# Combinatorial Models in the Representation Theory of Affine Lie Algebras 

Permutation Patterns 2022

Adam Schultze

Saint Olaf College

Joint work with Carly Briggs and Cristian Lenart

The Story

## The Story

- Crystal Graphs provide nice combinatorial models for representations of Lie algebras.


## The Story

- Crystal Graphs provide nice combinatorial models for representations of Lie algebras.
- The Tableaux model is simpler and has less structure.


## The Story

- Crystal Graphs provide nice combinatorial models for representations of Lie algebras.
- The Tableaux model is simpler and has less structure.
- The Quantum Alcove model has extra structure which makes it easier to do several computations (energy function, combinatorial R-Matrix, ...).


## The Story

- Crystal Graphs provide nice combinatorial models for representations of Lie algebras.
- The Tableaux model is simpler and has less structure.
- The Quantum Alcove model has extra structure which makes it easier to do several computations (energy function, combinatorial R-Matrix, ...).
- It is therefore beneficial to have an explicit isomorphism between the two models.


## Crystal Graphs

## Crystal Graphs

Main idea: use colored directed graphs to encode certain representations of $\mathfrak{g}$ complex semisimple or affine Lie algebras.

## Crystal Graphs

Main idea: use colored directed graphs to encode certain representations of $\mathfrak{g}$ complex semisimple or affine Lie algebras.

As a combinatorial object, a Kashiwara crystal of a given type, rank $n$, and shape $\lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{n}\right)$ is

## Crystal Graphs

Main idea: use colored directed graphs to encode certain representations of $\mathfrak{g}$ complex semisimple or affine Lie algebras.

As a combinatorial object, a Kashiwara crystal of a given type, rank $n$, and shape $\lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{n}\right)$ is

1. a set $B$

## Crystal Graphs

Main idea: use colored directed graphs to encode certain representations of $\mathfrak{g}$ complex semisimple or affine Lie algebras.

As a combinatorial object, a Kashiwara crystal of a given type, rank $n$, and shape $\lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{n}\right)$ is

1. a set $B$
2. along with the maps $e_{i}, f_{i}: B \rightarrow B \cup\{0\}$ (for $1 \leq i \leq n$ ).

## Crystal Graphs

Main idea: use colored directed graphs to encode certain representations of $\mathfrak{g}$ complex semisimple or affine Lie algebras.

As a combinatorial object, a Kashiwara crystal of a given type, rank $n$, and shape $\lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{n}\right)$ is

1. a set $B$
2. along with the maps $e_{i}, f_{i}: B \rightarrow B \cup\{0\}$ (for $1 \leq i \leq n$ ).

Crystal graph: directed graph on B with edges colored $b \stackrel{i}{\rightarrow} b^{\prime}$ exactly for $f_{i}(b)=b^{\prime}$.

## Kirillov-Reshetikhin (KR) crystals

## Kirillov-Reshetikhin (KR) crystals

Crystals for certain affine Lie algebras $\hat{\mathfrak{g}}$.

## Kirillov-Reshetikhin (KR) crystals

Crystals for certain affine Lie algebras $\hat{\mathfrak{g}}$.
The corresponding crystals have operators $f_{0}, f_{1}, \ldots f_{n}$.

## Kirillov-Reshetikhin (KR) crystals

Crystals for certain affine Lie algebras $\hat{\mathfrak{g}}$.
The corresponding crystals have operators $f_{0}, f_{1}, \ldots f_{n}$.
Labeled by $p \times q$ rectangles, and denoted $\mathbf{B}^{p, q}$.

## Kirillov-Reshetikhin (KR) crystals

Crystals for certain affine Lie algebras $\hat{\mathfrak{g}}$.
The corresponding crystals have operators $f_{0}, f_{1}, \ldots f_{n}$.
Labeled by $p \times q$ rectangles, and denoted $\mathbf{B}^{p, q}$.
Definition. Given a partition $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$, let

$$
\mathbf{B}^{\lambda}=\mathbf{B}^{\lambda_{1}^{\prime}, 1} \otimes \mathbf{B}^{\lambda_{m}^{\prime}, 1} \otimes \ldots
$$

The crystal operators are defined on $\mathbf{B}^{\lambda}$ by a tensor product rule.

## Type $A K R$ crystal graph with $n=3$ and shape $\lambda=(2,1)$



The Quantum Alcove Model for $\mathbf{B}^{\lambda}$

The Quantum Alcove Model for $\mathbf{B}^{\lambda}$
The main ingredient is the Weyl group W.

