A Lifting of the Goulden-Jackson Cluster Method to the Malvenuto-Reutenauer Algebra

Yan Zhuang (he/him)
Department of Mathematics and Computer Science
Davidson College

June 20, 2022
Permutation Patterns 2022

Exciting News!

Based on the paper:
Zhuang, Yan. A lifting of the Goulden-Jackson cluster method to the Malvenuto-Reutenauer algebra, arXiv:2108.10309.

Accepted (this morning!!!) pending minor revisions to Algebraic Combinatorics.

Consecutive Patterns

- Let \mathfrak{S}_{n} be the set of all permutations of $[n]=\{1,2, \ldots, n\}$.
- Let $\mathfrak{S}=\bigcup_{n=0}^{\infty} \mathfrak{S}_{n}$.

Consecutive Patterns

- Let \mathfrak{S}_{n} be the set of all permutations of $[n]=\{1,2, \ldots, n\}$.
- Let $\mathfrak{S}=\bigcup_{n=0}^{\infty} \mathfrak{S}_{n}$.
- In this work, the notions of occurrence, containment, and avoidance refer to that of consecutive patterns.

Example

Let $\pi=6351427$. Then 351 is an occurrence of 231 in π (but 352 is not).

Consecutive Patterns

- Let \mathfrak{S}_{n} be the set of all permutations of $[n]=\{1,2, \ldots, n\}$.
- Let $\mathfrak{S}=\bigcup_{n=0}^{\infty} \mathfrak{S}_{n}$.
- In this work, the notions of occurrence, containment, and avoidance refer to that of consecutive patterns.

Example

Let $\pi=6351427$. Then 351 is an occurrence of 231 in π (but 352 is not).

- Let $\operatorname{occ}_{\sigma}(\pi)$ be the number of occurrences of σ in π.
- Given $\sigma \in \mathfrak{S}$, let $\mathfrak{S}_{n}(\sigma)$ denote the set of all permutations of length n which avoid σ.

Clusters

- Given $\sigma \in \mathfrak{S}$, a σ-cluster is a permutation filled with marked occurrences of σ that overlap with each other.

Example

An example of a 1324-cluster is

$$
14253879
$$

Two non-examples:

Clusters (cont.)

- Let $C_{\sigma, \pi}$ be the set of σ-clusters with underlying permutation π.
- Given a σ-cluster c, let $\mathrm{mk}_{\sigma}(c)$ be the number of marked occurrences of σ in c.

Example

If c is the cluster

then $c \in C_{1324,142536879}$ and $\mathrm{mk}_{1324}(c)=3$.

The Goulden-Jackson Cluster Method for Permutations

- Let

$$
\begin{aligned}
& F_{\sigma}(s, x)=\sum_{n=0}^{\infty} \sum_{\pi \in \mathfrak{S}_{n}} s^{\circ \mathrm{oc}_{\sigma}(\pi)} \frac{x^{n}}{n!} \text { and } \\
& R_{\sigma}(s, x)=\sum_{n=2}^{\infty} \sum_{\pi \in \mathfrak{S}_{n}} \sum_{c \in C_{\sigma, \pi}} s^{\mathrm{mk}}(c) \frac{x^{n}}{n!} .
\end{aligned}
$$

Theorem (Elizalde-Noy 2012)
Let $\sigma \in \mathfrak{S}$ have length at least 2. Then

$$
F_{\sigma}(s, x)=\frac{1}{1-x-R_{\sigma}(s-1, x)}
$$

- Setting $s=0: \quad \sum_{n=0}^{\infty}\left|\mathfrak{S}_{n}(\sigma)\right| \frac{x^{n}}{n!}=\frac{1}{1-x-R_{\sigma}(-1, x)}$.

The Malvenuto-Reutenauer Algebra

- Let $\mathbb{Q}[\mathfrak{S}]$ denote the \mathbb{Q}-vector space with basis \mathfrak{S}. The Malvenuto-Reutenauer algebra is the \mathbb{Q}-algebra on $\mathbb{Q}[\mathfrak{S}]$ with multiplication

$$
\pi \cdot \sigma=\sum_{\tau \in C(\pi, \sigma)} \tau
$$

where $C(\pi, \sigma)$ is the set of all concatenations of π and σ.

