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» Thus we say 316475829 is a

213 cluster.



Permutation clusters and permutation statistics

> 71 € Sy is a 213 cluster if for every i the consecutive
pattern (21 + 1) (21 + 2) 7t(21 + 3) has the same relative
order as 213.

> More generally, form > 2, m € Sipxy1isa2l34...(m+1)
cluster if for every i the consecutive pattern
nmi+ 1) t(mi+2) ... w(mi+ m+ 1) has the same
relative order as 2134 ... (m + 1).

> Given a permutation 7t

» the descent number of tis des(m) = #{j: n(j) > n(j+ 1)}

> the peak number is pk(7t) =#j: n(j — 1) < n(j) > n(j + 1)}
> the inverse descent number of 7t is ides(7t) = des(n');

> the inverse peak number of 7t is ipk(m) = pk(Tt_1 ).

» We have found the enumeration of 2134 ... (m + 1) clusters
refined by ides and refined by ipk.

» Using Zhuang’s cluster method, we can use the
enumeration of 2134... (m + 1) clusters refined by ides
(and ipk) to count the 2134 ... (m + 1) avoiders by ides
(and ipk).



Characterizing 213 clusters

Proposition (T. & Zhuang 2022+): Let 7t € Sy 1 for k > 1. Then

7! is a 213 cluster if and only if these two conditions are met:

(i) The odd values of 7t form an increasing subsequence; that
is, if (j), 7(j') are odd and j < j’, then 7t(j1) < 7t(j2).
(ii) Each even value 2i comes before the value 2i — 1 in 7; that
is, T 1 (2i) < 7w (21 —1).
We write Py to denote the set of permutations 7 € Sy 41
satistying conditions (i) and (ii) — that is, Py is the set of
inverses of 213 clusters.
» The inverse of the first example is 281463579 € P4.

Studying ides and ipk on 213 clusters is the same as studying
des and pk on Py.



A random element of Py,

Open question: What should we call the elements of Py ?
Conjecture: We should call them toothbrush permutations.



The recurrence relation for des on Py

» Define p9¢(k,1) = #{m € Py: des(n) = i}.
» Recall the recurrence relation on the Eulerian numbers
A(m,i):

Ami) =iAn—T,i))+M—1+T)An—1,i—1)

» This is proved by looking at where the value n is inserted
into a length-(n — 1) permutation and whether it creates a
new descent.

> We use the same type of argument to prove:

Proposition (T. & Zhuang 2022+):
PI (ki) = 1p™(k—1,1) + (Zk =)ok = 1,1 1).



Stirling permutations

Proposition (T. & Zhuang 2022+):
pde(k,1) = ip9eS(k — 1,1) + 2k — i) p9(k — 1,1 —1).
» This is almost the same recurrence relation for the des

statistic on Stirling permutations!

A Stirling permutation of size 2k is a permutation p of the
multiset {1, 1,2, 2,...,k, k} such that the values between two t’s
are all at least t; thatis,if a < b < cand p(a) = p(c), then

p(b) = p(a).

Let Qi denote the set of Stirling permutations of size 2k. (First
studied by Gessel & Stanley 1978.)

> Example: 14412332 € Q4.



Connecting Stirling permutations to 213 clusters

For p € Qy, define des(p) = #{j: p(j) > p(j + 1)}, and define
qees(k,1) = #{p € Qi: des(p) = 1i}.

Proposition (Gessel & Stanley 1978):
qies (ki) =([1A4+1)q®(k—1,41) + 2k —i—1) g% (k—1,i—1).
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qes(k,1) = #{p € Qi : des(p) = 1i}.
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qies (ki) =([1A4+1)q®(k—1,41) + 2k —i—1) g% (k—1,i—1).

Theorem (T. & Zhuang 2022+): pdes(k,i+1) = q9%(k, 1); that is,
the number of permutations in Py with i + 1 descents is equal
to the number of Stirling permutations in Qi with i descents.

The statistic on Q. analogous to peak number is
plateau—descent number: for p € Qy,

plde(p) =#{j: p(j —1) = p(j) > p(j + 1)}

Also define pP* and gP'9¢ similarly as above. Then:

Theorem (T. & Zhuang 2022+): pPX(k,1) = qP9¢(k, 1); that is,
the number of permutations in Py with i peaks is equal to the
number of Stirling permutations in Qi with 1 plateau—descents.



Further considerations

> Valleys can be done the same way.

» These results generalize to 2134...(m + 1) clusters, for
which des and pk have the same distributions as des and
plde on the set of m-Stirling permutations: permutations
of the multiset {1™, ..., k™} such that the values between
any two t’s are all at least t.

> By taking the reverse, the complement, or the
reverse—complement of 213 clusters, we obtain results on
312 clusters, 231 clusters, and 132 clusters, which translate
in a straightforward way from our results on 213 clusters.
(Same goes for general m.)
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» The numbers p9®(k, i+ 1) = q9**(k, 1) are the mth-order
Eulerian numbers, introduced by Gessel 1978.

» The numbers pF¥(k,i) = qP'9¢(k, 1) are the (1/2)-Eulerian
numbers, introduced by Savage and Viswanathan 2012.
Sadly we do not get the (1/m)-Eulerian numbers for m > 3.



