Connections between permutation clusters and generalized Stirling permutations

Justin Troyka Davidson College

Starting Fall 2022: California State University, Los Angeles

June 20, 2022

► Thus we say 316475829 is a 213 cluster.

Permutation clusters and permutation statistics

- ▶ $\pi \in S_{2k+1}$ is a 213 cluster if for every i the consecutive pattern $\pi(2i+1) \pi(2i+2) \pi(2i+3)$ has the same relative order as 213.
- More generally, for $m \ge 2$, $\pi \in S_{mk+1}$ is a 2134...(m+1) cluster if for every i the consecutive pattern $\pi(mi+1) \pi(mi+2) \dots \pi(mi+m+1)$ has the same relative order as 2134...(m+1).
- Given a permutation π :
 - the descent number of π is $des(\pi) = \#\{j : \pi(j) > \pi(j+1)\};$
 - the peak number is $pk(\pi) = \#\{j : \pi(j-1) < \pi(j) > \pi(j+1)\};$
 - the inverse descent number of π is ides $(\pi) = des(\pi^{-1})$; the inverse peak number of π is ipk $(\pi) = pk(\pi^{-1})$.
- ▶ We have found the enumeration of 2134...(m+1) clusters
- ▶ Using Zhuang's cluster method, we can use the enumeration of 2134...(m + 1) clusters refined by ides (and ipk) to count the 2134...(m + 1) avoiders by ides (and ipk).

refined by ides and refined by ipk.

Characterizing 213 clusters

Proposition (T. & Zhuang 2022+): Let $\pi \in S_{2k+1}$ for $k \ge 1$. Then π^{-1} is a 213 cluster if and only if these two conditions are met:

- (i) The odd values of π form an increasing subsequence; that is, if $\pi(j), \pi(j')$ are odd and j < j', then $\pi(j_1) < \pi(j_2)$.
- (ii) Each even value 2i comes before the value 2i -1 in π ; that is, $\pi^{-1}(2i) < \pi^{-1}(2i-1)$.

We write \mathcal{P}_k to denote the set of permutations $\pi \in S_{2k+1}$ satisfying conditions (i) and (ii) — that is, \mathcal{P}_k is the set of inverses of 213 clusters.

▶ The inverse of the first example is $281463579 \in \mathcal{P}_4$.

Studying ides and ipk on 213 clusters is the same as studying des and pk on \mathcal{P}_k .

A random element of \mathcal{P}_{24}

Open question: What should we call the elements of \mathcal{P}_k ? Conjecture: We should call them toothbrush permutations.

The recurrence relation for des on \mathcal{P}_k

- ▶ Define $p^{des}(k, i) = \#\{\pi \in \mathcal{P}_k : des(\pi) = i\}$.
- Recall the recurrence relation on the Eulerian numbers A(n,i):

$$A(n,i) = i A(n-1,i) + (n-i+1) A(n-1,i-1)$$

- ▶ This is proved by looking at where the value n is inserted into a length-(n-1) permutation and whether it creates a new descent.
- ► We use the same type of argument to prove:

Proposition (T. & Zhuang 2022+): $p^{des}(k,i) = i p^{des}(k-1,i) + (2k-i) p^{des}(k-1,i-1).$

Stirling permutations

Proposition (T. & Zhuang 2022+): $p^{\text{des}}(k, i) = i p^{\text{des}}(k-1, i) + (2k-i) p^{\text{des}}(k-1, i-1).$

► This is almost the same recurrence relation for the des statistic on Stirling permutations!

A Stirling permutation of size 2k is a permutation ρ of the multiset $\{1,1,2,2,\ldots,k,k\}$ such that the values between two t's are all at least t; that is, if $\alpha < b < c$ and $\rho(\alpha) = \rho(c)$, then $\rho(b) \geqslant \rho(\alpha)$.

Let Q_k denote the set of Stirling permutations of size 2k. (First studied by Gessel & Stanley 1978.)

► Example: $14412332 \in \Omega_4$.