## The Quantum Alcove Model for $\mathbf{B}^{\lambda}$

The main ingredient is the Weyl group W.
For type $A_{n-1}$ this is the Symmetric group $S_{n}$.

## The Quantum Alcove Model for $\mathbf{B}^{\lambda}$

The main ingredient is the Weyl group W.
For type $A_{n-1}$ this is the Symmetric group $S_{n}$.
The quantum Bruhat graph on $\mathbf{W}$ is the directed graph with labeled edges $w \rightarrow w t_{i, j}$, where

## The Quantum Alcove Model for $\mathbf{B}^{\lambda}$

The main ingredient is the Weyl group W.
For type $A_{n-1}$ this is the Symmetric group $S_{n}$.
The quantum Bruhat graph on $\mathbf{W}$ is the directed graph with labeled edges $w \rightarrow w t_{i, j}$, where

$$
I\left(w t_{i, j}\right)=I(w)+1 \text { (Bruhat graph on black edges), or }
$$

## The Quantum Alcove Model for $\mathbf{B}^{\lambda}$

The main ingredient is the Weyl group W.
For type $A_{n-1}$ this is the Symmetric group $S_{n}$.
The quantum Bruhat graph on $\mathbf{W}$ is the directed graph with labeled edges $w \rightarrow w t_{i, j}$, where

$$
\begin{aligned}
& I\left(w t_{i, j}\right)=I(w)+1 \text { (Bruhat graph on black edges), or } \\
& I\left(w t_{i, j}\right)=I(w)+1-2\left\langle\rho, \alpha_{i, j}^{\vee}\right\rangle \text { (on red edges). }
\end{aligned}
$$

## The Quantum Alcove Model for $\mathbf{B}^{\lambda}$

The main ingredient is the Weyl group W.
For type $A_{n-1}$ this is the Symmetric group $S_{n}$.
The quantum Bruhat graph on $\mathbf{W}$ is the directed graph with labeled edges $w \rightarrow w t_{i, j}$, where

$$
\begin{aligned}
& I\left(w t_{i, j}\right)=I(w)+1 \text { (Bruhat graph on black edges), or } \\
& I\left(w t_{i, j}\right)=I(w)+1-2\left\langle\rho, \alpha_{i, j}^{\vee}\right\rangle \text { (on red edges). }
\end{aligned}
$$



## The Quantum Alcove Model for $\mathbf{B}^{\lambda}$

The main ingredient is the Weyl group W.
For type $A_{n-1}$ this is the Symmetric group $S_{n}$.
The quantum Bruhat graph on $\mathbf{W}$ is the directed graph with labeled edges $w \rightarrow w t_{i, j}$, where

$$
\begin{aligned}
& I\left(w t_{i, j}\right)=I(w)+1 \text { (Bruhat graph on black edges), or } \\
& I\left(w t_{i, j}\right)=I(w)+1-2\left\langle\rho, \alpha_{i, j}^{\vee}\right\rangle \text { (on red edges). }
\end{aligned}
$$



The Quantum Alcove Model for $\mathbf{B}^{\lambda}$

## The Quantum Alcove Model for $\mathbf{B}^{\lambda}$

Definition. Given a partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$, we associate with it a sequence of transpositions, called a $\lambda$-chain:

$$
\Gamma(\lambda)=\left(t_{1}, t_{2}, \ldots, t_{m}\right) .
$$

## The Quantum Alcove Model for $\mathbf{B}^{\lambda}$

Definition. Given a partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$, we associate with it a sequence of transpositions, called a $\lambda$-chain:

$$
\Gamma(\lambda)=\left(t_{1}, t_{2}, \ldots, t_{m}\right) .
$$

We consider subsets of positions in $\Gamma$,

$$
J=\left(j_{1}<j_{2}<\ldots<j_{s}\right) \subseteq\{1, \ldots, m\} .
$$

## The Quantum Alcove Model for $\mathbf{B}^{\lambda}$

Definition. Given a partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$, we associate with it a sequence of transpositions, called a $\lambda$-chain:

$$
\Gamma(\lambda)=\left(t_{1}, t_{2}, \ldots, t_{m}\right) .
$$

We consider subsets of positions in $\Gamma$,

$$
J=\left(j_{1}<j_{2}<\ldots<j_{s}\right) \subseteq\{1, \ldots, m\} .
$$

Definition. A subset $J$ is admissible if we have a path in the quantum Bruhat graph

$$
I d=w \xrightarrow{t_{j_{1}}} w_{t_{j_{1}}} \xrightarrow{t_{j_{2}}} w_{t_{j_{1}}} t_{j_{2}} \ldots \xrightarrow{t_{j_{s}}} w_{t_{j_{1}} t_{j_{2}} t_{j_{s}}}
$$