Example

$12 \cdot 21=1243+1342+1432+2341+2431+3421$

The Cluster Method in Malvenuto-Reutenauer

- Given $\sigma \in \mathfrak{S}$, let

$$
F_{\sigma}(s)=\sum_{\pi \in \mathfrak{G}} \pi s^{\circ \subset c_{\sigma}(\pi)} \quad \text { and } \quad R_{\sigma}(s)=\sum_{\pi \in \mathfrak{S}} \sum_{c \in C_{\sigma, \pi}} \pi s^{\mathrm{mk}_{\sigma}(c)}
$$

Theorem (Z. 2022+)

Let $\sigma \in \mathfrak{S}$ have length at least 2. Then

$$
F_{\sigma}(s)=\left(\varepsilon-\iota-R_{\sigma}(s-1)\right)^{-1}
$$

where ε is the empty permutation and ι the permutation of length 1 .

The Cluster Method in Malvenuto-Reutenauer

- Given $\sigma \in \mathfrak{S}$, let

$$
F_{\sigma}(s)=\sum_{\pi \in \mathfrak{G}} \pi s^{\circ \subset c_{\sigma}(\pi)} \quad \text { and } \quad R_{\sigma}(s)=\sum_{\pi \in \mathfrak{S}} \sum_{c \in C_{\sigma, \pi}} \pi s^{\mathrm{mk}_{\sigma}(c)}
$$

Theorem (Z. 2022+)

Let $\sigma \in \mathfrak{S}$ have length at least 2. Then

$$
F_{\sigma}(s)=\left(\varepsilon-\iota-R_{\sigma}(s-1)\right)^{-1}
$$

where ε is the empty permutation and ι the permutation of length 1 .

- Define $\Phi: \mathbb{Q}[\mathfrak{S}] \rightarrow \mathbb{Q}[[x]]$ by $\Phi(\pi)=x^{n} / n$! where n is the length of π. Applying Φ recovers Elizalde and Noy's cluster method for permutations.

Other Homomorphisms

- Let inv be the inversion number statistic.
- Define $\Phi_{q}: \mathbb{Q}[\mathfrak{S}] \rightarrow \mathbb{Q}[[q, x]]$ by $\Phi_{q}(\pi)=q^{\operatorname{inv}(\pi)} \frac{x^{n}}{[n]_{q}!}$ where n is the length of π.
- Applying Φ_{q} recovers a q-analogue of the cluster method for permutations (Elizalde 2016) which also keeps track of inv.

Other Homomorphisms

- Let inv be the inversion number statistic.
- Define $\Phi_{q}: \mathbb{Q}[\mathfrak{S}] \rightarrow \mathbb{Q}[[q, x]]$ by $\Phi_{q}(\pi)=q^{\operatorname{inv}(\pi)} \frac{x^{n}}{[n]_{q}!}$ where n is the length of π.
- Applying Φ_{q} recovers a q-analogue of the cluster method for permutations (Elizalde 2016) which also keeps track of inv.
- Big Question: Are there other homomorphisms on $\mathbb{Q}[\mathfrak{S}]$ for counting permutations by other statistics?

Other Homomorphisms

- Let inv be the inversion number statistic.
- Define $\Phi_{q}: \mathbb{Q}[\mathfrak{S}] \rightarrow \mathbb{Q}[[q, x]]$ by $\Phi_{q}(\pi)=q^{\operatorname{inv}(\pi)} \frac{x^{n}}{[n]_{q}!}$ where n is the length of π.
- Applying Φ_{q} recovers a q-analogue of the cluster method for permutations (Elizalde 2016) which also keeps track of inv.
- Big Question: Are there other homomorphisms on $\mathbb{Q}[\mathfrak{S}]$ for counting permutations by other statistics?
- Given a permutation statistic st, let ist be its inverse statistic: $\operatorname{ist}(\pi)=\operatorname{st}\left(\pi^{-1}\right)$.

General Principle (Z. 2022+)

For any shuffle-compatible descent statistic st, there is a homomorphism $\Phi_{\text {ist }}$ on $\mathbb{Q}[\mathfrak{S}]$ for counting permutations by ist.

Shuffle-Compatible Descent Statistics

- Let π and σ be permutations on disjoint sets of positive integers, and let $S(\pi, \sigma)$ be the set of shuffles of π and σ.

Example

Given $\pi=13$ and $\sigma=42$, we have

$$
S(13,42)=\{1342,1432,1423,4213,4123,4132\}
$$

Shuffle-Compatible Descent Statistics

- Let π and σ be permutations on disjoint sets of positive integers, and let $S(\pi, \sigma)$ be the set of shuffles of π and σ.

