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The q-factorials

The nth q-integer is [n]q := 1 + q + q2 + · · · + qn−1, and the nth q-factorial is the product

[n]q! := (1 + q)(1 + q + q2) . . . (1 + q + q2 + . . . + qn−1).
For example,

[4]q! = 1 + 3q + 5q2 + 6q3 + 5q4 + 3q5 + q6.

It is well-known that the q-factorials are both palindromic and unimodal (their coefficients satisfy

ai = ad−i and a0 ≤ · · · ≤ abd/2c ≥ · · · ≥ ad for their palindromic degree d). Each of the individual

q-integers are both palindromic and unimodal, and these properties are preserved bymultiplication.

The q-twotorials

Wewill call the polynomial 1 + qn the nth q-two and define the nth q-twotorial to be the analogous

factorial-like product

(1 + q)(1 + q2) · · · (1 + qn).

For example,

(1 + q)(1 + q2)(1 + q3) = 1 + q + q2 + 2q3 + q4 + q5 + q6.

Like the q-integers, each individual q-two is palindromic and it follows that the q-twotorials are

palindromic too. Unlike the q-integers, NOT every q-two is unimodal, and proving the q-twotorials
are unimodal is much more challenging. An algebraic proof was given by Stanley in 1989.

Main Question

We would like to have a combinatorial proof that the q-twotorials are unimodal. We expand

this question from q-twotorials to all products of q-twos. Given a sequence of positive integers

α = (α1, α2, . . . , αn) whose sum is d, define

2[α]
q := (1 + qα1)(1 + qα2) · · · (1 + qαn).

For α such that 2[α]
q is unimodal, is there a combinatorial proof of unimodality? For any 2[α]

q , is

there a cancellation-free interpretation for the g-vector?

The g-vectors

An important tool in proving the unimodality of a palindromic polynomial is its g-vector. The g-vector g =
(g0, g1, . . . , gbd/2c) of a palindromic polynomial can be computed simply by writing out its coefficients as a sum of cen-

tered vectors of all 1’s. For the example q-factorial and q-twotorial we gave above, we have the following.

1 3 5 6 5 3 1
1× 1 1 1 1 1 1 1
2× 1 1 1 1 1
2× 1 1 1
1× 1

1 1 1 2 1 1 1
1× 1 1 1 1 1 1 1
0× 1 1 1 1 1
0× 1 1 1
1× 1

The g-vectors of [4]q! and f (1, 2, 3; q) = (1 + q)(1 + q2)(1 + q3) are (1, 2, 2, 1) and (1, 0, 0, 1). Notice that these vectors

are nonnegative, which is equivalent to the polynomial being unimodal.

The γ-vectors

The γ-vectors are analogous to g-vectors, but they use rows of Pascal’s triangle instead of vectors of all 1’s. For the

examples above, we compute them as follows.

1 3 5 6 5 3 1
1× 1 6 15 20 15 6 1

−3× 1 4 6 4 1
2× 1 2 1
0× 1

1 1 1 2 1 1 1
1× 1 6 15 20 15 6 1

−5× 1 4 6 4 1
6× 1 2 1
0× 1

The γ-vectors of [4]q! and f (1, 2, 3; q) = (1+q)(1+q2)(1+q3) are (1, −3, 2, 0) and (1, −5, 6, 0). Notice that these vectors
are NOT nonnegative, but they do alternate in sign.

Main Strategy

We follow a suggestion by Brittenham et al. (2016) to exploit the combinatorics of the alternating

γ-vectors. The alternating γ-vectors behave very nicely (their associated polynomials are multi-

plicative) and can be interpreted as counting domino tilings. The transformation from γ-vectors
to g-vectors which can be interpreted using ballot paths. We combine these tilings and paths but

we end up with a set that contains “negative” objects which should cancel with “positive” ones.

We introduce a strategy to handle some of this cancellation which requires a structure we call a

g-tree. In certain cases, we obtain a positive g-tree and a true proof of unimodality.

Binary trees of permutations and g-trees

A binary tree of permutations of n > 1 is a list π̄ of 2n−2 permutations of n that can be represented

as root-to-leaf paths on a vertex-labelled binary tree (see below left). We call it synchronouswhen

each permutation is the same. A g-tree for α with respect to π̄ is constructed by starting with a root

+1 and following along in the binary tree, creating for each vertex labelled v two children labelled

+v and −v respectively, but removing any child that creates a partial sum of zero in a root-to-leaf

path. See the example for α = (1, 2, 3, 4) below right, which comes from the π̄ below left. In this

example, we have removed paths +1-1 and +1+1-4+2. Note that the highlighted vertex −4 creates
a sign change in the partial sum. A g-tree with no sign changes is called positive.
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+3 = −1
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−3
−2 = 1

+2 = 5

+3
−2 = 7

+2 = 11

Main Theorem

Given any g-tree for α, the g-coefficient gi is the number of maximal root-to-leaf

paths whose sum is d − 2i + 1 minus the number whose sum is −(d − 2i + 1).
In particular, if α has a positive g-tree, then its g-vector enumerates the root-to-

leaf paths and we have a combinatorial proof of unimodality.

Example

Below are all four positive g-trees for α = (1, 2, 3, 4, 5, 6).

