$ is a set of variables then the k th complete homogenenous symmetric polynomial in \mathbf{x} is

$$
h_{k}(n)=\text { sum of all monomials in } \mathbf{x} \text { of degree } k .
$$

Theorem (S-Swanson)

$$
S_{B}[n, k]=h_{n-k}\left([1]_{q},[3]_{q}, \ldots,[2 k+1]_{q}\right)
$$

and

$$
\sum_{n \geq k} S_{B}[n, k] t^{n}=\frac{t^{k}}{\left(1-[1]_{q} t\right)\left(1-[3]_{q} t\right) \cdots\left(1-[2 k+1]_{q} t\right)}
$$

We also have new identities involving symmetric polynomials.
Why type B ? If $\rho=S_{1} / \ldots / S_{k}$ and $\sigma=T_{1} / \ldots / T_{\ell}$ are partitions of the same set then ρ is a refinement of σ if every S_{i} is contained in some T_{j}. Let Π_{n}^{B} be the poset $\uplus_{k} S_{B}(\langle n\rangle, k)$ ordered by refinement.

Symmetric polynomials. If $\mathbf{x}=\left\{x_{1}, \ldots, x_{n}\right\}$ is a set of variables then the k th complete homogenenous symmetric polynomial in \mathbf{x} is

$$
h_{k}(n)=\text { sum of all monomials in } \mathbf{x} \text { of degree } k .
$$

Theorem (S-Swanson)

$$
S_{B}[n, k]=h_{n-k}\left([1]_{q},[3]_{q}, \ldots,[2 k+1]_{q}\right)
$$

and

$$
\sum_{n \geq k} S_{B}[n, k] t^{n}=\frac{t^{k}}{\left(1-[1]_{q} t\right)\left(1-[3]_{q} t\right) \cdots\left(1-[2 k+1]_{q} t\right)}
$$

We also have new identities involving symmetric polynomials.
Why type B ? If $\rho=S_{1} / \ldots / S_{k}$ and $\sigma=T_{1} / \ldots / T_{\ell}$ are partitions of the same set then ρ is a refinement of σ if every S_{i} is contained in some T_{j}. Let Π_{n}^{B} be the poset $\uplus_{k} S_{B}(\langle n\rangle, k)$ ordered by refinement.
Theorem
Π_{n}^{B} is isomorphic to the intersection lattice of Coxeter group B_{n}.

Exponential generating functions.

Exponential generating functions. It is well known that

$$
\sum_{n \geq 0} S(n, k) \frac{x^{n}}{n!}=\frac{1}{k!}\left(e^{x}-1\right)^{k}
$$

Exponential generating functions. It is well known that

$$
\sum_{n \geq 0} S(n, k) \frac{x^{n}}{n!}=\frac{1}{k!}\left(e^{x}-1\right)^{k}
$$

We given type B analogues and q-analogues of this formula.

Exponential generating functions. It is well known that

$$
\sum_{n \geq 0} S(n, k) \frac{x^{n}}{n!}=\frac{1}{k!}\left(e^{x}-1\right)^{k}
$$

We given type B analogues and q-analogues of this formula. Write $[n]$ for $[n]_{q}$ if no confusion will result.

Exponential generating functions. It is well known that

$$
\sum_{n \geq 0} S(n, k) \frac{x^{n}}{n!}=\frac{1}{k!}\left(e^{x}-1\right)^{k}
$$

We given type B analogues and q-analogues of this formula. Write $[n]$ for $[n]_{q}$ if no confusion will result. Let

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]=\frac{[n]!}{[k]![n-k]!},
$$

Exponential generating functions. It is well known that

$$
\sum_{n \geq 0} S(n, k) \frac{x^{n}}{n!}=\frac{1}{k!}\left(e^{x}-1\right)^{k}
$$

We given type B analogues and q-analogues of this formula. Write $[n]$ for $[n]_{q}$ if no confusion will result. Let

$$
\begin{aligned}
{\left[\begin{array}{l}
n \\
k
\end{array}\right] } & =\frac{[n]!}{[k]![n-k]!}, \\
\exp _{q}(x) & =\sum_{n \geq 0} \frac{x^{n}}{[n]!}
\end{aligned}
$$

Exponential generating functions. It is well known that

$$
\sum_{n \geq 0} S(n, k) \frac{x^{n}}{n!}=\frac{1}{k!}\left(e^{x}-1\right)^{k}
$$

We given type B analogues and q-analogues of this formula. Write $[n]$ for $[n]_{q}$ if no confusion will result. Let

$$
\begin{aligned}
{\left[\begin{array}{l}
n \\
k
\end{array}\right] } & =\frac{[n]!}{[k]![n-k]!} \\
\exp _{q}(x) & =\sum_{n \geq 0} \frac{x^{n}}{[n]!}
\end{aligned}
$$

