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We will use the notation

Z = the integers,

N = the nonnegative integers,

[n] = {1, 2, . . . , n}.

If q is a variable and n ∈ N then let

[n]q = 1 + q + q2 + · · ·+ qn−1,

[n]q! = [1]q[2]q · · · [n]q.

If Sn is the symmetric group of permutations of [n] then an
inversion of π = π1 . . . πn ∈ Sn is a copy of the pattern 21. So the
number of inversions of π is

inv π = #{(πi , πj) | i < j and πi > πj}.

Theorem
We have ∑

π∈Sn

qinv π = [n]q!.

Setting q = 1 in this theorem recovers the fact that #Sn = n!.
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The Stirling numbers of the 2nd kind are defined for n ∈ N and
k ∈ Z by S(0, k) = δ0,k (Kronecker delta) and for n ≥ 1

S(n, k) = S(n − 1, k − 1) + kS(n − 1, k).

A partition of S into k blocks is ρ = S1/ . . . /Sk were we have
S = ⊎iSi and Si ̸= ∅ for all i . Let S([n], k) be the set of ρ
partitioning [n] into k blocks.

Theorem

S(n, k) = #S([n], k).

Ex. If n = 3 then

k 1 2 3

S([3], k) 123 1/23, 2/13, 3/12 1/2/3

S(3, k) 1 3 1
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The q-Stirling numbers of the 2nd kind are S [0, k] = δ0,k and for
n ≥ 1

S [n, k] = S [n − 1, k − 1] + [k]qS [n − 1, k].

The S [n, k] were discovered by Carlitz (1948) and since studied by
many authors (Garsia, Gould, Milne, S, Steingŕımsson, Remmel,
Wachs, White, Zeng, Zhang, etc.). The type B Stirling numbers of
the second kind are SB(0, k) = δ0,k and for n ≥ 1

SB(n, k) = SB(n − 1, k − 1) + (2k + 1)SB(n − 1, k), 1 2

with q-analogue SB [n, k] obtained by replacing 2k + 1 by [2k + 1]q
in the SB(n, k) recursion. The case q = 1 is implicit of work of
Dowling and Zaslavsky, and explicit in papers of Dolgachev-Lunts
and Reiner. For general q, they only appear in a preprint of
Swanson and Wallach. Some of our results, including some in this
talk, have been independently found by Bagno, Garber, and
Komatsu.
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If n ∈ N then we will use the notation

⟨n⟩ = {−n,−n + 1, . . . , n − 1, n}.

A type B partition of ⟨n⟩ is ρ = S0/S1/S2/ . . . /S2k with

1. 0 ∈ S0 and if i ∈ S0 then −i ∈ S0, and

2. for i ≥ 1 we have S2i = −S2i−1,

where −S = {−s : s ∈ S}. Call S2i and S2i−1 paired. Let
SB(⟨n⟩, k) be the set of such ρ. Write s for −s.
Ex. An element of SB(⟨5⟩, 2) is

ρ = 01133 / 4/4 / 25/25.

Theorem
SB(n, k) = #SB(⟨n⟩, k).

Proof. Show that #SB(⟨n⟩, k) has the same recursion as SB(n, k).
Given ρ ∈ SB(⟨n⟩, k), let ρ′ be ρ with ±n removed. If ±n are
singletons in ρ then ρ′ ∈ SB(⟨n − 1⟩, k − 1). Otherwise
ρ′ ∈ SB(⟨n − 1⟩, k), and each such ρ′ gives rise to 2k + 1 possible
ρ since n can be inserted in any block of ρ′.
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Let |S | = {|s| : s ∈ S}, so |S2i | = |S2i−1| for i ≥ 1.

For all i let

mi = min |Si |.
We will always write signed partitions in standard form where

1. m2i ∈ S2i for all i , and
2. 0 = m0 < m2 < m4 < · · · < m2k .

Ex. The partition ρ = 01133 / 4/4 / 25/25 has standard form

ρ = 01133 / 25/25 / 4/4.

An inversion of ρ in standard form is a pair (s,Sj) satisfying

1. s ∈ Si for some i < j , and
2. s > mj .

Let inv ρ be the number of inversions of ρ.
Ex. We have inv(01133 / 25/25 / 4/4) = 5 with inversions

(3,S1), (3, S2), (5,S2), (5,S3), (5, S4).

Theorem (S-Swanson)

SB [n, k] =
∑

ρ∈SB(⟨n⟩,k)

qinv ρ.
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Symmetric polynomials. If x = {x1, . . . , xn} is a set of variables
then the kth complete homogenenous symmetric polynomial in x is

hk(n) = sum of all monomials in x of degree k.

Theorem (S-Swanson)

SB [n, k] = hn−k([1]q, [3]q, . . . , [2k + 1]q)

and∑
n≥k

SB [n, k]t
n =

tk

(1− [1]qt)(1− [3]qt) · · · (1− [2k + 1]qt)
.

We also have new identities involving symmetric polynomials.

Why type B? If ρ = S1/ . . . /Sk and σ = T1/ . . . /Tℓ are
partitions of the same set then ρ is a refinement of σ if every Si is
contained in some Tj . Let Π

B
n be the poset ⊎kSB(⟨n⟩, k) ordered

by refinement.

Theorem
ΠB
n is isomorphic to the intersection lattice of Coxeter group Bn.
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Exponential generating functions.

It is well known that∑
n≥0

S(n, k)
xn

n!
=

1

k!
(ex − 1)k .

We given type B analogues and q-analogues of this formula. Write
[n] for [n]q if no confusion will result. Let

[
n
k

]
=

[n]!

[k]![n − k]!
,

expq(x) =
∑
n≥0

xn

[n]!
.

Theorem (S-Swanson)

1.
∑
n≥0

SB(n, k)
xn

n!
=

1

2kk!
ex(e2x − 1)k .

2.
∑
n≥0

S [n, k]
xn

[n]!
=

1

q(
k
2)[k]!

k∑
i=0

(−1)k−iq(
k−i
2 )

[
k
i

]
expq([i ]x).

Open Problem: Find
∑

n≥0 sB [n, k]x
n/[n]!.
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Coinvariant algebras.

The coinvariant algebra of Sn is

Rn =
Q[x1, . . . , xn]

⟨h1(n), . . . , hn(n)⟩
.

This algebra has Artin basis

{xm1
1 · · · xmn

n | 0 ≤ mi < i for all i ∈ [n]}.

If (Rn)d is the degree d graded piece of Rn then its Hilbert series is∑
d≥0

dim(Rn)d qd = [n]!.

Zabrocki considered a super coinvariant algebra of Sn, SRn, which
has a 2nd set of anticommuting variables {θ1, . . . , θn}.
Conjecture (Zabrocki)∑

d ,f≥0

dim(SRn)d ,f q
d t f =

∑
k≥0

[k]!S [n, k]tn−k .

Swanson and Wallach made a similar conjecture in type B. We
conjecture analogues of the Artin basis in both type A and B
which, if correct, would prove both conjectures.
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