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® Let G, be the set of all permutations of [n] = {1,2,...,n}.

o0
* let& = |6,
n=0
® |n this work, the notions of occurrence, containment, and
avoidance refer to that of consecutive patterns.

Let m = 6351427. Then 351 is an occurrence of 231 in 7 (but 352 is
not).

® Let occ,(m) be the number of occurrences of o in 7.

® Given 0 € G, let &,(0) denote the set of all permutations of
length n which avoid o.



® Given 0 € G, a o-cluster is a permutation filled with marked
occurrences of o that overlap with each other.

An example of a 1324-cluster is

(4 @326 7%

Two non-examples:

(w200 759 4(2eG®s T




Clusters (cont.)

® Let G, be the set of o-clusters with underlying permutation 7.

® Given a o-cluster c, let mk,(c) be the number of marked
occurrences of ¢ in c.

If ¢ is the cluster

then ¢ € Ci324,142536879 and mkyzoa(c) = 3.




The Goulden—Jackson Cluster Method for Permutations

S n
® |et Fo(s,x) = Z Z s°°c"(”)% and

n=07e6,

Rs) =3 3 30 smhel0X

n=271eG, CGCO',W

Theorem (Elizalde-Noy 2012)
Let 0 € & have length at least 2. Then

1

Fo(s, = 2
(s:) l1-x—R,(s—1,x)

® Setting s = 0: Z|6n(0)|mz 1—x—R,(—1,x)
=0 . ag Y




The Malvenuto—Reutenauer Algebra

e |et Q[S] denote the Q-vector space with basis &. The
Malvenuto—Reutenauer algebra is the Q-algebra on Q[S] with

multiplication
™o = Z T
TeC(m,0o)

where C(m, o) is the set of all concatenations of 7 and o.

12 .21 = 1243 + 1342 + 1432 + 2341 + 2431 + 3421




The Cluster Method in Malvenuto—Reutenauer
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TeS €S ceCo,r

Theorem (Z. 2022+)
Let 0 € & have length at least 2. Then

Fo(s)= (e =1~ Ro(s 1)

where ¢ is the empty permutation and . the permutation of length 1.



The Cluster Method in Malvenuto—Reutenauer

® Given 0 € G, let

Fo(s) =Y ms°e™ and Ry(s)=Y 3 msmeelo),

TeS €S ceCo,r

Theorem (Z. 2022+)
Let 0 € & have length at least 2. Then

Fol(s) = (== 1~ Rols - 1))_1

where ¢ is the empty permutation and . the permutation of length 1.

® Define ¢: Q[&] — Q[[x]] by ®(7) = x"/n! where n is the
length of 7. Applying ® recovers Elizalde and Noy's cluster
method for permutations.



Other Homomorphisms

® Let inv be the inversion number statistic.
e Define ®,: Q[S] — Q[[g, x]] by Pg(w) = g™

is the length of .
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[n]q!

® Applying @ recovers a g-analogue of the cluster method for
permutations (Elizalde 2016) which also keeps track of inv.
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Other Homomorphisms

® |et inv be the inversion number statistic.

e Define d,: Q[S] — Q[[q, x]] by ®q(7) = g™ [:]q!

n

where n

is the length of .

® Applying @ recovers a g-analogue of the cluster method for
permutations (Elizalde 2016) which also keeps track of inv.

¢ Big Question: Are there other homomorphisms on Q[S] for
counting permutations by other statistics?

e Given a permutation statistic st, let ist be its inverse statistic:
ist(m) = st(771).

General Principle (Z. 2022+)

For any shuffle-compatible descent statistic st, there is a
homomorphism ®;s: on Q[S] for counting permutations by ist.



Shuffle-Compatible Descent Statistics

® Let m and o be permutations on disjoint sets of positive
integers, and let S(m, o) be the set of shuffles of 7 and o.

Given m = 13 and o = 42, we have
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Shuffle-Compatible Descent Statistics

® Let m and o be permutations on disjoint sets of positive
integers, and let S(m, o) be the set of shuffles of 7 and o.

Given m = 13 and o = 42, we have

5(13,42) = {1342, 1432, 1423, 4213, 4123, 4132}.

® A permutation statistic st is shuffle-compatible if the
distribution of st over S(m, o) depends only on st(r), st(¢), and
the lengths of o and .

® Let Des(7) denote the descent set of . Then st is a descent
statistic if, for any permutations 7 and o of the same length,

Des(w) = Des(0) = st(m) = st(o).



Shuffle-Compatible Descent Statistics (cont.)

e A few notable shuffle-compatible descent statistics:

® The descent number des.
® The peak number pk, defined by

pk(m)={i:2<i<|m|—1, mi_1 <m > mit1}|.
® The left peak number Ipk, defined by

Ipk(7) = pk(7) + x(m1 > m2).



Shuffle-Compatible Descent Statistics (cont.)

e A few notable shuffle-compatible descent statistics:

® The descent number des.
® The peak number pk, defined by

pk(m)={i:2<i<|m|—1, mi_1 <m > mit1}|.
® The left peak number Ipk, defined by
Ipk(m) = pk(m) + x(m1 > 72).

