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We will use the notation

7 = the integers,
N = the nonnegative integers,
[n]={1,2,...,n}.
If g is a variable and n € N then let
Ng=1+q+¢*+ - +¢" %
[nlg! = [Lq[2]q - - [nlq-
If &, is the symmetric group of permutations of [n] then an

inversion of m =71 ... 7w, € &, is a copy of the pattern 21. So the
number of inversions of 7 is

invr = #{(m,m;) | i <jand 7; > m;}.

Theorem
We have

Z qinv7r _ [n]q!.

7(66!1

Setting ¢ = 1 in this theorem recovers the fact that #&,, = n!l.
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The Stirling numbers of the 2nd kind are defined for n € N and
k € Z by 5(0, k) = 9ok (Kronecker delta) and for n >1

S(n,k) =S(n—1,k—1)+ kS(n—1,k).

A partition of S into k blocks is p = S1/ ... /Sk were we have
S =u;S; and S; # () for all i. Let S([n], k) be the set of p
partitioning [n] into k blocks.

Theorem
S(n, k) = #S([n], k).
Ex. If n = 3 then

k 1 2 3
S([3], k) | 123 | 1/23, 2/13, 3/12| 1/2/3
S(3,k) | 1 3 1
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The g-Stirling numbers of the 2nd kind are S[0, k] = &g« and for
n>1
S[n,k] = S[n—1,k — 1] + [k]¢S[n — 1, k].

The S[n, k] were discovered by Carlitz (1948) and since studied by
many authors (Garsia, Gould, Milne, S, Steingrimsson, Remmel,
Wachs, White, Zeng, Zhang, etc.). The type B Stirling numbers of
the second kind are Sg(0, k) = 6o« and for n >'1

Sg(n, k) = Sg(n— 1,k — 1) + (2k + 1)Sg(n — 1, k),

with g-analogue Sg[n, k] obtained by replacing 2k + 1 by [2k + 1]q
in the Sg(n, k) recursion. The case g = 1 is implicit of work of
Dowling and Zaslavsky, and explicit in papers of Dolgachev-Lunts
and Reiner. For general g, they only appear in a preprint of
Swanson and Wallach. Some of our results, including some in this
talk, have been independently found by Bagno, Garber, and
Komatsu.
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A type B partition of (n) is p = So/51/52/ ... /Sak with
1. 0€ S5y and if i € Sp then —i € S, and
2. for i 2 1 we have Sy; = —55;_1,

where —S = {—s : s € S}. Call Sy; and Sy;_1 paired. Let
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Theorem
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If n € N then we will use the notation
(ny ={-n,—n+1,...,n—1,n}.

A type B partition of (n) is p = So/51/52/ ... /Sak with
1. 0€ S5y and if i € Sp then —i € S, and
2. for i > 1 we have Sy; = —S5;_1,
where —S = {—s : s € S}. Call Sy; and Sy;_1 paired. Let
Sg((n), k) be the set of such p. Write 5 for —s.
Ex. An element of Sg((5),2) is

p=01133 / 4/4 / 25/25.

Theorem

Sg(n, k) = #Sg((n), k).

Proof. Show that #Sg((n ) k) has the same recursion as Sg(n, k).
Given p € Sg({(n), k), let p’ be p with =n removed. If +n are
singletons in p then p' € Sg((n— 1),k — 1). Otherwise

p € Sg({n—1), k), and each such p’ gives rise to 2k + 1 possible
p since n can be inserted in any block of p’. O
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Let |S| ={|s| : s €S}, so |Sai| = |Sai—1] for i > 1. For all i let
m; = min |5;].
We will always write signed partitions in standard form where
1. my; € 5, for all i, and

2.0=mp<m < my<-- < my.
Ex. The partition p = 01133 / 4/4 / 25/25 has standard form

p = 01133 / 25/25 / 4/4.
An inversion of p in standard form is a pair (s, S;) satisfying
1. s e §; for some i < j, and
2. 5> mj.

Let inv p be the number of inversions of p.
Ex. We have inv(01133 / 25/25 / 4/4) = 5 with inversions

(3a51)7 (3752)7 (5752)a (5753)7 (554)

Theorem (S-Swanson)

58[”7 k] _ Z qinvp-

pES((n),k)
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Symmetric polynomials. If x = {x1,...,x,} is a set of variables
then the kth complete homogenenous symmetric polynomial in x is

hig(n) = sum of all monomials in x of degree k.

