Unimodality of q-twotorials via alternating gamma vectors
Gabriel Johnson, Chloe Sass, Jordan Tirrell, and Max Tucker
Washington College

The q-factorials

The $n^{\text {th } ~} q$-integer is $[n]_{q}:=1+q+q^{2}+\cdots+q^{n-1}$, and the $n^{\text {th } ~} q$-factorial is the product

$$
[n] q!=(1+q)\left(1+q+q^{2}\right) \cdots\left(1+q+q^{2}+\cdots+q^{n-1}\right) .
$$

For example,

$$
[4] q!=1+3 q+5 q^{2}+6 q^{3}+5 q^{4}+3 q^{5}+q^{6} .
$$

It is well-known that the q-factorials are both palindromic and unimodal (their coefficients satisfy
$a_{i}=a_{d-i}$ and $a_{0} \leq \cdots \leq a_{[d / 2]} \geq \cdots \geq a_{d}$ for their palindromic degree d). Each of the individual
q-integers are both palindromicand unimodal and these properties are preserved by multiplication.

The q-twotorials

We will call the polynomial $1+q^{n}$ the $n^{\text {th }} q$-two and define the $n^{\text {th } ~} q$-twotorial to be the analogous factorial-like product

$$
(1+q)\left(1+q^{2}\right) \cdots\left(1+q^{n}\right)
$$

For example, $\quad(1+q)\left(1+q^{2}\right)\left(1+q^{3}\right)=1+q+q^{2}+2 q^{3}+q^{4}+q^{5}+q^{6}$. Like the q-integers, each individual q-two is palindromic and it follows that the q-twotorials are palindromic too. Unike the q-integers, NOT every q-two is unimodal, and proving the q-twotorials are unimodal is much more challenging. An algebraic proof was given by Stanley in 1989.

Main Question

We would like to have a combinatorial proof that the q-twotorials are unimodal. We expand this question from q-twotorials to all products of q-twos. Given a sequence of positive integers $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$ whose sum is d define

$$
2_{q}^{[\alpha]}:=\left(1+q^{\alpha_{1}}\right)\left(1+q^{\alpha_{2}}\right) \cdots\left(1+q^{\alpha_{n}}\right) .
$$

For α such that $2_{q}^{[\alpha]}$ is unimodal, is there a combinatorial proof of unimodality? For any $2_{q}^{[\alpha]}$, is there a cancellation-free interpretation for the g-vector?

The g-vectors

An important tool in proving the unimodality of a palindromic polynomial is its g-vector. The g-vector $g=$ $\left(g_{0}, g_{1}, \ldots, g_{[d / 2)}\right)$ of a paindromic polynomial can be computed simply by writing out its coefficients as a sut
tered vectors of all 1 's. For the example q-cactorial and q-wotorial we gave above, we have the following.

The γ-vectors
The γ-vectors are analogous to g-vectors, but they use rows of Pascal's triangle instead of vectors of all 1 's. For the examples above, we compute them as follows.

The γ-vectors of $\left[4 q\right.$! and $f(1,2,3 ; q)=(1+q)\left(1+q^{2}\right)\left(1+q^{3}\right)$ are $(1,-3,2,0)$ and $(1,-5,6,0)$. Notice that these vectors are NOT nonnegative, but they do alternate in sign.

Main Strategy

We follow a suggestion by Brittenham et al. (2016) to exploit the combinatorics of the alternating γ-vectors. The alternating γ-vectors behave very nicely (their associated polynomials are multi-γ-vectors. The alternating γ-vectors behave very nicely (their associated polynomials are multi-
plicative) and can be interpreted as counting domino tilings. The transformation from γ-vectors to g-vectors which can be interpreted using ballot paths. We combine these tilings and paths but we end up with a set that contains "negative" objects which should cancel with "positive" ones. We introduce a strategy to handle some of this cancellation which requires a structure we call a g-tree. In certain cases, we obtain a positive g-tree and a true proof of unimodality.

Binary trees of permutations and g-trees

A binary tree of permutations of $n>1$ is a list $\bar{\pi}$ of 2^{n-2} permutations of n that can be represented as root-to-leaf paths on a vertex-labelled binary tree (see below left). We call it synchronous when each permutation is the same. A g-tree for α with respect to $\bar{\pi}$ is constructed by starting with a root +1 and following along in the binary tree, creating for each vertex labelled v two children labelled $+v$ and $-v$ respectively, but removing any child that creates a partial sum of zero in a root-to-leaf path. See the example for $\alpha=(1,2,3,4)$ below right, which comes from the $\bar{\pi}$ below left. In this a sign change in the partial sum. A g-tree with no sign changes is called positive.

Main Theorem

Given any g-tree for α, the g-coefficient g_{i} is the number of maximal root-to-leaf paths whose sum is $d-2 i+1$ minus the number whose sum is $-(d-2 i+1)$. In particular, if α has a positive g-tree, then its g-vector enumerates the root-toleaf paths and we have a combinatorial proof of unimodality.

Example

Below are all four positive g-trees for $\alpha=(1,2,3,4,5,6)$.

