Maximal Number of Common Increasing Subsequences of Several Permutations Permutation Pattern 2022 Valpo

Kento NAKADA
Okayama University.

2022/6/24

In this talk, we denote by \mathfrak{S}_{n} the symmetric group of degree n, and by

$$
\begin{array}{rlr}
w & =\left(\begin{array}{ccccc}
1 & 2 & 3 & \cdots & n \\
w(1) & w(2) & w(3) & \cdots & w(n)
\end{array}\right) & \\
& =w(\text { two-line notatione) } \\
& w(2) w(3) & \cdots w(n)
\end{array}
$$

Example

$$
\begin{aligned}
w & =\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
2 & 1 & 3 & 5 & 4
\end{array}\right) & & \text { (two-line notatione) } \\
& =21354 & &
\end{aligned}
$$

Denote by $\operatorname{Inc}_{l}(w)$ the set of increasing subsequences of length l of w, and by $\operatorname{inc}_{l}(w)$ its cardinality:

$$
\left.\begin{array}{l}
\operatorname{Inc}_{l}(w):=\left\{w\left(i_{1}\right) w\left(i_{2}\right) \cdots w\left(i_{l}\right) \left\lvert\, \begin{array}{l}
i_{1}<i_{2}<\cdots<i_{l} \text { and } \\
w\left(i_{1}\right)<w\left(i_{2}\right)<\cdots<w\left(i_{l}\right)
\end{array}\right.\right.
\end{array}\right\},
$$

Example

$$
\operatorname{Inc}_{l}(21354)=\{235,234,135,134\},
$$

Denote by $\operatorname{Inc}_{l}(w)$ the set of increasing subsequences of length l of w, and by $\operatorname{inc}_{l}(w)$ its cardinality:

$$
\left.\begin{array}{l}
\operatorname{Inc}_{l}(w):=\left\{w\left(i_{1}\right) w\left(i_{2}\right) \cdots w\left(i_{l}\right) \left\lvert\, \begin{array}{l}
i_{1}<i_{2}<\cdots<i_{l} \text { and } \\
w\left(i_{1}\right)<w\left(i_{2}\right)<\cdots<w\left(i_{l}\right)
\end{array}\right.\right.
\end{array}\right\},
$$

Example

$$
\operatorname{Inc}_{l}(21354)=\{235,234,135,134\}
$$

Denote by $\operatorname{Inc}_{l}(w)$ the set of increasing subsequences of length l of w, and by $\operatorname{inc}_{l}(w)$ its cardinality:

$$
\left.\begin{array}{l}
\operatorname{Inc}_{l}(w):=\left\{w\left(i_{1}\right) w\left(i_{2}\right) \cdots w\left(i_{l}\right) \left\lvert\, \begin{array}{l}
i_{1}<i_{2}<\cdots<i_{l} \text { and } \\
w\left(i_{1}\right)<w\left(i_{2}\right)<\cdots<w\left(i_{l}\right)
\end{array}\right.\right.
\end{array}\right\},
$$

Example

$$
\operatorname{Inc}_{l}(21354)=\{235,234,135,134\},
$$

Denote by $\operatorname{Inc}_{l}(w)$ the set of increasing subsequences of length l of w, and by $\operatorname{inc}_{l}(w)$ its cardinality:

$$
\left.\begin{array}{l}
\operatorname{Inc}_{l}(w):=\left\{w\left(i_{1}\right) w\left(i_{2}\right) \cdots w\left(i_{l}\right) \left\lvert\, \begin{array}{l}
i_{1}<i_{2}<\cdots<i_{l} \text { and } \\
w\left(i_{1}\right)<w\left(i_{2}\right)<\cdots<w\left(i_{l}\right)
\end{array}\right.\right.
\end{array}\right\},
$$

Example

$$
\operatorname{Inc}_{l}(21354)=\{235,234,135,134\}
$$

Denote by $\operatorname{Inc}_{l}(w)$ the set of increasing subsequences of length l of w, and by $\operatorname{inc}_{l}(w)$ its cardinality:

$$
\left.\begin{array}{l}
\operatorname{Inc}_{l}(w):=\left\{w\left(i_{1}\right) w\left(i_{2}\right) \cdots w\left(i_{l}\right) \left\lvert\, \begin{array}{l}
i_{1}<i_{2}<\cdots<i_{l} \text { and } \\
w\left(i_{1}\right)<w\left(i_{2}\right)<\cdots<w\left(i_{l}\right)
\end{array}\right.\right.
\end{array}\right\},
$$

Example

$$
\operatorname{Inc}_{l}(21354)=\{235,234,135,134\},
$$

Denote by $\operatorname{Inc}_{l}(w)$ the set of increasing subsequences of length l of w, and by $\operatorname{inc}_{l}(w)$ its cardinality:

$$
\left.\begin{array}{l}
\operatorname{Inc}_{l}(w):=\left\{w\left(i_{1}\right) w\left(i_{2}\right) \cdots w\left(i_{l}\right) \left\lvert\, \begin{array}{l}
i_{1}<i_{2}<\cdots<i_{l} \text { and } \\
w\left(i_{1}\right)<w\left(i_{2}\right)<\cdots<w\left(i_{l}\right)
\end{array}\right.\right.
\end{array}\right\},
$$

