

RESTRICTED GRASSMANNIAN PERMUTATIONS

Juan B. Gil & Jessica A. Tomasko*

Penn State Altoona

jgil@psu.edu, jat5880@psu.edu

*Supported by Penn State Altoona Undergraduate Research Grants

Grassmannian & Related Permutations

A Grassmannian permutation is a permutation having at most one descent. If \mathcal{G}_n denotes the set of Grassmannian permutations on $[n] = \{1, \ldots, n\}$, then

- $\pi \in \mathscr{G}_n$ if and only if $\pi^{rc} \in \mathscr{G}_n$.
- $|\mathscr{G}_n| = 2^n n \text{ for } n \ge 1.$ $(1, 2, 5, 12, 27, 58, 121, 248, 503, 1014, \dots)$

A permutation, π , is called biGrassmannian if both π , $\pi^{-1} \in \mathscr{G}_n$. For $\pi \in \mathscr{G}_n$, the inverse π^{-1} has at most one dip, i.e. a pair (i,j) with i < j such that $\pi(i) = \pi(j) + 1$. A biGrassmannian permutation has at most one descent and at most one dip.

Proposition. A Grassmannian permutation is biGrassmannian if and only if it avoids the pattern 2413. In other words, $\mathscr{G}_n \cap \mathscr{G}_n^{-1} = \mathscr{G}_n(2413)$ for every n. Moreover,

$$|\mathscr{G}_n \cap \mathscr{G}_n^{-1}| = 1 + \binom{n+1}{3}.$$

We know $\mathscr{G}_n \subset S_n(3142)$, so $\mathscr{G}_n^{-1} \subset S_n(2413)$ and $\mathscr{G}_n \cap \mathscr{G}_n^{-1} \subset \mathscr{G}_n(2413)$. Conversely, suppose $\pi \in \mathscr{G}_n$ has two dips, say (i_1, j_1) and (i_2, j_2) with $i_1 < i_2$. Since π has at most one descent and avoids a 321 pattern, we must have

$$i_1 < i_2 < j_1 < j_2$$
 and $\pi(j_1) < \pi(i_1) < \pi(j_2) < \pi(i_2)$,
giving a 2413 pattern. Thus, $\mathscr{G}_n(2413) \subset \mathscr{G}_n^{-1}$ and so $\mathscr{G}_n(2413) \subset \mathscr{G}_n \cap \mathscr{G}_n^{-1}$.

Proposition. For $n \in \mathbb{N}$, we have $\mathscr{G}_n \cup \mathscr{G}_n^{-1} = S_n(321, 2143)$. Moreover,

$$|\mathscr{G}_n \cup \mathscr{G}_n^{-1}| = 2^{n+1} - \binom{n+1}{3} - 2n - 1.$$

Proposition. $\pi \in \mathscr{G}_n$ is an involution if and only if it is of the form

$$\pi = \mathrm{id}_{k_1} \oplus (\mathrm{id}_{k_2} \ominus \mathrm{id}_{k_2}) \oplus \mathrm{id}_{k_3}$$

for some $k_1, k_2, k_3 \in \mathbb{N} \cup \{0\}$ with $k_1 + 2k_2 + k_3 = n$, where $\mathrm{id}_0 = \varepsilon$. Moreover, i_n , the number of Grassmannian involutions of size n is given by

$$i_n = \begin{cases} \frac{n^2+3}{4} & \text{if } n \text{ is odd,} \\ \frac{n^2+4}{4} & \text{if } n \text{ is even} \end{cases}$$

Grassmannian involutions correspond to standard Young tableaux of shape $(n - k_2, k_2)$ whose second row consists of the labels $k_1 + k_2 + 1, \ldots, k_1 + 2k_2$.

1 3 4 5 6	1 2 4 5 6 3	1 2 3 5 6	1 2 3 4 6 5	1 2 3 4 5 6
$(1 \ominus 1) \oplus 1234$ 2 1 3 4 5 6	$1 \oplus (1 \ominus 1) \oplus 123$ $1 \ 3 \ 2 \ 4 \ 5 \ 6$	$12 \oplus (1 \ominus 1) \oplus 12$ $1 \ 2 \ 4 \ 3 \ 5 \ 6$	$123 \oplus (1 \ominus 1) \oplus 1$ $1 \ 2 \ 3 \ 5 \ 4 \ 6$	$1234 \oplus (1 \ominus 1)$ $1 \ 2 \ 3 \ 4 \ 6 \ 5$
1 2 5 6 3 4	1 2 3 6 4 5	1 2 3 4 5 6	1 2 3 4 5 6	1 2 3 4 5 6
$(12 \ominus 12) \oplus 12$ $3\ 4\ 1\ 2\ 5\ 6$	$1 \oplus (12 \ominus 12) \oplus 1$ $1 \ 4 \ 5 \ 2 \ 3 \ 6$	$\begin{array}{c} 12 \oplus (12 \ominus 12) \\ 1 \ 2 \ 5 \ 6 \ 3 \ 4 \end{array}$	$\begin{array}{c} 123\ominus 123 \\ 4\ 5\ 6\ 1\ 2\ 3 \end{array}$	123456 1 2 3 4 5 6