Connecting Stirling permutations to 213 clusters

For $\rho \in \Omega_k$, define $des(\rho) = \#\{j : \rho(j) > \rho(j+1)\}$, and define $q^{des}(k, i) = \#\{\rho \in \Omega_k : des(\rho) = i\}$.

Proposition (Gessel & Stanley 1978): $q^{des}(k, i) = (i + 1) q^{des}(k - 1, i) + (2k - i - 1) q^{des}(k - 1, i - 1).$

Connecting Stirling permutations to 213 clusters

For $\rho \in \Omega_k$, define $des(\rho) = \#\{j : \rho(j) > \rho(j+1)\}$, and define $q^{des}(k, i) = \#\{\rho \in \Omega_k : des(\rho) = i\}$.

Proposition (Gessel & Stanley 1978):

$$q^{des}(k,i) = (i+1) q^{des}(k-1,i) + (2k-i-1) q^{des}(k-1,i-1).$$

Theorem (T. & Zhuang 2022+): $p^{des}(k, i+1) = q^{des}(k, i)$; that is, the number of permutations in \mathcal{P}_k with i+1 descents is equal to the number of Stirling permutations in \mathcal{Q}_k with i descents.

Connecting Stirling permutations to 213 clusters

For $\rho \in \mathcal{Q}_k$, define $des(\rho) = \#\{j : \rho(j) > \rho(j+1)\}$, and define $q^{des}(k,i) = \#\{\rho \in \mathcal{Q}_k : des(\rho) = i\}$.

Proposition (Gessel & Stanley 1978): $q^{\text{des}}(k, i) = (i + 1) q^{\text{des}}(k - 1, i) + (2k - i - 1) q^{\text{des}}(k - 1, i - 1).$

Theorem (T. & Zhuang 2022+): $p^{des}(k, i+1) = q^{des}(k, i)$; that is, the number of permutations in \mathcal{P}_k with i+1 descents is equal to the number of Stirling permutations in \mathcal{Q}_k with i descents.

The statistic on Ω_k analogous to peak number is plateau–descent number: for $\rho \in \Omega_k$,

$$plde(\rho) = \#\{j: \rho(j-1) = \rho(j) > \rho(j+1)\}.$$

Also define p^{pk} and q^{plde} similarly as above. Then:

Theorem (T. & Zhuang 2022+): $p^{pk}(k,i) = q^{plde}(k,i)$; that is, the number of permutations in \mathcal{P}_k with i peaks is equal to the number of Stirling permutations in \mathcal{Q}_k with i plateau–descents.

Further considerations

- Valleys can be done the same way.
- ▶ These results generalize to 2134...(m+1) clusters, for which des and pk have the same distributions as des and plde on the set of **m-Stirling permutations**: permutations of the multiset $\{1^m, ..., k^m\}$ such that the values between any two t's are all at least t.
- ▶ By taking the reverse, the complement, or the reverse–complement of 213 clusters, we obtain results on 312 clusters, 231 clusters, and 132 clusters, which translate in a straightforward way from our results on 213 clusters. (Same goes for general m.)

Further considerations

- Valleys can be done the same way.
- ▶ These results generalize to 2134...(m+1) clusters, for which des and pk have the same distributions as des and plde on the set of **m-Stirling permutations**: permutations of the multiset $\{1^m, ..., k^m\}$ such that the values between any two t's are all at least t.
- ▶ By taking the reverse, the complement, or the reverse–complement of 213 clusters, we obtain results on 312 clusters, 231 clusters, and 132 clusters, which translate in a straightforward way from our results on 213 clusters. (Same goes for general m.)
- The numbers $p^{des}(k, i + 1) = q^{des}(k, i)$ are the mth-order Eulerian numbers, introduced by Gessel 1978.
- ► The numbers $p^{pk}(k, i) = q^{plde}(k, i)$ are the (1/2)-Eulerian numbers, introduced by Savage and Viswanathan 2012. Sadly we do not get the (1/m)-Eulerian numbers for $m \ge 3$.