Example

$$
\begin{aligned}
\operatorname{Inc}_{l}(21354) & =\{235,234,135,134\} \\
\operatorname{inc}_{l}(21354) & =4 .
\end{aligned}
$$

For an m-subset $S=\left\{w_{1}, w_{2}, \cdots, w_{m}\right\} \subseteq \mathfrak{S}_{n}$ of permutations, we denote by $\operatorname{Inc}_{l}(S)=\operatorname{Inc}_{l}\left(w_{1}, w_{2}, \cdots, w_{m}\right)$ the intersection of $\operatorname{Inc}_{l}\left(w_{i}\right)$'s, and by $\operatorname{inc}_{l}(S)=\operatorname{inc}_{l}\left(w_{1}, w_{2}, \cdots, w_{m}\right)$ its cardinality:

$$
\begin{aligned}
\operatorname{Inc}_{l}(S) & :=\bigcap_{w_{i} \in S} \operatorname{Inc}_{l}\left(w_{i}\right) \\
\operatorname{inc}_{l}(S) & :=\# \operatorname{Inc}_{l}(S)
\end{aligned}
$$

Example

$$
\begin{aligned}
\operatorname{Inc}_{l}(21354) & =\{235,234,135,134\} \\
\operatorname{Inc}_{l}(12534) & =\{125,123,124,134,234\} \\
\operatorname{Inc}_{l}(21354,12534) & =\{134,234\} \\
\operatorname{inc}_{l}(21354,12534) & =2
\end{aligned}
$$

In order to describe the properties of $\operatorname{Inc}_{l}(S)$, we use the weak right Bruhat order of \mathfrak{S}_{n},

In order to describe the properties of $\operatorname{Inc}_{l}(S)$, we use the weak right Bruhat order of \mathfrak{S}_{n}, as the Weyl group of type A_{n-1}.

In order to describe the properties of $\operatorname{Inc}_{l}(S)$, we use the weak right Bruhat order of \mathfrak{S}_{n}, as the Weyl group of type A_{n-1}.

definition

If $u, v \in \mathfrak{S}_{n}$ satisfy

$$
u s_{i}=v \text { and } \ell(u)+1=\ell(v)
$$

for some $1 \leq i \leq n-1$, we denote $u \dot{<} v$, where $s_{i}=(i, i+1)$ denotes the simple reflection (or the adjacent transposition), and $\ell(w)$ denotes the length of w (the number of inversions of $w)$. The reflexive and transitive closure of $\dot{<}$ is denoted by \leq, which is called the weak right Bruhat order of \mathfrak{S}_{n}.

order ideal of \mathfrak{S}_{n}

Hence, we get:

Proposition

A maximal in $\left\{\operatorname{Inc}_{l}(S) \left\lvert\, S \in\binom{\mathfrak{S}_{n}}{m}\right.\right\}$ with respect to set inclusion is achieved by some order ideal S.

We desire to give an explicit formula for

$$
\max _{S \in\binom{\mathcal{S}_{n}}{m}} \operatorname{inc}_{l}(S)
$$

First, we give two typical examples:

First, we give two typical examples:
For $m \geq 1$, we put
$w_{i ; m}^{+}:=s_{i} s_{i+1} \cdots s_{i+m-2}$ and $w_{i ; m}^{-}:=s_{i} s_{i-1} \cdots s_{j-(m-2)}$.
order ideal of \mathfrak{S}_{n}
First, we give two typical examples:
For $m \geq 1$, we put
$w_{i ; m}^{+}:=s_{i} s_{i+1} \cdots s_{i+m-2}$ and $w_{i ; m}^{-}:=s_{i} s_{i-1} \cdots s_{j-(m-2)}$.
In particular, we have $w_{i ; 1}^{+}=w_{i ; 1}^{-}=e$ and $w_{i ; 2}^{+}=w_{i ; 2}^{-}=s_{i}$.

First, we give two typical examples:
For $m \geq 1$, we put
$w_{i ; m}^{+}:=s_{i} s_{i+1} \cdots s_{i+m-2}$ and $w_{i ; m}^{-}:=s_{i} s_{i-1} \cdots s_{j-(m-2)}$.
In particular, we have $w_{i ; 1}^{+}=w_{i ; 1}^{-}=e$ and $w_{i ; 2}^{+}=w_{i ; 2}^{-}=s_{i}$.
If $1 \leq m^{\prime}<m$, then we have $w_{i ; m^{\prime}}^{ \pm}<w_{i ; m}^{ \pm}$in weak right
Bruhat order.

