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Question 1

Consider the square lattice with the horizontal edges oriented east, vertical
edges oriented north. Let U = {u1, u2} be the set of starting points and
V = {v1, v2} be the set of ending points. How many families of
non-intersecting lattice paths from U to V do we have?
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Question 1

Two paths are non-intersecting if they do not pass through the same
vertex.

A family of paths is non-intersecting if any two of the paths is
non-intersecting.
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Question 2

Now, if we choose two different ending points W = {w1,w2}, then how
many families of non-intersecting lattice paths from U to W do we have?
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The LGV Theorem

Let G be a finite, connected, directed acyclic graph with a weight
function wt : E (G ) 7→ R, where R is a commutative ring.

The weight of a path p is defined to be wt(p) =
∏

e∈p wt(e).

The weight of a family of paths P = (p1, . . . , pn) is given by
wt(P) =

∏n
i=1 wt(pi ).

Let U = {u1, . . . , un} and V = {v1, . . . , vn} be two sets of distinct vertices
of G .

P(ui , vj) is a set of paths going from ui to vj .

Pπ(U,V ) is a set of n-tuples of paths (p1, . . . , pn), where
pi ∈P(ui , vπ(i)). The permutation π is called the connection type.

Pπ
0 (U,V ) is a set of n-tuples of non-intersecting paths of the

connection type π.
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The LGV Theorem

We denote the weighted sum of the set of (n-tuples) of paths P by

GF (P) =
∑
p∈P

wt(p).

Theorem [Lindström ’73], [Gessel,Viennot ’85], [Stembridge ’90]

Let G be a directed acyclic graph. Suppose U = {u1, . . . , un} and
V = {v1, . . . , vn} are two distinct sets of vertices of G . Then∑

π∈Sn

sgn(π)GF (Pπ
0 (U,V )) = det (M) ,

where the (i , j)-entry of the matrix M is given by GF (P(ui , vj)).
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The LGV Theorem

Two sets of the vertices U = {u1, . . . , un} and V = {v1, . . . , vn} are
compatible if n-tuples of non-intersecting paths only consist of paths
connecting ui to vi for i = 1, . . . , n, i.e. the connection type π = id.

Corollary

If U = {u1, . . . , un} and V = {v1, . . . , vn} are compatible, then we have

GF (P id
0 (U,V )) = det (M) ,

where the (i , j)-entry of the matrix M is given by GF (P(ui , vj)).
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The LGV Theorem

There are numerous applications:

enumeration of semi-standard Young tableaux

enumeration of various types of plane partitions

enumeration of lozenge and domino tilings

evaluation of the Hankel determinants

combinatorial proof of the determinent formulas
(e.g. the Cauchy-Binet formula)

combinatorial proof of the Jacobi-Trudi type identites for Schur
functions.

...

A survey paper: Christian Krattenthaler, Lattice path enumeration, 2017.
https://arxiv.org/abs/1503.05930
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The LGV Theorem—Question 1

Let us go back to the first question.

Notice that it is impossible to have a non-intersecting path connecting
u1 to v2 and u2 to v1. The sets {u1, u2} and {v1, v2} are compatible.

|P(u1, v1)| =
(5
2

)
= 10, |P(u1, v2)| =

(5
1

)
= 5, |P(u2, v1)| =

(5
4

)
= 5

and |P(u2, v2)| =
(5
3

)
= 10.

Therefore, |P id
0 (U,V )| = det

(
10 5
5 10

)
= 75.

v1

v2

u1

u2
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The LGV Theorem—Question 2

Let us see the second question.

Both connection types are possible in question 2, the sets
U = {u1, u2} and W = {w1,w2} are NOT compatible.

We can still apply the LGV theorem and obtain the “signed”
enumeration:
sgn(id)GF (P id

0 (U,W )) + sgn((12))GF (P
(12)
0 (U,W )) = detM.

How to find the total number of families of non-intersecting paths?
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New Results—An Overview

Setting:

Let G be a directed acyclic graph with the special property*.

Let U = {u1, . . . , un} and V = {v1, . . . , vn} be two sets of distinct
vertices of G , not necessarily compatible.

The new result is the “straight” enumeration∑
π∈Sn

GF (Pπ
0 (U,V )) = | detM∗|,

where the (i , j)-entry of M∗ depends only on the paths from ui to vj .

Key ideas:

We associate a sign (called the path sign) on each path from ui to vj .

We form a new matrix M∗.

These path signs in the detM∗ cancel out the effect of the
permutation signs on the LHS of the LGV theorem.
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New Results—Special Property of G

Definition

An upward planar drawing of G is a drawing of G on the Euclidean plane
such that

each edge is drawn as a line segment that is either horizontal or
up-pointing, and

no two edges may intersect except at vertices of G .

