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Permutation clusters and permutation statistics
I π ∈ S2k+1 is a 213 cluster if for every i the consecutive

pattern π(2i+ 1)π(2i+ 2)π(2i+ 3) has the same relative
order as 213.

I More generally, form > 2, π ∈ Smk+1 is a 2134 . . . (m+ 1)
cluster if for every i the consecutive pattern
π(mi+ 1)π(mi+ 2) . . . π(mi+m+ 1) has the same
relative order as 2134 . . . (m+ 1).

I Given a permutation π:
I the descent number of π is des(π) = #{j : π(j) > π(j+ 1)};
I the peak number is pk(π) = #{j : π(j− 1) < π(j) > π(j+ 1)};
I the inverse descent number of π is ides(π) = des(π−1);
I the inverse peak number of π is ipk(π) = pk(π−1).

I We have found the enumeration of 2134 . . . (m+ 1) clusters
refined by ides and refined by ipk.

I Using Zhuang’s cluster method, we can use the
enumeration of 2134 . . . (m+ 1) clusters refined by ides
(and ipk) to count the 2134 . . . (m+ 1) avoiders by ides
(and ipk).



Characterizing 213 clusters

Proposition (T. & Zhuang 2022+): Let π ∈ S2k+1 for k > 1. Then
π−1 is a 213 cluster if and only if these two conditions are met:

(i) The odd values of π form an increasing subsequence; that
is, if π(j), π(j ′) are odd and j < j ′, then π(j1) < π(j2).

(ii) Each even value 2i comes before the value 2i− 1 in π; that
is, π−1(2i) < π−1(2i− 1).

We write Pk to denote the set of permutations π ∈ S2k+1

satisfying conditions (i) and (ii) — that is, Pk is the set of
inverses of 213 clusters.
I The inverse of the first example is 281463579 ∈ P4.

Studying ides and ipk on 213 clusters is the same as studying
des and pk on Pk.



A random element of P24

Open question: What should we call the elements of Pk ?
Conjecture: We should call them toothbrush permutations.



The recurrence relation for des on Pk

I Define pdes(k, i) = #{π ∈ Pk : des(π) = i}.
I Recall the recurrence relation on the Eulerian numbers
A(n, i):

A(n, i) = iA(n− 1, i) + (n− i+ 1)A(n− 1, i− 1)

I This is proved by looking at where the value n is inserted
into a length-(n− 1) permutation and whether it creates a
new descent.

I We use the same type of argument to prove:
Proposition (T. & Zhuang 2022+):
pdes(k, i) = i pdes(k− 1, i) + (2k− i)pdes(k− 1, i− 1).



Stirling permutations

Proposition (T. & Zhuang 2022+):
pdes(k, i) = i pdes(k− 1, i) + (2k− i)pdes(k− 1, i− 1).
I This is almost the same recurrence relation for the des

statistic on Stirling permutations!
A Stirling permutation of size 2k is a permutation ρ of the
multiset {1, 1, 2, 2, . . . , k, k} such that the values between two t’s
are all at least t; that is, if a < b < c and ρ(a) = ρ(c), then
ρ(b) > ρ(a).

Let Qk denote the set of Stirling permutations of size 2k. (First
studied by Gessel & Stanley 1978.)
I Example: 14412332 ∈ Q4.



Connecting Stirling permutations to 213 clusters
For ρ ∈ Qk, define des(ρ) = #{j : ρ(j) > ρ(j+ 1)}, and define
qdes(k, i) = #{ρ ∈ Qk : des(ρ) = i}.

Proposition (Gessel & Stanley 1978):
qdes(k, i) = (i+ 1)qdes(k− 1, i) + (2k− i− 1)qdes(k− 1, i− 1).

Theorem (T. & Zhuang 2022+): pdes(k, i+ 1) = qdes(k, i); that is,
the number of permutations in Pk with i+ 1 descents is equal
to the number of Stirling permutations in Qk with i descents.

The statistic on Qk analogous to peak number is
plateau–descent number: for ρ ∈ Qk,

plde(ρ) = #{j : ρ(j− 1) = ρ(j) > ρ(j+ 1)}.

Also define ppk and qplde similarly as above. Then:

Theorem (T. & Zhuang 2022+): ppk(k, i) = qplde(k, i); that is,
the number of permutations in Pk with i peaks is equal to the
number of Stirling permutations in Qk with i plateau–descents.
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Further considerations
I Valleys can be done the same way.
I These results generalize to 2134 . . . (m+ 1) clusters, for

which des and pk have the same distributions as des and
plde on the set ofm-Stirling permutations: permutations
of the multiset {1m, . . . , km} such that the values between
any two t’s are all at least t.

I By taking the reverse, the complement, or the
reverse–complement of 213 clusters, we obtain results on
312 clusters, 231 clusters, and 132 clusters, which translate
in a straightforward way from our results on 213 clusters.
(Same goes for generalm.)

I The numbers pdes(k, i+ 1) = qdes(k, i) are themth-order
Eulerian numbers, introduced by Gessel 1978.

I The numbers ppk(k, i) = qplde(k, i) are the (1/2)-Eulerian
numbers, introduced by Savage and Viswanathan 2012.
Sadly we do not get the (1/m)-Eulerian numbers form > 3.
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