Main Results

For $\sigma \in \{132, 213, 231, 312\}$ and $n \in \mathbb{N}$, we have

$$|\mathscr{G}_n(\sigma)| = n + \binom{n-1}{2} = 1 + \binom{n}{2}.$$

In $\mathscr{G}_n(132) \cap \mathscr{G}_n(231)$, there are n permutations:

$$\pi = 1 \cdots n, \quad \pi = n \cdot 1 \cdots (n-1), \text{ and}$$

$$\pi = i \cdot 1 \cdots (i-1)(i+1) \cdots n \text{ for } i \in \{2, \dots, n-1\}$$

Moreover,

$$\pi \in \mathscr{G}_n(132) \setminus \mathscr{G}_n(231) \implies \pi = i(i+1)\cdots j \, 1 \, \tau,$$

 $\pi \in \mathscr{G}_n(231) \setminus \mathscr{G}_n(132) \implies \pi = 1\cdots (i-1) \, j \, i \, \tau,$

with $i, j \in \{2, \dots n\}$ and i < j.

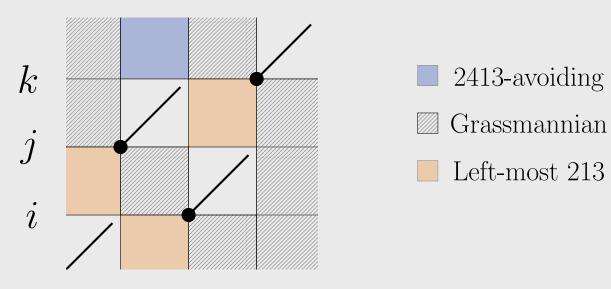
Theorem. If $k \geq 3$ and $\sigma \in S_k$ with $des(\sigma) = 1$, then

$$|\mathscr{G}_n(\sigma)| = 1 + \sum_{j=3}^k \binom{n}{j-1}$$
 for $n \in \mathbb{N}$.

PROOF BY EXAMPLE. Let $\sigma = 2413$ and choose $\sigma' = 213$.

 $\mathscr{G}_n(2413) = \mathscr{G}_n(213) \dot{\cup} \left(\mathscr{G}_n(2413) \setminus \mathscr{G}_n(213) \right),$

and every $\pi \in \mathscr{G}_n(2413) \setminus \mathscr{G}_n(213)$ must be of the form $\pi = \tau_0 j \tau_1 i \tau_2 k \tau_3 \text{ with } 1 \leq i < j < k \leq n.$



There are $\binom{n}{3}$ such permutations, so $|\mathscr{G}_n(2413)| = 1 + \binom{n}{2} + \binom{n}{3}$.

$\mathcal{G}_n(2134) \backslash \mathcal{G}_n(213)$ $\mathcal{G}_n(2341) \backslash \mathcal{G}_n(231)$ $\mathcal{G}_n(2413) \backslash \mathcal{G}_n(132)$ $\mathcal{G}_n(3412) \backslash \mathcal{G}_n(312)$

If $des(\sigma) > 1$, then $\mathscr{G}_n(\sigma) = \mathscr{G}_n$. Moreover,

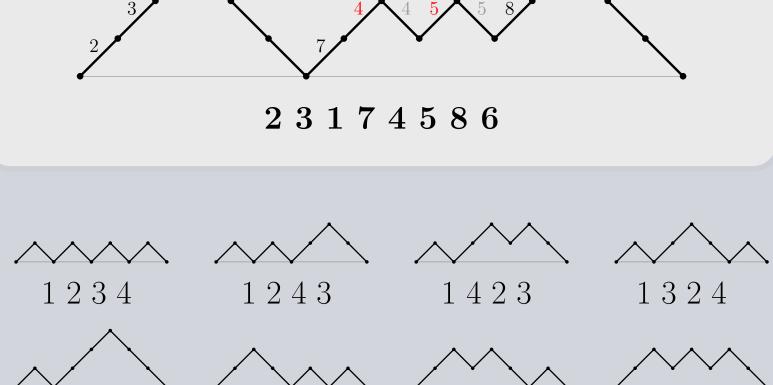
$$|\mathscr{G}_k(12\cdots k)| = 2^k - k - 1$$
 and $|\mathscr{G}_m(12\cdots k)| = 2^m - m$ for $m < k$.