® Thus, we have homomorphisms ®jges, Pipk, Pilpk for counting
permutations by the statistics ides, ipk, and ilpk.

® Applying these homomorphisms yields new specializations of our
generalized cluster method.



Example: An “ides-Refined” Cluster Method

® Define the Hadamard product * on formal power series in t by
oo o0 o
(Z a,,t”) * (Z b,,t”) = Z anbnt".
n=0 n=0 n=0

o Let F¥M = fu...xf.
N—_——

n times



Example: An “ides-Refined” Cluster Method

® Define the Hadamard product * on formal power series in t by
oo o o
(Z ant”) * (Z b,,t”) =) anbnt".
n=0 n=0 n=0

o Let AN = fx...xf.
N—_——

n times
® |et
AldeS S l' Z socco |des(7r)+1
eSS,
RldeS S t' Z tldes(ﬂ)-i-l Z sm
TES, ceCo,n

Theorem (Z. 2022+)

Let o € & have length at least 2. Then

i Aldes(s 1) "=i tx +i Rides(s — 1, £)xk\ "
(1—om T~ 2\ (11 (1— x)FiL '

n=0 k=2




Additional Results

® We also have specializations of the generalized cluster method
for ipk and ilpk.



Additional Results

® We also have specializations of the generalized cluster method
for ipk and ilpk.

® |et Pf,pﬁ(s, t) _ Z Soccg(ﬂ')tipk(ﬂ-)+1 and
T€S,
PIPX(s, t) = Z 500 () 4ilpk(r)
€S,

® \We obtain explicit generating function formulas for Aicgf,s(s, t),
PiP%(s, t), and PJP¥(s, t) for the following o
® 12...mand m---21 for m > 2;
® 12..-(a—1)(a+1)a(a+2)(a+3)---mfor m>5 and
2<a<m-—2;
® 2134---mand 12---(m—2)m(m — 1) for m > 3 (in
progress; ongoing work with Justin Troyka).



A Real-Rootedness Conjecture

® |et Agjis(t): Z tides(7r)+1,
TEGH(0)
SRR SO R SL)
7T€6n(0') TI'GGn(O')

Conjecture

Let 0 be 12---m or m---21 where m > 3, or
12---(a—1)(a+1)a(a+2)(a+3)--- m where m > 5 and

2 < a< m~—2. Then the polynomials Al%%s(¢), PiPX(t), and PaPe(t)
have real roots only for all n > 2.
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® |et Agjis(t): Z tides(7r)+1,
TEGH(0)
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7T€6n(0') TI'GGn(O')

Conjecture

Let 0 be 12---m or m---21 where m > 3, or
12---(a—1)(a+1)a(a+2)(a+3)--- m where m > 5 and

2 < a< m~—2. Then the polynomials Al%%s(¢), PiPX(t), and PaPe(t)
have real roots only for all n > 2.

THANK YOU!



Formula for occqs...,, and ides

Theorem (Z. 2022+)

Let m > 2. We have

o0 Aides (S, t) .

Z 12---m,n
(]_ _ t)n+1 X

n=0
> tx (s—1)tz™(1-2) )
2\ @—07 T @-D2-s—z+(s-1)z")

where z = x/(1 — t).



Formula for occy...(a—1)(a41)a(a+2)(a+3)--m and ides

Theorem (Z. 2022+)
Leto =12---(a—1)(a+1)a(a+2)(a+3)---m where m > 5 and
2<a<m-—2 Leti=min(a,m—a). We have

= Apn(s.t)
) 1— )+~

n=0

| tx N (s —1)t2z™ o
S -2 - - (s -1t 2 )

where z = x/(1 — t).



Formula for occys....,, and ipk

Theorem (Z. 2022+)

Let m > 2. We have

]_i (11+_tt Z Pillgk -m,n S U)Z
o9 *(n)
B 2tx 2t(s — 1)z™(1 — z)
_HZZO ((1— e (1—t2)(2—s—z—|—(s—1)zm))

where u = 4t/(1+ t)? and z = (1 + t)x/(1 — t).



Formula for occiy...(a—1)(a41)a(a+2)(a+3)--m and ipk

Theorem (Z. 2022+)

Letc=12---(a—1)(a+1)a(a+2)(a+3)---m where m > 5 and
2<a<m-—2. Leti=min(a,m— a). We have

1 1
rt ZP'pk (s,u)z"

B > 2tx N (1+t)(s—1)u?z" o
S\ 21— t)(1— (s Lu X, 2™ )

where u = 4t/(1+ t)? and z = (1 + t)x/(1 — t).

1—




Counting 12 - - - m-Avoiding Permutations by ides and imaj

o Let A(Ui::lnes,imaj)(t, q) _ Z tides(ﬂ)-{—lqimaj(ﬂ) for n > 1.
TE€GH(0)

Theorem (Z. 2022+)

Let m > 2. We have

0o ides,ima
Z A(12 an)(ta q) X" —
- (1—-t)(1—gqt)---(1—qg"t)

-1
= [k+jm=1] 0 [k+im] imi "
1+ZZ [ 1 }XJ_[k—l]XJ t<.
i q q

k=0 | j=0