Theorem (S-Swanson)

Sg(n, k] = hp—k([1lq, Blq, - - - - [2k + 1]4)

and
n t*

n>k

We also have new identities involving symmetric polynomials.

Why type B? If p=51/.../Sckando=T1/... /Ty are
partitions of the same set then p is a refinement of o if every S; is
contained in some T;. Let MZ be the poset W, Sg({n), k) ordered
by refinement.

Theorem
I f is isomorphic to the intersection lattice of Coxeter group B,.
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Exponential generating functions. It is well known that

ank) (e — 1)k

n>0

We given type B analogues and g-analogues of this formula. Write
[n] for [n]q if no confusion will result. Let

H]wﬁu
eyl = 3

Theorem (S- Swanson) "=
1. ZSB n, k o 2kk| eX(e — 1)k,
n>0
L NSy [+ '
2 3 i e - g LV ] gt

Open Problem: Find }, o sg[n, k]x"/[n]!.



Coinvariant algebras.



Coinvariant algebras. The coinvariant algebra of G, is

Qlx1,- -, Xn]

R = Tha(n), s ()




Coinvariant algebras. The coinvariant algebra of &, is

Qlx1,- -, Xn]
(h1(n), ..., ha(n))

This algebra has Artin basis

Rn =

{x{™ x| 0 < m; <iforallié€[n]}.



Coinvariant algebras. The coinvariant algebra of G, is

Qlx1,- -, Xn]
(h1(n), ..., ha(n))

This algebra has Artin basis

Rn =

{x{™ x| 0 < m; <iforallié€[n]}.

If (Ry)q is the degree d graded piece of R, then its Hilbert series is

> dim(Rn)g g = [n]!.

d>0



Coinvariant algebras. The coinvariant algebra of G, is

Qlx1,- -, Xn]
(h1(n), ..., ha(n))

This algebra has Artin basis

Rn =

{x™ x| 0 < mj <iforallie[n]}.
If (Ry)q is the degree d graded piece of R, then its Hilbert series is
> dim(Rn)g g = [n]!.
d>0

Zabrocki considered a super coinvariant algebra of &,, SR, which
has a 2nd set of anticommuting variables {61, ...,0,}.



Coinvariant algebras. The coinvariant algebra of &, is

Qlx1,- -, Xn]
(h1(n), ..., ha(n))

This algebra has Artin basis

Rn =

{x™ x| 0 < mj <iforallie[n]}.
If (Ry)q is the degree d graded piece of R, then its Hilbert series is
> dim(Rn)g g = [n]!.
d>0

Zabrocki considered a super coinvariant algebra of &,, SR, which
has a 2nd set of anticommuting variables {61, ...,0,}.

Conjecture (Zabrocki)

> dim(SRn)a,rq?t" =D [K]IS[n, k]t" K.

d,f>0 k>0



Coinvariant algebras. The coinvariant algebra of &, is

Qlx1,- -, Xn]
(h1(n), ..., ha(n))

This algebra has Artin basis

Rn =

{x™ x| 0 < mj <iforallie[n]}.
If (Ry)q is the degree d graded piece of R, then its Hilbert series is
> dim(Rn)g g = [n]!.
d>0

Zabrocki considered a super coinvariant algebra of &,, SR, which
has a 2nd set of anticommuting variables {61, ...,0,}.

Conjecture (Zabrocki)
> dim(SRn)a,rq?t" =D [K]IS[n, k]t" K.
d,f>0 k>0

Swanson and Wallach made a similar conjecture in type B.



Coinvariant algebras. The coinvariant algebra of &, is

Qlx1,- -, Xn]
(h1(n), ..., ha(n))

This algebra has Artin basis

Rn =

{x™ x| 0 < mj <iforallie[n]}.
If (Ry)q is the degree d graded piece of R, then its Hilbert series is
> dim(Rn)g g = [n]!.
d>0

Zabrocki considered a super coinvariant algebra of &,, SR, which
has a 2nd set of anticommuting variables {61, ...,0,}.

Conjecture (Zabrocki)
> dim(SRn)a,rq?t" =D [K]IS[n, k]t" K.
d,f>0 k>0

Swanson and Wallach made a similar conjecture in type B. We
conjecture analogues of the Artin basis in both type A and B
which, if correct, would prove both conjectures.
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