(+1) $+1-+2-+4$	+3		+6	$=22$							+5	$=22$	
		+5	-6	$=10$	(+1) $-+1-+2-+4$				+3		-5	$=12$	
		-5	+6	$=12$					-6	+5	$=10$		
	-3	5	+6	$=16$					-3	+5	+6	$=16$	
		+5	-6	$=4$					-6		$=4$		
	+3		+6	$=22$						+	+6	+3	$=22$
			-6	$=10$					-3			$=16$	
	+5		+6	$=16$							+3	$=10$	
(+1) $+1 \begin{array}{lll}\text { + } & +4\end{array}$		-3	-6	$=4$	${ }^{+1}$	+1	+2	+4		-6	-3	$=4$	

We can see that all of our trees have branch sums of $22,16,12,10$, and 4 . Using our main theorem, We can interpret $g_{\text {. }}$. or example, we know that $g_{3}=1$ because $i=3$ and $d=21$, so $d-2 i+1=16$ and there is 1 branch with sum 16 . The entire g-vector is ($1,0,0,1,0,1,1,0,0,1,0$)

Consequences

We were able to find positive g-trees for most of the q-twotorial cases up to $n=24$. The table below shows for which n we can prove unimodality of the $n^{\text {th }} q$-twotorial with an g-tree.
$n 1123456789101112131415161718192021222324$
For the more general question about all products of q-twos, we have some sufficient conditions on α for the existence of positive g-trees. For example, given a composition of the form $\alpha=$ $\left(1,2,4, \ldots, 2^{k-1}, \alpha_{k+1}, \ldots, \alpha_{n}\right) \vdash d$, there is a positive g-tree of α beginning $+1+1+2+4+\cdots+2^{k-}$ with maximal size 2^{n-k} or $2^{n-k}-1$ if and only if

$$
\sum_{i=k+1}^{n} \alpha_{i} \leq 2^{k} .
$$

The following table shows how many sequences α of given lengths exist with certain properties The property in each row implies the properties in previous rows.

$\operatorname{len} \alpha$	1	2	3	4	5	6	7	8	9
$2_{q}^{[\alpha]}$ is unimodal	1	2	5	13	42	149	653	3369	21304
positive g-trae	1	2	5	13	41	145	626	3203	20047
synchronous positive g-tree	1	2	5	13	40	141	595	3019	18831
maximal size g-tree $+1+1+2 \cdots+2^{k-1} \cdots$	1	2	5	13	37	121	477	2328	14328

Non-unimodal cases

We can use our main theorem to give combinatorial proofs of non-unimodality for some cases, namely when we are able to give a cancellation-free g-tree. As before, the following table shows how many sequences α of given lengths exist with certain properties. The property in each row mplies the properties in previous row

$\operatorname{len} \alpha$	1	2	3	4	5	6	7	8										
$2_{q}^{(\alpha)}$ has non-zero coefficients	1	2	6	27	192	2280	47097	173580										
2^{2}	2	6	27	188	2134	40532	131341			cancellation-free g-tree	1	2	6	27	188	2134	40532	1313411
:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	synchronous cancellation-free g-tree $1 \begin{array}{lllllllll}1 & 2 & 6 & 25 & 164 & 1693 & 29414 & 874071\end{array}$								

The first row above is A003513, because such α are essentially regular sequences, which appear in the study of subjective probability in mathematical psychology.

Proof concept

We will work through the main ideas of our proof using the example e ${ }_{q}^{[1,2,3]}=(1+q)\left(1+q^{2}\right)\left(1+q^{3}\right)$. First, well make

 appears
of $f_{l}^{2,2,3]}$

Each domino creates a negation, so the tilings with one domino are "negative" objects, and the tilings with two dominos are "positive" objects (negated twice).
To get objects counted by the g-vector, we will fill in the remaining locations in our tiling with a ballot path, which is sequence of U's and D's such that while reading from left to right there are never more D's than U's. Below are all
of the combined domino tling/ballot taths where the combination has a total of $3 \mathrm{D} / \mathrm{d}$'s (this is what we need for g_{3} specifically).

UIUDIUDD	uludidud	Ulduludd	Ulduldud	Uludludd	
Uludlud	Uludidud	U\|duludd	U\|duldud	Uludludd	
Uludidud	Ulualadu	Uldulud	Ulduldud	U\|duldiu	
U\|UD	Dud	uludidiu	U\| Dulud	ulduldud	u\|duld ${ }^{\text {a }}$
		UlUuldid			

Most of the objects above appear in positive-negative pairs (defned by the first swap better
cancel out when we count. Only one U U U U | D D remains, so we get $g_{3}=1$ for our count.
The strategy we outlined above works whenever we arrange the blocks in an order that agrees with a synchronous positive g-tree. We saw that the order $1,2,3$ worked above because $\oplus++1+\frac{+3}{-3}$ is a synchronous positive g-tree. In fact, the fixed point we previously found is counted by the lower branch $(1$ up, 2 ups, 3 downs). However, there
is is not 2, which would be the sum up to that point. And indeed the strategy above fails for said order If we try to math 2. which would be the sum up to that point. And indeed the strategy above fails for said order. If we try to match
up positive-negative pairs as before, we encounter a problem with $\mathrm{U} \mid \mathrm{d} \mathrm{D} \| \mathrm{U}$ U in which we cannot capitalize the domino, because a ballot path cannot begin U D D.

Acknowledgements

We would to thank the John S. Toll Science and Mathematics Fellows program and the Hodson Trust for their funding. We would also like to thank T . Kyle Petersen and Kyle Wilson for their helpful advice.

References

[^0]
[^0]: 11] Charles Bittenham, Andrew T Caronl. T T Kyle
 Sournal of Combinatorics, 232(:)P2-40, 2016.
 2] Bruce E Sagan and Jordan Tirell. Lucas stoms. Advances in Mathematics, 374:107387, 2020.
 (3) Richard P Stanley. Log. concave and unimodal sequences in ligebra, combinatorics, and geometry. Anm. New YorkA Acad. SCi,

