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The Story

» Crystal Graphs provide nice combinatorial models for
representations of Lie algebras.

» The Tableaux model is simpler and has less structure.

» The Quantum Alcove model has extra structure which makes
it easier to do several computations (energy function,
combinatorial R-Matrix, .. .).

P It is therefore beneficial to have an explicit isomorphism
between the two models.
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Crystal Graphs

Main idea: use colored directed graphs to encode certain
representations of g complex semisimple or affine Lie algebras.

As a combinatorial object, a Kashiwara crystal of a given type,
rank n, and shape A= (A1 > Xy > ... > \p) is

1. aset B

2. along with the maps e, fi : B — BU {0} (for 1 <i < n).

Crystal graph: directed graph on B with edges colored b Ly
exactly for f;(b) = b'.
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Kirillov-Reshetikhin (KR) crystals

Crystals for certain affine Lie algebras §.
The corresponding crystals have operators fy, f1, ... fp.

Labeled by p x g rectangles, and denoted BP9.
Definition. Given a partition A = (A1, A2, ..., Ap), let
B =BMlwBMlw. ...

The crystal operators are defined on B* by a tensor product rule.



Type A KR crystal graph with n = 3 and shape A\ = (2, 1)
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The Quantum Alcove Model for B*

Definition. Given a partition A = (A1,...,,), we associate with it
a sequence of transpositions, called a A-chain:

F(/\) = (tl, tr,..., tm).
We consider subsets of positions in I,

J=(1<p<...<Jjs)CAL,...,m}.

Definition. A subset J is admissible if we have a path in the
quantum Bruhat graph
ty th ts
Id=w — Wtjl — Wtjl tjy - — Wtjltj2tjs'
Theorem [Lenart , Naito , Sagaki , Schilling , Shimozono , 2017]
The collection of all admissible subsets, A(I'),is a combinatorial
model for B*.
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Relating the Two Models

We build a forgetful map fill : A(I'(\)) — Tableau(\).

Example Consider type A with n =4 and A\ = (3,2,1,0). Then the
associated A-chain is

F(A) = ((3,4),(2,4),(1,4)[(2,3),(2,4), (1,3), (1,4)[(1,2), (1,3), (1,4)).
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Relating the Two Models

Example J ={1,2,4,5,8} €

A(T) and A = (3,2,1,0).
((3,4), (2,4), (1,4)(2,3), (2,4), (1,3), (1, 4)[(1,2), (1,3), (1, 4))

We get the corresponding path in the quantum Bruhat graph

1
id =

t23 t24 ,
I I 3
3] I

The blue columns (with entries sorted increasingly)
then give us fill(J) =

1]2]
2] .

’-hoob—\
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The Reverse Map in Type A, _1

This is done with two algorithms: Reorder and Path

The Reorder algorithm undoes the "increasingly sorted” part of the
fill map.

The Path algorithm then parses through the transpositions of ' to
select the correct path through the quantum Bruhat graph.

The resulting bijection is a crystal isomorphism [Lenart, Lubovsky,
2015].



The Type C, Map

» The filling map is similar.

» The inverse map has one major change. Many KN columns
have both i and 7 in them, so we use the splitting algorithm
[Lecouvey] to bijectively make two columns with no 7,7 pairs
in either.

> Example:

=(|Noljwl| o |
WI|-BICI|N | =

The (k) in type C, comes in two parts.
One traverses the split columns and the other moves to the
next column.

» Then similar Reorder and Path algorithms work.

» So now the reverse map is made up of a process of Split,
Reorder, and Path.



The Type B, Map

v

There is a similar filling map
For the reverse, similar to C,, we need a splitting map.

Recall that we now have columns of length k — 2/, so we need
to Extend back to length k [Briggs].

Further, the Path algorithm and Reorder algorithm no longer
work.

There is a configuration of two columns CC’ that we call
being blocked-off.

Modify Path and Modify Reorder to avoid block-off pattern.



Blocked-Off Pattern

Definition: We say that columns
L=(h,hb,...Ik),R = (n,r,..,r) are blocked off at i by b =r;
iff 0 < b>|/;| and

{1,2,...,b} C{|hl, |k, ... I}

and
{1,2,....b} c {|nl,|ral, - |ril}

and |{j:1<j<il<0,r >0} is odd.

Example: The following columns CC’ of height 5 with entries from
[8] are blocked-off at 4 by 3:

O W[N] | =
QO |W (NG|




The Type D, Map

» There is a similar filling map

» The splitting and Extend maps extend naturally.
» There is a Type D blocked-off pattern.

» Modify Path and Modify Reorder to avoid the new block-off
pattern.



Recent Work

» The bijections for types B, and D, given here are actually
crystal isomorphisms. In progress with undergraduate student.

» Efficient combinatorial computation for energy function for
types B and D.

» Explicit computation of so-called non-Dual-demazure arrows
in types B and D.



What is next?

» Explicit computation of non-Dual-demazure arrows in types
A, C.

» Explicit embedding of the more generation rectangular shape
into tensor product of column shape KR crystals.



Thank you!



