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Consecutive Patterns

• Let Sn be the set of all permutations of [n] = {1, 2, . . . , n}.

• Let S =
∞⋃
n=0

Sn.

• In this work, the notions of occurrence, containment, and
avoidance refer to that of consecutive patterns.

Example

Let π = 6351427. Then 351 is an occurrence of 231 in π (but 352 is
not).

• Let occσ(π) be the number of occurrences of σ in π.
• Given σ ∈ S, let Sn(σ) denote the set of all permutations of

length n which avoid σ.
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Clusters

• Given σ ∈ S, a σ-cluster is a permutation filled with marked
occurrences of σ that overlap with each other.

Example

An example of a 1324-cluster is

Two non-examples:



Clusters (cont.)

• Let Cσ,π be the set of σ-clusters with underlying permutation π.
• Given a σ-cluster c , let mkσ(c) be the number of marked

occurrences of σ in c .

Example

If c is the cluster

then c ∈ C1324,142536879 and mk1324(c) = 3.



The Goulden–Jackson Cluster Method for Permutations

• Let Fσ(s, x) =
∞∑
n=0

∑
π∈Sn

soccσ(π)
xn

n!
and

Rσ(s, x) =
∞∑
n=2

∑
π∈Sn

∑
c∈Cσ,π

smkσ(c) x
n

n!
.

Theorem (Elizalde–Noy 2012)

Let σ ∈ S have length at least 2. Then

Fσ(s, x) =
1

1 − x − Rσ(s − 1, x)
.

• Setting s = 0:
∞∑
n=0

|Sn(σ)|
xn

n!
=

1
1 − x − Rσ(−1, x)

.



The Malvenuto–Reutenauer Algebra

• Let Q[S] denote the Q-vector space with basis S. The
Malvenuto–Reutenauer algebra is the Q-algebra on Q[S] with
multiplication

π · σ =
∑

τ∈C(π,σ)

τ

where C (π, σ) is the set of all concatenations of π and σ.

Example

12 · 21 = 1243 + 1342 + 1432 + 2341 + 2431 + 3421



The Cluster Method in Malvenuto–Reutenauer

• Given σ ∈ S, let

Fσ(s) =
∑
π∈S

πsoccσ(π) and Rσ(s) =
∑
π∈S

∑
c∈Cσ,π

πsmkσ(c).

Theorem (Z. 2022+)

Let σ ∈ S have length at least 2. Then

Fσ(s) =
(
ε− ι− Rσ(s − 1)

)−1

where ε is the empty permutation and ι the permutation of length 1.

• Define Φ: Q[S] → Q[[x ]] by Φ(π) = xn/n! where n is the
length of π. Applying Φ recovers Elizalde and Noy’s cluster
method for permutations.



The Cluster Method in Malvenuto–Reutenauer

• Given σ ∈ S, let

Fσ(s) =
∑
π∈S

πsoccσ(π) and Rσ(s) =
∑
π∈S

∑
c∈Cσ,π

πsmkσ(c).

Theorem (Z. 2022+)

Let σ ∈ S have length at least 2. Then

Fσ(s) =
(
ε− ι− Rσ(s − 1)

)−1

where ε is the empty permutation and ι the permutation of length 1.

• Define Φ: Q[S] → Q[[x ]] by Φ(π) = xn/n! where n is the
length of π. Applying Φ recovers Elizalde and Noy’s cluster
method for permutations.



Other Homomorphisms

• Let inv be the inversion number statistic.

• Define Φq : Q[S] → Q[[q, x ]] by Φq(π) = qinv(π)
xn

[n]q!
where n

is the length of π.
• Applying Φq recovers a q-analogue of the cluster method for

permutations (Elizalde 2016) which also keeps track of inv.

• Big Question: Are there other homomorphisms on Q[S] for
counting permutations by other statistics?

• Given a permutation statistic st, let ist be its inverse statistic:
ist(π) = st(π−1).

General Principle (Z. 2022+)

For any shuffle-compatible descent statistic st, there is a
homomorphism Φist on Q[S] for counting permutations by ist.



Other Homomorphisms

• Let inv be the inversion number statistic.