Example

Given $\pi=13$ and $\sigma=42$, we have

$$
S(13,42)=\{1342,1432,1423,4213,4123,4132\}
$$

- A permutation statistic st is shuffle-compatible if the distribution of st over $S(\pi, \sigma)$ depends only on $\operatorname{st}(\pi)$, $\operatorname{st}(\sigma)$, and the lengths of σ and π.

Shuffle-Compatible Descent Statistics

- Let π and σ be permutations on disjoint sets of positive integers, and let $S(\pi, \sigma)$ be the set of shuffles of π and σ.

Example

Given $\pi=13$ and $\sigma=42$, we have

$$
S(13,42)=\{1342,1432,1423,4213,4123,4132\}
$$

- A permutation statistic st is shuffle-compatible if the distribution of st over $S(\pi, \sigma)$ depends only on $\operatorname{st}(\pi)$, $\operatorname{st}(\sigma)$, and the lengths of σ and π.
- Let $\operatorname{Des}(\pi)$ denote the descent set of π. Then st is a descent statistic if, for any permutations π and σ of the same length,

$$
\operatorname{Des}(\pi)=\operatorname{Des}(\sigma) \Longrightarrow \operatorname{st}(\pi)=\operatorname{st}(\sigma)
$$

Shuffle-Compatible Descent Statistics (cont.)

- A few notable shuffle-compatible descent statistics:
- The descent number des.
- The peak number pk, defined by

$$
\operatorname{pk}(\pi)=\left|\left\{i: 2 \leq i \leq|\pi|-1, \pi_{i-1}<\pi_{i}>\pi_{i+1}\right\}\right| .
$$

- The left peak number lpk, defined by

$$
\operatorname{lpk}(\pi)=\operatorname{pk}(\pi)+\chi\left(\pi_{1}>\pi_{2}\right)
$$

Shuffle-Compatible Descent Statistics (cont.)

- A few notable shuffle-compatible descent statistics:
- The descent number des.
- The peak number pk, defined by

$$
\operatorname{pk}(\pi)=\left|\left\{i: 2 \leq i \leq|\pi|-1, \pi_{i-1}<\pi_{i}>\pi_{i+1}\right\}\right| .
$$

- The left peak number Ipk, defined by

$$
\operatorname{lpk}(\pi)=\operatorname{pk}(\pi)+\chi\left(\pi_{1}>\pi_{2}\right)
$$

- Thus, we have homomorphisms $\Phi_{\text {ides }}, \Phi_{\text {ipk }}, \Phi_{\text {ilpk }}$ for counting permutations by the statistics ides, ipk, and ilpk.
- Applying these homomorphisms yields new specializations of our generalized cluster method.

Example: An "ides-Refined" Cluster Method

- Define the Hadamard product $*$ on formal power series in t by

$$
\left(\sum_{n=0}^{\infty} a_{n} t^{n}\right) *\left(\sum_{n=0}^{\infty} b_{n} t^{n}\right):=\sum_{n=0}^{\infty} a_{n} b_{n} t^{n}
$$

- Let $f^{*\langle n\rangle}=\underbrace{f * \cdots * f}_{n \text { times }}$.

Example: An "ides-Refined" Cluster Method

- Define the Hadamard product $*$ on formal power series in t by

$$
\left(\sum_{n=0}^{\infty} a_{n} t^{n}\right) *\left(\sum_{n=0}^{\infty} b_{n} t^{n}\right):=\sum_{n=0}^{\infty} a_{n} b_{n} t^{n}
$$

- Let $f^{*\langle n\rangle}=\underbrace{f * \cdots * f}_{n \text { times }}$.
- Let

$$
\begin{aligned}
& A_{\sigma, n}^{\mathrm{ides}}(s, t)=\sum_{\pi \in \mathfrak{S}_{n}} s^{\mathrm{occ} \sigma(\pi)} t^{\mathrm{ides}(\pi)+1} \\
& R_{\sigma, n}^{\mathrm{ides}}(s, t)=\sum_{\pi \in \mathfrak{S}_{n}} t^{\mathrm{ides}(\pi)+1} \sum_{c \in C_{\sigma, \pi}} s^{\mathrm{mk}_{\sigma}(c)}
\end{aligned}
$$

Theorem (Z. 2022+)

Let $\sigma \in \mathfrak{S}$ have length at least 2. Then

$$
\sum_{n=0}^{\infty} \frac{A_{\sigma, n}^{\text {ides }}(s, t)}{(1-t)^{n+1}} x^{n}=\sum_{n=0}^{\infty}\left(\frac{t x}{(1-t)^{2}}+\sum_{k=2}^{\infty} \frac{R_{\sigma, k}^{\text {ides }}(s-1, t) x^{k}}{(1-x)^{k+1}}\right)^{*\langle n\rangle}
$$

Additional Results

- We also have specializations of the generalized cluster method for ipk and ilpk.