Examples:
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New Results—Special Property of G

Definition

An st-planar graph is a planar, acyclic digraph with one source (a vertex
with no incoming edges) and one sink (a vertex with no outgoing edges),
so that these two special vertices lie on the outer face of the graph.

Theorem [Di Battista et al. ’98]

A graph G has an upward planar drawing if and only if G is a subgraph of
an st-planar graph G̃ on the same vertex set.

Now, we consider a directed acyclic graph G having an upward planar
drawing, which is a subgraph of an st-planar graph G̃ .
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New Results—Path Sign

Let s be the source and t be the sink of the st-planar graph G̃ , and let p
be a path in the subgraph G .

Definition

The left side of the path p ∈P(u, v) is the closed region of the plane
bounded by the following paths in G̃ :

the leftmost path from s to u,

the path p itself,

the leftmost path from v to t, and

the left boundary of G̃ going from s to t.

Let L(p) be the collection of the starting and ending points of U ∪ V
which are on the left side of the path p (including u and v).
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New Results—Path Sign

The left side of the path p is the region bounded by red edges.

u

v

s

t

p

u

v

s

t

p

a

b

c

d
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New Results—Path Sign

Definition

The path sign of a path p ∈P(u, v) is defined to be

sgn(p) = (−1)|L(p)|.

In the previous graph, suppose U ∪ V = {a, b, c , d , u, v}, then
L(p) = {a, b, u, v} and hence sgn(p) = (−1)4 = 1.
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New Results—Main Theorem

Main Theorem

Given an st-planar graph G̃ and a subgraph G with the same vertex set.

Let U = {u1, u2, . . . , un} and V = {v1, v2, . . . , vn} be two sets of the
distinct vertices of G . Let M∗ be the n × n matrix whose (i , j)-entry is∑

p∈P(ui ,vj )

sgn(p) wt(p).

Then the total weight of families of non-intersecting paths connecting U
to V is given by ∑

π∈Sn

GF (Pπ
0 (U,V )) = |detM∗| .
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New Results—Question 2

Apply the main theorem to question 2, our goal is to find the matrix
M∗ = (mij), where 1 ≤ i , j ≤ 2.

L(p) sgn(p) size matrix

p ∈P(u1,w1) {u1,w1, u2} (−1)3
(4
1

)
m11 = −4

p ∈P(u2,w1) {u2,w1} (−1)2
(4
3

)
m21 = 4

s

t

w1

w2

u1

u2

s

t

w1

w2

u1

u2
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New Results—Question 2

Apply the main theorem to question 2, our goal is to find the matrix
M∗ = (mij), where 1 ≤ i , j ≤ 2.
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New Results—Question 2

L(p) sgn(p) size matrix

p ∈P(u1,w2) {u1,w2, u2} (−1)3 1
m12 = −1 + 14

p ∈P(u1,w2) {u1, u2,w1,w2} (−1)4
(6
2

)
− 1

p ∈P(u2,w2) {u2,w2} (−1)2
(4
2

)
m22 = 6− 9

p ∈P(u2,w2) {u2,w1,w2} (−1)3
(6
2

)
−
(4
2

)
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New Results—Question 2

We have m11 = −4, m12 = 13, m21 = 4, m22 = −3.
By the main theorem, the number of families of non-intersecting paths in
question 2 is given by

| detM∗| =

∣∣∣∣det

(
−4 13
4 −3

)∣∣∣∣ = 40.
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Application—Tiling Problems

A tiling is a covering of a given region on the plane using a given set of
tiles without gaps or overlaps.
An example of a domino tiling (covered by 1× 2 and 2× 1 rectangles) of
the Aztec diamond of order 4.

How many tilings do we have? Is there a “nice” formula?
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Application—Mixed Aztec Rectangle

The Aztec rectangle (left) and the mixed Aztec rectangle (right) with the
checkerboard coloring.

n = 7
m = 5

n = 7
m = 5
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Application—Translation Invariant

Theorem [L. ’22]

The number of domino tilings of the mixed Aztec rectangle with arbitrary
unit holes is invariant under color-preserving translations of the set of
holes, provided all the unit holes are still contained in the region.
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Application

We consider the mixed Aztec diamond MRm,n(a, b, c) with four unit holes
along a common horizontal line, from left to right, with colorings
white-white-black-black and the spacing between them are 2a− 1, 2b and
2c − 1 units.

Theorem [L. ’22]

The number of domino tilings of the region MRm,n(a, b, c) is given by

2db,b

 a∑
i=1

c∑
j=1

rb+i+j−1da−i ,a−idc−j ,c−j

 ,

where dn,k is the Delannoy number and rn is the large Schröder number.
In particular, the number only depends on the separations of the four
holes, and not on m, n, or the position of the left hole.
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Thank You
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