• Define Φq : Q[S] → Q[[q, x ]] by Φq(π) = qinv(π)
xn

[n]q!
where n

is the length of π.
• Applying Φq recovers a q-analogue of the cluster method for

permutations (Elizalde 2016) which also keeps track of inv.

• Big Question: Are there other homomorphisms on Q[S] for
counting permutations by other statistics?

• Given a permutation statistic st, let ist be its inverse statistic:
ist(π) = st(π−1).

General Principle (Z. 2022+)

For any shuffle-compatible descent statistic st, there is a
homomorphism Φist on Q[S] for counting permutations by ist.



Other Homomorphisms

• Let inv be the inversion number statistic.

• Define Φq : Q[S] → Q[[q, x ]] by Φq(π) = qinv(π)
xn

[n]q!
where n

is the length of π.
• Applying Φq recovers a q-analogue of the cluster method for

permutations (Elizalde 2016) which also keeps track of inv.

• Big Question: Are there other homomorphisms on Q[S] for
counting permutations by other statistics?

• Given a permutation statistic st, let ist be its inverse statistic:
ist(π) = st(π−1).

General Principle (Z. 2022+)

For any shuffle-compatible descent statistic st, there is a
homomorphism Φist on Q[S] for counting permutations by ist.



Shuffle-Compatible Descent Statistics

• Let π and σ be permutations on disjoint sets of positive
integers, and let S(π, σ) be the set of shuffles of π and σ.

Example

Given π = 13 and σ = 42, we have

S(13, 42) = {1342, 1432, 1423, 4213, 4123, 4132}.

• A permutation statistic st is shuffle-compatible if the
distribution of st over S(π, σ) depends only on st(π), st(σ), and
the lengths of σ and π.

• Let Des(π) denote the descent set of π. Then st is a descent
statistic if, for any permutations π and σ of the same length,

Des(π) = Des(σ) =⇒ st(π) = st(σ).
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Shuffle-Compatible Descent Statistics (cont.)

• A few notable shuffle-compatible descent statistics:
• The descent number des.
• The peak number pk, defined by

pk(π) = |{i : 2 ≤ i ≤ |π| − 1, πi−1 < πi > πi+1}|.

• The left peak number lpk, defined by

lpk(π) = pk(π) + χ(π1 > π2).

• Thus, we have homomorphisms Φides, Φipk, Φilpk for counting
permutations by the statistics ides, ipk, and ilpk.

• Applying these homomorphisms yields new specializations of our
generalized cluster method.



Shuffle-Compatible Descent Statistics (cont.)

• A few notable shuffle-compatible descent statistics:
• The descent number des.
• The peak number pk, defined by

pk(π) = |{i : 2 ≤ i ≤ |π| − 1, πi−1 < πi > πi+1}|.

• The left peak number lpk, defined by

lpk(π) = pk(π) + χ(π1 > π2).

• Thus, we have homomorphisms Φides, Φipk, Φilpk for counting
permutations by the statistics ides, ipk, and ilpk.

• Applying these homomorphisms yields new specializations of our
generalized cluster method.



Example: An “ ides-Refined” Cluster Method

• Define the Hadamard product ∗ on formal power series in t by( ∞∑
n=0

ant
n
)
∗
( ∞∑

n=0

bnt
n
)
:=

∞∑
n=0

anbnt
n.

• Let f ∗⟨n⟩ = f ∗ · · · ∗ f︸ ︷︷ ︸
n times

.

• Let
Aides
σ,n (s, t) =

∑
π∈Sn

soccσ(π)t ides(π)+1

R ides
σ,n (s, t) =

∑
π∈Sn

t ides(π)+1
∑

c∈Cσ,π

smkσ(c).

Theorem (Z. 2022+)

Let σ ∈ S have length at least 2. Then
∞∑
n=0

Aides
σ,n (s, t)

(1 − t)n+1 x
n =

∞∑
n=0

(
tx

(1 − t)2
+

∞∑
k=2

R ides
σ,k (s − 1, t)xk

(1 − x)k+1

)∗⟨n⟩

.
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Additional Results

• We also have specializations of the generalized cluster method
for ipk and ilpk.