Additional Results

- We also have specializations of the generalized cluster method for ipk and ilpk.
- Let

$$
\begin{aligned}
& P_{\sigma, n}^{\mathrm{ipk}}(s, t)=\sum_{\pi \in \mathfrak{S}_{n}} s^{\mathrm{occ}}(\pi) t^{\mathrm{ipk}(\pi)+1} \quad \text { and } \\
& P_{\sigma, n}^{\mathrm{ilpk}}(s, t)=\sum_{\pi \in \mathfrak{S}_{n}} s^{\mathrm{occ}(\pi)} t^{\mathrm{ilpk}(\pi)}
\end{aligned}
$$

- We obtain explicit generating function formulas for $A_{\sigma, n}^{i d e s}(s, t)$, $P_{\sigma, n}^{\mathrm{ipk}}(s, t)$, and $P_{\sigma, n}^{\mathrm{ilpk}}(s, t)$ for the following σ :
- $12 \cdots m$ and $m \cdots 21$ for $m \geq 2$;
- $12 \cdots(a-1)(a+1) a(a+2)(a+3) \cdots m$ for $m \geq 5$ and $2 \leq a \leq m-2$;
- $2134 \cdots m$ and $12 \cdots(m-2) m(m-1)$ for $m \geq 3$ (in progress; ongoing work with Justin Troyka).

A Real-Rootedness Conjecture

- Let

$$
A_{\sigma, n}^{\mathrm{ides}}(t)=\sum_{\pi \in \mathfrak{S}_{n}(\sigma)} t^{\mathrm{ides}(\pi)+1}
$$

$$
P_{\sigma, n}^{\mathrm{ipk}}(t)=\sum_{\pi \in \mathfrak{S}_{n}(\sigma)} t^{\mathrm{ipk}(\pi)+1}, \quad P_{\sigma, n}^{\mathrm{ilpk}}(t)=\sum_{\pi \in \mathfrak{S}_{n}(\sigma)} t^{\mathrm{ilpk}(\pi)}
$$

Conjecture

Let σ be $12 \cdots m$ or $m \cdots 21$ where $m \geq 3$, or $12 \cdots(a-1)(a+1) a(a+2)(a+3) \cdots m$ where $m \geq 5$ and $2 \leq a \leq m-2$. Then the polynomials $A_{\sigma, n}^{\mathrm{ides}}(t), P_{\sigma, n}^{\mathrm{ipk}}(t)$, and $P_{\sigma, n}^{\mathrm{ilpk}}(t)$ have real roots only for all $n \geq 2$.

A Real-Rootedness Conjecture

- Let

$$
A_{\sigma, n}^{\mathrm{ides}}(t)=\sum_{\pi \in \mathfrak{S}_{n}(\sigma)} t^{\mathrm{ides}(\pi)+1}
$$

$$
P_{\sigma, n}^{\mathrm{ipk}}(t)=\sum_{\pi \in \mathfrak{S}_{n}(\sigma)} t^{\mathrm{ipk}(\pi)+1}, \quad P_{\sigma, n}^{\mathrm{ilpk}}(t)=\sum_{\pi \in \mathfrak{S}_{n}(\sigma)} t^{\mathrm{ilpk}(\pi)}
$$

Conjecture

Let σ be $12 \cdots m$ or $m \cdots 21$ where $m \geq 3$, or $12 \cdots(a-1)(a+1) a(a+2)(a+3) \cdots m$ where $m \geq 5$ and $2 \leq a \leq m-2$. Then the polynomials $A_{\sigma, n}^{\mathrm{ides}}(t), P_{\sigma, n}^{\mathrm{ipk}}(t)$, and $P_{\sigma, n}^{\mathrm{ilpk}}(t)$ have real roots only for all $n \geq 2$.

THANK YOU!