Theorem (S-Swanson)

$$
\text { 1. } \sum_{n \geq 0} S_{B}(n, k) \frac{x^{n}}{n!}=\frac{1}{2^{k} k!} e^{x}\left(e^{2 x}-1\right)^{k} \text {. }
$$

Exponential generating functions. It is well known that

$$
\sum_{n \geq 0} S(n, k) \frac{x^{n}}{n!}=\frac{1}{k!}\left(e^{x}-1\right)^{k}
$$

We given type B analogues and q-analogues of this formula. Write $[n]$ for $[n]_{q}$ if no confusion will result. Let

$$
\begin{aligned}
{\left[\begin{array}{l}
n \\
k
\end{array}\right] } & =\frac{[n]!}{[k]![n-k]!} \\
\exp _{q}(x) & =\sum_{n \geq 0} \frac{x^{n}}{[n]!}
\end{aligned}
$$

Theorem (S-Swanson)

1. $\sum_{n \geq 0} S_{B}(n, k) \frac{x^{n}}{n!}=\frac{1}{2^{k} k!} e^{x}\left(e^{2 x}-1\right)^{k}$.
2. $\sum_{n \geq 0} S[n, k] \frac{x^{n}}{[n]!}=\frac{1}{q^{\binom{k}{2}}[k]!} \sum_{i=0}^{k}(-1)^{k-i} q^{\binom{k-i}{2}}\left[\begin{array}{c}k \\ i\end{array}\right] \exp _{q}([i] x)$.

Exponential generating functions. It is well known that

$$
\sum_{n \geq 0} S(n, k) \frac{x^{n}}{n!}=\frac{1}{k!}\left(e^{x}-1\right)^{k}
$$

We given type B analogues and q-analogues of this formula. Write $[n]$ for $[n]_{q}$ if no confusion will result. Let

$$
\begin{aligned}
{\left[\begin{array}{l}
n \\
k
\end{array}\right] } & =\frac{[n]!}{[k]![n-k]!} \\
\exp _{q}(x) & =\sum_{n \geq 0} \frac{x^{n}}{[n]!}
\end{aligned}
$$

Theorem (S-Swanson)

1. $\sum_{n \geq 0} S_{B}(n, k) \frac{x^{n}}{n!}=\frac{1}{2^{k} k!} e^{x}\left(e^{2 x}-1\right)^{k}$.
2. $\sum_{n \geq 0} S[n, k] \frac{x^{n}}{[n]!}=\frac{1}{q^{\binom{k}{2}}[k]!} \sum_{i=0}^{k}(-1)^{k-i} q^{\binom{k-i}{2}}\left[\begin{array}{c}k \\ i\end{array}\right] \exp _{q}([i] x)$.

Open Problem: Find $\sum_{n \geq 0} s_{B}[n, k] x^{n} /[n]!$.

Coinvariant algebras.

Coinvariant algebras. The coinvariant algebra of \mathfrak{S}_{n} is

$$
\mathrm{R}_{n}=\frac{\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]}{\left\langle h_{1}(n), \ldots, h_{n}(n)\right\rangle}
$$

Coinvariant algebras. The coinvariant algebra of \mathfrak{S}_{n} is

$$
\mathrm{R}_{n}=\frac{\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]}{\left\langle h_{1}(n), \ldots, h_{n}(n)\right\rangle}
$$

This algebra has Artin basis

$$
\left\{x_{1}^{m_{1}} \cdots x_{n}^{m_{n}} \mid 0 \leq m_{i}<i \text { for all } i \in[n]\right\} .
$$

Coinvariant algebras. The coinvariant algebra of \mathfrak{S}_{n} is

$$
\mathrm{R}_{n}=\frac{\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]}{\left\langle h_{1}(n), \ldots, h_{n}(n)\right\rangle}
$$

This algebra has Artin basis

$$
\left\{x_{1}^{m_{1}} \cdots x_{n}^{m_{n}} \mid 0 \leq m_{i}<i \text { for all } i \in[n]\right\}
$$

If $\left(\mathrm{R}_{n}\right)_{d}$ is the degree d graded piece of R_{n} then its Hilbert series is

$$
\sum_{d \geq 0} \operatorname{dim}\left(\mathrm{R}_{n}\right)_{d} q^{d}=[n]!.
$$

Coinvariant algebras. The coinvariant algebra of \mathfrak{S}_{n} is

$$
\mathrm{R}_{n}=\frac{\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]}{\left\langle h_{1}(n), \ldots, h_{n}(n)\right\rangle}
$$

This algebra has Artin basis

$$
\left\{x_{1}^{m_{1}} \cdots x_{n}^{m_{n}} \mid 0 \leq m_{i}<i \text { for all } i \in[n]\right\}
$$

If $\left(\mathrm{R}_{n}\right)_{d}$ is the degree d graded piece of R_{n} then its Hilbert series is

$$
\sum_{d \geq 0} \operatorname{dim}\left(\mathrm{R}_{n}\right)_{d} q^{d}=[n]!.
$$

Zabrocki considered a super coinvariant algebra of $\mathfrak{S}_{n}, \mathrm{SR}_{n}$, which has a 2 nd set of anticommuting variables $\left\{\theta_{1}, \ldots, \theta_{n}\right\}$.