## The Quantum Alcove Model for $\mathbf{B}^{\lambda}$

Definition. Given a partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$, we associate with it a sequence of transpositions, called a $\lambda$-chain:

$$
\Gamma(\lambda)=\left(t_{1}, t_{2}, \ldots, t_{m}\right)
$$

We consider subsets of positions in $\Gamma$,

$$
J=\left(j_{1}<j_{2}<\ldots<j_{s}\right) \subseteq\{1, \ldots, m\} .
$$

Definition. A subset $J$ is admissible if we have a path in the quantum Bruhat graph

$$
I d=w \xrightarrow{t_{j_{1}}} w_{t_{j_{1}}} \xrightarrow{t_{j_{2}}} w_{t_{j_{1}}} t_{j_{2}} \ldots \xrightarrow{t_{j_{s}}} w_{t_{j_{1}} t_{j_{2}} t_{j_{s}}} .
$$

Theorem [Lenart, Naito, Sagaki, Schilling, Shimozono, 2017] The collection of all admissible subsets, $\mathcal{A}(\Gamma)$, is a combinatorial model for $\mathbf{B}^{\lambda}$.

Relating the Two Models

## Relating the Two Models

We build a forgetful map fill : $\mathcal{A}(\Gamma(\lambda)) \rightarrow$ Tableau $(\lambda)$.

## Relating the Two Models

We build a forgetful map fill : $\mathcal{A}(\Gamma(\lambda)) \rightarrow$ Tableau $(\lambda)$.

Example Consider type $A$ with $n=4$ and $\lambda=(3,2,1,0)$.

## Relating the Two Models

We build a forgetful map fill : $\mathcal{A}(\Gamma(\lambda)) \rightarrow$ Tableau $(\lambda)$.

Example Consider type $A$ with $n=4$ and $\lambda=(3,2,1,0)$. Then the associated $\lambda$-chain is

$$
\Gamma(\lambda)=((3,4),(2,4),(1,4)|(2,3),(2,4),(1,3),(1,4)|(1,2),(1,3),(1,4))
$$

Relating the Two Models

Relating the Two Models
Example $J=\{1,2,4,5,8\} \in \mathcal{A}(\Gamma)$ and $\lambda=(3,2,1,0)$.

Relating the Two Models
Example $J=\{1,2,4,5,8\} \in \mathcal{A}(\Gamma)$ and $\lambda=(3,2,1,0)$.
$(\underline{(3,4)}, \underline{(2,4)},(1,4) \mid \underline{(2,3)},(\underline{(2,4)},(1,3),(1,4) \mid \underline{(1,2)},(1,3),(1,4))$

## Relating the Two Models

Example $J=\{1,2,4,5,8\} \in \mathcal{A}(\Gamma)$ and $\lambda=(3,2,1,0)$.

$$
((3,4),(2,4),(1,4) \underline{(2,3)},(\underline{(2,4)},(1,3),(1,4) \mid \underline{(1,2)},(1,3),(1,4))
$$

We get the corresponding path in the quantum Bruhat graph

## Relating the Two Models

Example $J=\{1,2,4,5,8\} \in \mathcal{A}(\Gamma)$ and $\lambda=(3,2,1,0)$.

$$
(\underline{(3,4)}, \underline{(2,4)},(1,4) \underline{(2,3)},(\underline{(2,4)},(1,3),(1,4) \mid \underline{(1,2)},(1,3),(1,4))
$$

We get the corresponding path in the quantum Bruhat graph

The blue columns (with entries sorted increasingly)

## Relating the Two Models

Example $J=\{1,2,4,5,8\} \in \mathcal{A}(\Gamma)$ and $\lambda=(3,2,1,0)$.

$$
((3,4),(\underline{2,4)},(1,4) \underline{(2,3)}, \underline{(2,4)},(1,3),(1,4) \mid \underline{(1,2)},(1,3),(1,4))
$$

We get the corresponding path in the quantum Bruhat graph

The blue columns (with entries sorted increasingly) then give us fill $(J)=$

| 1 | 1 | 2 |
| :--- | :--- | :--- |
| 3 | 2 |  |
| 4 |  |  |.

