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The Story

I Crystal Graphs provide nice combinatorial models for
representations of Lie algebras.

I The Tableaux model is simpler and has less structure.

I The Quantum Alcove model has extra structure which makes
it easier to do several computations (energy function,
combinatorial R-Matrix, . . .).

I It is therefore beneficial to have an explicit isomorphism
between the two models.
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Crystal Graphs

Main idea: use colored directed graphs to encode certain
representations of g complex semisimple or affine Lie algebras.

As a combinatorial object, a Kashiwara crystal of a given type,
rank n, and shape λ = (λ1 ≥ λ2 ≥ . . . ≥ λn) is

1. a set B

2. along with the maps ei , fi : B → B ∪ {0} (for 1 ≤ i ≤ n).

Crystal graph: directed graph on B with edges colored b
i−→ b′

exactly for fi (b) = b′.
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Kirillov-Reshetikhin (KR) crystals

Crystals for certain affine Lie algebras ĝ.

The corresponding crystals have operators f0, f1, . . . fn.

Labeled by p × q rectangles, and denoted Bp,q.

Definition. Given a partition λ = (λ1, λ2, . . . , λn), let

Bλ = Bλ
′
1,1 ⊗ Bλ

′
m,1 ⊗ . . . .

The crystal operators are defined on Bλ by a tensor product rule.
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The corresponding crystals have operators f0, f1, . . . fn.

Labeled by p × q rectangles, and denoted Bp,q.

Definition. Given a partition λ = (λ1, λ2, . . . , λn), let

Bλ = Bλ
′
1,1 ⊗ Bλ

′
m,1 ⊗ . . . .

The crystal operators are defined on Bλ by a tensor product rule.



Kirillov-Reshetikhin (KR) crystals

Crystals for certain affine Lie algebras ĝ.
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Type A KR crystal graph with n = 3 and shape λ = (2, 1)
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The Quantum Alcove Model for Bλ

The main ingredient is the Weyl group W.

For type An−1 this is the Symmetric group Sn.

The quantum Bruhat graph on W is the directed graph with
labeled edges w → wti ,j , where

l(wti ,j) = l(w) + 1 (Bruhat graph on black edges), or
l(wti ,j) = l(w) + 1− 2〈ρ, α∨i ,j〉 (on red edges).
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The Quantum Alcove Model for Bλ

Definition. Given a partition λ = (λ1, . . . , λn), we associate with it
a sequence of transpositions, called a λ-chain:

Γ(λ) = (t1, t2, . . . , tm).

We consider subsets of positions in Γ,

J = (j1 < j2 < . . . < js) ⊆ {1, . . . ,m}.

Definition. A subset J is admissible if we have a path in the
quantum Bruhat graph

Id = w
tj1−→ wtj1

tj2−→ wtj1 tj2
. . .

tjs−→ wtj1 tj2 tjs
.

Theorem [Lenart , Naito , Sagaki , Schilling , Shimozono , 2017]
The collection of all admissible subsets, A(Γ),is a combinatorial
model for Bλ.
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Relating the Two Models

We build a forgetful map fill : A(Γ(λ))→ Tableau(λ).

Example Consider type A with n = 4 and λ = (3, 2, 1, 0). Then the
associated λ-chain is

Γ(λ) = ((3, 4), (2, 4), (1, 4)|(2, 3), (2, 4), (1, 3), (1, 4)|(1, 2), (1, 3), (1, 4)).
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Relating the Two Models

Example J = {1, 2, 4, 5, 8} ∈ A(Γ) and λ = (3, 2, 1, 0).

((3, 4), (2, 4), (1, 4)|(2, 3), (2, 4), (1, 3), (1, 4)|(1, 2), (1, 3), (1, 4))

We get the corresponding path in the quantum Bruhat graph
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1
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1
3
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.

The blue columns (with entries sorted increasingly)
then give us fill(J) =

1 1 2
3 2
4
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The Reverse Map in Type An−1

This is done with two algorithms: Reorder and Path

The Reorder algorithm undoes the ”increasingly sorted” part of the
fill map.

The Path algorithm then parses through the transpositions of Γ to
select the correct path through the quantum Bruhat graph.

The resulting bijection is a crystal isomorphism [Lenart, Lubovsky,
2015].
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The Type Cn Map
I The filling map is similar.
I The inverse map has one major change. Many KN columns

have both i and ı in them, so we use the splitting algorithm
[Lecouvey] to bijectively make two columns with no i , ı pairs
in either.

I Example:

4
5
5
4
3

split−−→

4 1
5 2
3 5
2 4
1 3

The Γ(k) in type Cn comes in two parts.
One traverses the split columns and the other moves to the
next column.

I Then similar Reorder and Path algorithms work.
I So now the reverse map is made up of a process of Split,

Reorder, and Path.



The Type Bn Map

I There is a similar filling map

I For the reverse, similar to Cn, we need a splitting map.

I Recall that we now have columns of length k − 2l , so we need
to Extend back to length k [Briggs].

I Further, the Path algorithm and Reorder algorithm no longer
work.

I There is a configuration of two columns CC ′ that we call
being blocked-off.

I Modify Path and Modify Reorder to avoid block-off pattern.



Blocked-Off Pattern
Definition: We say that columns
L = (l1, l2, ..., lk),R ′ = (r1, r2, ..., rk) are blocked off at i by b = ri
iff 0 < b ≥ |li | and

{1, 2, ..., b} ⊂ {|l1|, |l2|, ..., |li |}

and
{1, 2, ..., b} ⊂ {|r1|, |r2|, ..., |ri |}

and |{j : 1 ≤ j ≤ i , lj < 0, rj > 0}| is odd.

Example: The following columns CC ′ of height 5 with entries from
[8] are blocked-off at 4 by 3:

1 1
4 5
2 2
3 3
5 8



The Type Dn Map

I There is a similar filling map

I The splitting and Extend maps extend naturally.

I There is a Type D blocked-off pattern.

I Modify Path and Modify Reorder to avoid the new block-off
pattern.



Recent Work

I The bijections for types Bn and Dn given here are actually
crystal isomorphisms. In progress with undergraduate student.

I Efficient combinatorial computation for energy function for
types B and D.

I Explicit computation of so-called non-Dual-demazure arrows
in types B and D.



What is next?

I Explicit computation of non-Dual-demazure arrows in types
A,C .

I Explicit embedding of the more generation rectangular shape
into tensor product of column shape KR crystals.



Thank you!