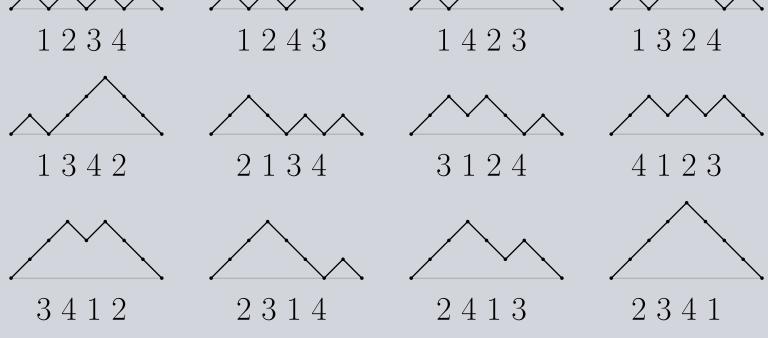
Conjecture. (Weiner) For $k \geq 2$ and $m \in \{k, \ldots, 2k-2\}$,

$$|\mathscr{G}_m(12\cdots k)| = \sum_{j=1}^{k-\lfloor m/2 \rfloor} (-1)^{j-1} j \cdot {2k-m-j \choose j} C_{k-j}.$$

Path Connections

Proposition. The set \mathcal{G}_n of Grassmannian permutations on [n] is in bijection with the set of Dyck paths of semilength n having at most one long ascent.





Lemma. We have $\pi \in \mathcal{G}_{n+1}(35124)$ if and only if its Lehmer code is of the form

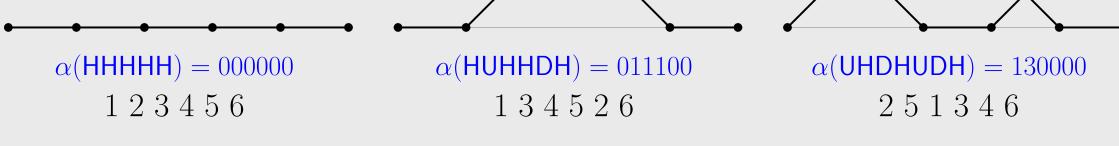
$$L(\pi) = 0^{j_1} 1^{j_2} m^{j_3} 0^{j_4} = \underbrace{0 \cdot \cdot \cdot 0}_{j_1} \underbrace{1 \cdot \cdot \cdot 1}_{j_2} \underbrace{m \cdot \cdot \cdot m}_{j_3} \underbrace{0 \cdot \cdot \cdot 0}_{j_4},$$
where $j_1 + \cdot \cdot \cdot + j_4 = n + 1$, $j_4 > 0$, $m \in \{2, \dots, n\}$, and $m \le j_4$.

Proposition. The set $Schr_n(UUDD)$ is in bijection with $\mathcal{G}_{n+1}(35124)$.

A Schröder word, w, corresponds to a Schröder path of semilength n when the number of letters in w satisfy #U + #D + 2(#H) = 2n. For $w \in \operatorname{Schr}_n(\mathsf{UUDD})$, w also satisfies $w = uv \Rightarrow \operatorname{val}(u) \in \{0,1\}$ and $(\#U \text{ in } w) \leq 2$, and we define α to create a Lehmer code of $\mathscr{G}_{n+1}(35124)$ by

$$\alpha(w) = \begin{cases} 0^{n+1} & \text{if } w \text{ has no } \mathsf{U}, \\ \sin(w) & \text{if } w \text{ has only one } \mathsf{U}, \\ 0^{i_1}1^{i_2-1}(i_3+1)^{i_4}0^{i_3+i_5} & \text{if } \sin(w) = 0^{i_1}1^{i_2}0^{i_3}1^{i_4}0^{i_5}. \end{cases}$$
mple,

For example,



References

- [1] J. Gil and J. Tomasko, Restricted Grassmannian permutations, *Enumerative Combinatorics & Applications* 2:4 (2022), Article #S4PP6.
- [2] S. Kitaev, *Patterns in permutations and words*, Monographs in Theoretical Computer Science, an EATCS Series, Springer, Heidelberg, 2011.
- [3] A. Lascoux and M.-P. Schützenberger, Schubert polynomials and the Littlewood Richardson rule, *Letters in Math. Physics* **10** (1985), 111–124.