+1 +1 +2 +4

−3 +5
−6 = 4

+6 = 16

+3
−5 +6 = 12

+5
−6 = 10

+6 = 22

+1 +1 +2 +4

−3 +5
−6 = 4

+6 = 16

+3
−6 +5 = 10

+6
−5 = 12

+5 = 22

+1 +1 +2 +4

−5 +3 +6 = 12

+5

−3
−6 = 4

+6 = 16

+3
−6 = 10

+6 = 22

+1 +1 +2 +4

−5 +3 +6 = 12

+5

−6
−3 = 4

+3 = 10

+6
−3 = 16

+3 = 22

We can see that all of our trees have branch sums of 22, 16, 12, 10, and 4. Using ourmain theorem,

we can interpret gi. For example, we know that g3 = 1 because i = 3 and d = 21, so d − 2i + 1 = 16
and there is 1 branch with sum 16. The entire g-vector is (1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0).

Consequences

We were able to find positive g-trees for most of the q-twotorial cases up to n = 24. The table

below shows for which n we can prove unimodality of the nth q-twotorial with an g-tree.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

X X X X X X X X X X _ X _ X X _ X X _ X X X X X

For the more general question about all products of q-twos, we have some sufficient conditions

on α for the existence of positive g-trees. For example, given a composition of the form α =
(1, 2, 4, . . . , 2k−1, αk+1, . . . , αn) ` d, there is a positive g-tree of α beginning +1+1+2+4+ · · · +2k−1

with maximal size 2n−k or 2n−k − 1 if and only if
n∑

i=k+1
αi ≤ 2k.

The following table shows how many sequences α of given lengths exist with certain properties.

The property in each row implies the properties in previous rows.

len α 1 2 3 4 5 6 7 8 9

2[α]
q is unimodal 1 2 5 13 42 149 653 3369 21304

positive g-tree 1 2 5 13 41 145 626 3203 20047

synchronous positive g-tree 1 2 5 13 40 141 595 3019 18831

maximal size g-tree +1+1+2 · · · +2k−1 · · · 1 2 5 13 37 121 477 2328 14328

Non-unimodal cases

We can use our main theorem to give combinatorial proofs of non-unimodality for some cases,

namely when we are able to give a cancellation-free g-tree. As before, the following table shows

how many sequences α of given lengths exist with certain properties. The property in each row

implies the properties in previous rows.

len α 1 2 3 4 5 6 7 8

2[α]
q has non-zero coefficients 1 2 6 27 192 2280 47097 1735803

cancellation-free g-tree 1 2 6 27 188 2134 40532 1313411

synchronous cancellation-free g-tree 1 2 6 25 164 1693 29414 874071

The first row above is A003513, because such α are essentially regular sequences, which appear in

the study of subjective probability in mathematical psychology.

Proof concept

We will work through the main ideas of our proof using the example 2[1,2,3]
q = (1 + q)(1 + q2)(1 + q3). First, we’ll make

a sequence - | - - | - - - which has three parts (of sizes 1, 2, and 3). Next, we are going to construct domino tilings

on this by placing “dominos” u d on the parts such that the d immediately follows the u or the u is the end and the d
appears back around at the start. Below are all of the possible domino tilings, and these are counted by the γ-vector

of 2[1,2,3]
q .

γ0 = 1 - | - - | - - -
γ1 = −5 - | u d | - - -, - | d u | - - -, - | - - | u d -, - | - - | - u d, - | - - | d - u
γ2 = 6 - | u d | u d -, - | u d | - u d, - | u d | d - u, - | d u | u d -, - | d u | - u d, - | d u | d - u
γ3 = 0 none

Each domino creates a negation, so the tilings with one domino are “negative” objects, and the tilings with two dominos

are “positive” objects (negated twice).

To get objects counted by the g-vector, we will fill in the remaining locations in our tiling with a ballot path, which is

a sequence of U’s and D’s such that while reading from left to right there are never more D’s than U’s. Below are all

of the combined domino tiling/ballot paths where the combination has a total of 3 D/d’s (this is what we need for g3
specifically).

U | U D | U D D U | U D | D U D U | D U | U D D U | D U | D U D U | u d | u d D
U | u d | U D D U | u d | D U D U | d u | U D D U | d u | D U D U | U D | u d D

U | u d | D u d U | u d | d D u U | d u | u d D U | d u | D u d U | d u | d D u
U | U D | D u d U | U D | d D u U | D U | u d D U | D U | D u d U | D U | d D u

U | U U | D D D

Most of the objects above appear in positive–negative pairs (defined by the first swap between a u d and U D), which
cancel out when we count. Only one U | U U | D D D remains, so we get g3 = 1 for our count.

The strategy we outlined above works whenever we arrange the blocks in an order that agrees with a synchronous

positive g-tree. We saw that the order 1, 2, 3 worked above because +1 +1 +2
−3

+3
is a synchronous positive g-tree.

In fact, the fixed point we previously found is counted by the lower branch (1 up, 2 ups, 3 downs). However, there

is is not an g-tree that corresponds to the order 1, 3, 2. It does not meet the requirements because 3 is greater than

2, which would be the sum up to that point. And indeed the strategy above fails for said order. If we try to match

up positive-negative pairs as before, we encounter a problem with U | d D u | U U in which we cannot capitalize the

domino, because a ballot path cannot begin U D D.
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