• Let P ipk
σ,n(s, t) =

∑
π∈Sn

soccσ(π)t ipk(π)+1 and

P ilpk
σ,n (s, t) =

∑
π∈Sn

soccσ(π)t ilpk(π).

• We obtain explicit generating function formulas for Aides
σ,n (s, t),

P ipk
σ,n(s, t), and P ilpk

σ,n (s, t) for the following σ:
• 12 · · ·m and m · · · 21 for m ≥ 2;
• 12 · · · (a− 1)(a+ 1)a(a+ 2)(a+ 3) · · ·m for m ≥ 5 and

2 ≤ a ≤ m − 2;
• 2134 · · ·m and 12 · · · (m − 2)m(m − 1) for m ≥ 3 (in

progress; ongoing work with Justin Troyka).
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A Real-Rootedness Conjecture

• Let Aides
σ,n (t) =

∑
π∈Sn(σ)

t ides(π)+1,

P ipk
σ,n(t) =

∑
π∈Sn(σ)

t ipk(π)+1, P ilpk
σ,n (t) =

∑
π∈Sn(σ)

t ilpk(π).

Conjecture

Let σ be 12 · · ·m or m · · · 21 where m ≥ 3, or
12 · · · (a− 1)(a+ 1)a(a+ 2)(a+ 3) · · ·m where m ≥ 5 and
2 ≤ a ≤ m − 2. Then the polynomials Aides

σ,n (t), P
ipk
σ,n(t), and P ilpk

σ,n (t)
have real roots only for all n ≥ 2.

THANK YOU!
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Formula for occ12···m and ides

Theorem (Z. 2022+)

Let m ≥ 2. We have

∞∑
n=0

Aides
12···m,n(s, t)

(1 − t)n+1 xn

=
∞∑
n=0

(
tx

(1 − t)2
+

(s − 1)tzm(1 − z)

(1 − t)(2 − s − z + (s − 1)zm)

)∗⟨n⟩

where z = x/(1 − t).



Formula for occ12···(a−1)(a+1)a(a+2)(a+3)···m and ides

Theorem (Z. 2022+)

Let σ = 12 · · · (a− 1)(a+ 1)a(a+ 2)(a+ 3) · · ·m where m ≥ 5 and
2 ≤ a ≤ m − 2. Let i = min(a,m − a). We have

∞∑
n=0

Aides
σ,n (s, t)

(1 − t)n+1 x
n

=
∞∑
n=0

(
tx

(1 − t)2
+

(s − 1)t2zm

(1 − t)(1 − (s − 1)t
∑i

l=1 z
m−l)

)∗⟨n⟩

where z = x/(1 − t).



Formula for occ12···m and ipk

Theorem (Z. 2022+)

Let m ≥ 2. We have

1
1 − t

+
1 + t

2(1 − t)

∞∑
n=1

P ipk
12···m,n(s, u)z

n

=
∞∑
n=0

(
2tx

(1 − t)2
+

2t(s − 1)zm(1 − z)

(1 − t2)(2 − s − z + (s − 1)zm)

)∗⟨n⟩

where u = 4t/(1 + t)2 and z = (1 + t)x/(1 − t).
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1
1 − t

+
1 + t

2(1 − t)

∞∑
n=1

P ipk
σ,n(s, u)z

n

=
∞∑
n=0

(
2tx

(1 − t)2
+

(1 + t)(s − 1)u2zm

2(1 − t)(1 − (s − 1)u
∑i

l=1 z
m−l)

)∗⟨n⟩

where u = 4t/(1 + t)2 and z = (1 + t)x/(1 − t).



Counting 12 · · ·m-Avoiding Permutations by ides and imaj

• Let A(ides,imaj)
σ,n (t, q) =

∑
π∈Sn(σ)

t ides(π)+1qimaj(π) for n ≥ 1.

Theorem (Z. 2022+)

Let m ≥ 2. We have

∞∑
n=0

A
(ides,imaj)
12···m,n (t, q)

(1 − t)(1 − qt) · · · (1 − qnt)
xn =

1 +
∞∑
k=0

 ∞∑
j=0

([
k + jm − 1

k − 1

]
q

x jm −
[
k + jm

k − 1

]
q

x jm+1

)−1

tk .