Coinvariant algebras. The coinvariant algebra of \mathfrak{S}_{n} is

$$
\mathrm{R}_{n}=\frac{\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]}{\left\langle h_{1}(n), \ldots, h_{n}(n)\right\rangle}
$$

This algebra has Artin basis

$$
\left\{x_{1}^{m_{1}} \cdots x_{n}^{m_{n}} \mid 0 \leq m_{i}<i \text { for all } i \in[n]\right\}
$$

If $\left(\mathrm{R}_{n}\right)_{d}$ is the degree d graded piece of R_{n} then its Hilbert series is

$$
\sum_{d \geq 0} \operatorname{dim}\left(\mathrm{R}_{n}\right)_{d} q^{d}=[n]!.
$$

Zabrocki considered a super coinvariant algebra of $\mathfrak{S}_{n}, \mathrm{SR}_{n}$, which has a 2 nd set of anticommuting variables $\left\{\theta_{1}, \ldots, \theta_{n}\right\}$.
Conjecture (Zabrocki)

$$
\sum_{d, f \geq 0} \operatorname{dim}\left(\mathrm{SR}_{n}\right)_{d, f} q^{d} t^{f}=\sum_{k \geq 0}[k]!S[n, k] t^{n-k}
$$

Coinvariant algebras. The coinvariant algebra of \mathfrak{S}_{n} is

$$
\mathrm{R}_{n}=\frac{\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]}{\left\langle h_{1}(n), \ldots, h_{n}(n)\right\rangle}
$$

This algebra has Artin basis

$$
\left\{x_{1}^{m_{1}} \cdots x_{n}^{m_{n}} \mid 0 \leq m_{i}<i \text { for all } i \in[n]\right\}
$$

If $\left(\mathrm{R}_{n}\right)_{d}$ is the degree d graded piece of R_{n} then its Hilbert series is

$$
\sum_{d \geq 0} \operatorname{dim}\left(\mathrm{R}_{n}\right)_{d} q^{d}=[n]!.
$$

Zabrocki considered a super coinvariant algebra of $\mathfrak{S}_{n}, \mathrm{SR}_{n}$, which has a 2 nd set of anticommuting variables $\left\{\theta_{1}, \ldots, \theta_{n}\right\}$.
Conjecture (Zabrocki)

$$
\sum_{d, f \geq 0} \operatorname{dim}\left(\mathrm{SR}_{n}\right)_{d, f} q^{d} t^{f}=\sum_{k \geq 0}[k]!S[n, k] t^{n-k}
$$

Swanson and Wallach made a similar conjecture in type B.

Coinvariant algebras. The coinvariant algebra of \mathfrak{S}_{n} is

$$
\mathrm{R}_{n}=\frac{\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]}{\left\langle h_{1}(n), \ldots, h_{n}(n)\right\rangle}
$$

This algebra has Artin basis

$$
\left\{x_{1}^{m_{1}} \cdots x_{n}^{m_{n}} \mid 0 \leq m_{i}<i \text { for all } i \in[n]\right\} .
$$

If $\left(\mathrm{R}_{n}\right)_{d}$ is the degree d graded piece of R_{n} then its Hilbert series is

$$
\sum_{d \geq 0} \operatorname{dim}\left(\mathrm{R}_{n}\right)_{d} q^{d}=[n]!.
$$

Zabrocki considered a super coinvariant algebra of $\mathfrak{S}_{n}, \mathrm{SR}_{n}$, which has a 2 nd set of anticommuting variables $\left\{\theta_{1}, \ldots, \theta_{n}\right\}$.
Conjecture (Zabrocki)

$$
\sum_{d, f \geq 0} \operatorname{dim}\left(\mathrm{SR}_{n}\right)_{d, f} q^{d} t^{f}=\sum_{k \geq 0}[k]!S[n, k] t^{n-k}
$$

Swanson and Wallach made a similar conjecture in type B. We conjecture analogues of the Artin basis in both type A and B which, if correct, would prove both conjectures.

THANKS FOR LISTENING!