The Reverse Map in Type $A_{n-1}$

## The Reverse Map in Type $A_{n-1}$

This is done with two algorithms: Reorder and Path

## The Reverse Map in Type $A_{n-1}$

This is done with two algorithms: Reorder and Path
The Reorder algorithm undoes the "increasingly sorted" part of the fill map.

## The Reverse Map in Type $A_{n-1}$

This is done with two algorithms: Reorder and Path
The Reorder algorithm undoes the "increasingly sorted" part of the fill map.

The Path algorithm then parses through the transpositions of $\Gamma$ to select the correct path through the quantum Bruhat graph.

## The Reverse Map in Type $A_{n-1}$

This is done with two algorithms: Reorder and Path
The Reorder algorithm undoes the "increasingly sorted" part of the fill map.

The Path algorithm then parses through the transpositions of $\Gamma$ to select the correct path through the quantum Bruhat graph.

The resulting bijection is a crystal isomorphism [Lenart, Lubovsky, 2015].

## The Type $C_{n}$ Map

- The filling map is similar.
- The inverse map has one major change. Many KN columns have both $i$ and $\bar{\imath}$ in them, so we use the splitting algorithm [Lecouvey] to bijectively make two columns with no $i, \bar{\imath}$ pairs in either.
- Example:

$$
\begin{array}{|l|}
\hline 4 \\
\hline 5 \\
\hline \overline{5} \\
\hline \overline{4} \\
\hline \overline{3} \\
\hline
\end{array} \xrightarrow{\text { split }} \left\lvert\, \begin{array}{|l|l|}
\hline 4 & 1 \\
\hline 5 & 2 \\
\hline \overline{3} & \overline{5} \\
\hline \overline{2} & \overline{4} \\
\hline \overline{1} & \overline{3} \\
\hline
\end{array}\right.
$$

The $\Gamma(k)$ in type $C_{n}$ comes in two parts.
One traverses the split columns and the other moves to the next column.

- Then similar Reorder and Path algorithms work.
- So now the reverse map is made up of a process of Split, Reorder, and Path.


## The Type $B_{n}$ Map

- There is a similar filling map
- For the reverse, similar to $C_{n}$, we need a splitting map.
- Recall that we now have columns of length $k-2$ l, so we need to Extend back to length $k$ [Briggs].
- Further, the Path algorithm and Reorder algorithm no longer work.
- There is a configuration of two columns $C C^{\prime}$ that we call being blocked-off.
- Modify Path and Modify Reorder to avoid block-off pattern.


## Blocked-Off Pattern

Definition: We say that columns
$L=\left(l_{1}, l_{2}, \ldots, I_{k}\right), R^{\prime}=\left(r_{1}, r_{2}, \ldots, r_{k}\right)$ are blocked off at $i$ by $b=r_{i}$
iff $0<b \geq\left|I_{i}\right|$ and

$$
\{1,2, \ldots, b\} \subset\left\{\left|I_{1}\right|,\left|I_{2}\right|, \ldots,\left|I_{i}\right|\right\}
$$

and

$$
\{1,2, \ldots, b\} \subset\left\{\left|r_{1}\right|,\left|r_{2}\right|, \ldots,\left|r_{i}\right|\right\}
$$

and $\left|\left\{j: 1 \leq j \leq i, l_{j}<0, r_{j}>0\right\}\right|$ is odd.
Example: The following columns $C C^{\prime}$ of height 5 with entries from [ $\overline{8}$ ] are blocked-off at 4 by 3 :

| 1 | 1 |
| :---: | :---: |
| 4 | 5 |
| $\overline{2}$ | $\overline{2}$ |
| $\overline{3}$ | 3 |
| 5 | 8 |

## The Type $D_{n}$ Map

- There is a similar filling map
- The splitting and Extend maps extend naturally.
- There is a Type $D$ blocked-off pattern.
- Modify Path and Modify Reorder to avoid the new block-off pattern.


## Recent Work

- The bijections for types $B_{n}$ and $D_{n}$ given here are actually crystal isomorphisms. In progress with undergraduate student.
- Efficient combinatorial computation for energy function for types $B$ and $D$.
- Explicit computation of so-called non-Dual-demazure arrows in types $B$ and $D$.


## What is next?

- Explicit computation of non-Dual-demazure arrows in types $A, C$.
- Explicit embedding of the more generation rectangular shape into tensor product of column shape $K R$ crystals.

Thank you!