Formula for $\mathrm{occ}_{12 \ldots m}$ and ides

Theorem (Z. 2022+)
Let $m \geq 2$. We have

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \frac{A_{12 \cdots m, n}^{\text {ides }}(s, t)}{(1-t)^{n+1}} x^{n} \\
& \quad \quad=\sum_{n=0}^{\infty}\left(\frac{t x}{(1-t)^{2}}+\frac{(s-1) t z^{m}(1-z)}{(1-t)\left(2-s-z+(s-1) z^{m}\right)}\right)^{*\langle n\rangle}
\end{aligned}
$$

where $z=x /(1-t)$.

Formula for $\operatorname{occ}_{12 \cdots(a-1)(a+1) a(a+2)(a+3) \cdots m}$ and ides

Theorem (Z. 2022+)

Let $\sigma=12 \cdots(a-1)(a+1) a(a+2)(a+3) \cdots m$ where $m \geq 5$ and $2 \leq a \leq m-2$. Let $i=\min (a, m-a)$. We have

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \frac{A_{\sigma, n}^{\text {ides }}(s, t)}{(1-t)^{n+1}} x^{n} \\
& \quad=\sum_{n=0}^{\infty}\left(\frac{t x}{(1-t)^{2}}+\frac{(s-1) t^{2} z^{m}}{(1-t)\left(1-(s-1) t \sum_{l=1}^{i} z^{m-l}\right)}\right)^{*\langle n\rangle}
\end{aligned}
$$

where $z=x /(1-t)$.

Formula for $\mathrm{occ}_{12 \cdots m}$ and ipk

Theorem (Z. 2022+)

Let $m \geq 2$. We have

$$
\begin{aligned}
\frac{1}{1-t} & +\frac{1+t}{2(1-t)} \sum_{n=1}^{\infty} P_{12 \cdots m, n}^{\mathrm{ipk}}(s, u) z^{n} \\
& =\sum_{n=0}^{\infty}\left(\frac{2 t x}{(1-t)^{2}}+\frac{2 t(s-1) z^{m}(1-z)}{\left(1-t^{2}\right)\left(2-s-z+(s-1) z^{m}\right)}\right)^{*\langle n\rangle}
\end{aligned}
$$

where $u=4 t /(1+t)^{2}$ and $z=(1+t) x /(1-t)$.

Formula for $\operatorname{occ}_{12 \cdots(a-1)(a+1) a(a+2)(a+3) \cdots m}$ and ipk

Theorem (Z. 2022+)

Let $\sigma=12 \cdots(a-1)(a+1) a(a+2)(a+3) \cdots m$ where $m \geq 5$ and $2 \leq a \leq m-2$. Let $i=\min (a, m-a)$. We have

$$
\begin{aligned}
& \frac{1}{1-t}+\frac{1+t}{2(1-t)} \sum_{n=1}^{\infty} P_{\sigma, n}^{\mathrm{ipk}}(s, u) z^{n} \\
& \quad=\sum_{n=0}^{\infty}\left(\frac{2 t x}{(1-t)^{2}}+\frac{(1+t)(s-1) u^{2} z^{m}}{2(1-t)\left(1-(s-1) u \sum_{l=1}^{i} z^{m-l}\right)}\right)^{*\langle n\rangle}
\end{aligned}
$$

where $u=4 t /(1+t)^{2}$ and $z=(1+t) x /(1-t)$.

Counting $12 \cdots$-Avoiding Permutations by ides and imaj

- Let $A_{\sigma, n}^{(\text {ides,imaj })}(t, q)=\sum_{\pi \in \mathfrak{S}_{n}(\sigma)} t^{\text {ides }(\pi)+1} q^{\text {imaj }(\pi)}$ for $n \geq 1$.

Theorem (Z. 2022+)

Let $m \geq 2$. We have

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \frac{A_{12 \cdots, m, n}^{(\text {ides,imaj })}(t, q)}{(1-t)(1-q t) \cdots\left(1-q^{n} t\right)} x^{n}= \\
& 1+\sum_{k=0}^{\infty}\left[\sum_{j=0}^{\infty}\left(\left[\begin{array}{c}
k+j m-1 \\
k-1
\end{array}\right]_{q} x^{j m}-\left[\begin{array}{c}
k+j m \\
k-1
\end{array}\right]_{q} x^{j m+1}\right)\right]^{-1} t^{k} .
\end{aligned}
$$