First, we give two typical examples:
For $m \geq 1$, we put
$w_{i ; m}^{+}:=s_{i} s_{i+1} \cdots s_{i+m-2}$ and $w_{i ; m}^{-}:=s_{i} s_{i-1} \cdots s_{j-(m-2)}$.
In particular, we have $w_{i ; 1}^{+}=w_{i ; 1}^{-}=e$ and $w_{i ; 2}^{+}=w_{i ; 2}^{-}=s_{i}$.
If $1 \leq m^{\prime}<m$, then we have $w_{i ; m^{\prime}}^{ \pm}<w_{i ; m}^{ \pm}$in weak right Bruhat order. The order ideal $\left\langle w_{i ; m}^{+}\right\rangle$generated by $w_{i ; m}^{+}$is given by:

$$
\left\langle w_{i ; m}^{+}\right\rangle=\left\{w_{i ; m^{\prime}}^{+} \in \mathfrak{S}_{n} \mid 1 \leq m^{\prime} \leq m\right\} \in\binom{\mathfrak{S}_{n}}{m}
$$

First, we give two typical examples:
For $m \geq 1$, we put
$w_{i ; m}^{+}:=s_{i} s_{i+1} \cdots s_{i+m-2}$ and $w_{i ; m}^{-}:=s_{i} s_{i-1} \cdots s_{j-(m-2)}$.
In particular, we have $w_{i ; 1}^{+}=w_{i ; 1}^{-}=e$ and $w_{i ; 2}^{+}=w_{i ; 2}^{-}=s_{i}$.
If $1 \leq m^{\prime}<m$, then we have $w_{i ; m^{\prime}}^{ \pm}<w_{i ; m}^{ \pm}$in weak right
Bruhat order. The order ideal $\left\langle w_{i ; m}^{+}\right\rangle$generated by $w_{i ; m}^{+}$is given by:

$$
\left\langle w_{i ; m}^{+}\right\rangle=\left\{w_{i ; m^{\prime}}^{+} \in \mathfrak{S}_{n} \mid 1 \leq m^{\prime} \leq m\right\} \in\binom{\mathfrak{S}_{n}}{m}
$$

Hence we get:

$$
\begin{aligned}
\operatorname{Inc}_{l}\left(\left\langle w_{i ; m}^{+}\right\rangle\right) & =\operatorname{Inc}_{l}\left(w_{i ; m}^{+}\right) \\
\operatorname{inc}_{l}\left(\left\langle w_{i ; m}^{+}\right\rangle\right) & =\operatorname{inc}_{l}\left(w_{i ; m}^{+}\right) \\
& =\binom{n-1}{l}+\binom{n-m}{l-1}
\end{aligned}
$$

Let $1 \leq i, j \leq n-1$ with $|i-j| \geq 2$. Then the order ideal $\left\langle s_{i} s_{j}\right\rangle$ generated by $s_{i} s_{j}$ is given by:

$$
\left\langle s_{i} s_{j}\right\rangle=\left\{e, s_{i}, s_{j}, s_{i} s_{j}\right\} \in\binom{\mathfrak{S}_{n}}{4} .
$$

Let $1 \leq i, j \leq n-1$ with $|i-j| \geq 2$. Then the order ideal $\left\langle s_{i} s_{j}\right\rangle$ generated by $s_{i} s_{j}$ is given by:

$$
\left\langle s_{i} s_{j}\right\rangle=\left\{e, s_{i}, s_{j}, s_{i} s_{j}\right\} \in\binom{\mathfrak{S}_{n}}{4}
$$

Hence we get:

$$
\begin{aligned}
\operatorname{Inc}_{l}\left(\left\langle s_{i} s_{j}\right\rangle\right) & =\operatorname{Inc}_{l}\left(s_{i} s_{j}\right) \\
\operatorname{inc}_{l}\left(\left\langle s_{i} s_{j}\right\rangle\right) & =\operatorname{inc}_{l}\left(s_{i} s_{j}\right) \\
& =4\binom{n-4}{l-2}+4\binom{n-4}{l-1}+\binom{n-4}{l} .
\end{aligned}
$$

Introduction

order ideal of \mathfrak{S}_{n}

By classification of order ideals S with $m=\# S \leq 4$, we get:

Theorem (N .)

Let $n \geq 1, m \geq 1$ and $0 \leq l \leq n$. Then:
order ideal of \mathfrak{S}_{n}
By classification of order ideals S with $m=\# S \leq 4$, we get:
Theorem (N .)
Let $n \geq 1, m \geq 1$ and $0 \leq l \leq n$. Then:
(1) If $m \leq 3$ and $n \geq m$, then $\max _{S \in\left({ }_{m}^{\mathcal{F}_{n}}\right)} \operatorname{inc}_{l}(S)$ is given by:

$$
\binom{n-1}{l}+\binom{n-m}{l-1} .
$$

order ideal of \mathfrak{S}_{n}
By classification of order ideals S with $m=\# S \leq 4$, we get:

Theorem (N .)

Let $n \geq 1, m \geq 1$ and $0 \leq l \leq n$. Then:
(1) If $m \leq 3$ and $n \geq m$, then $\max _{S \in\left({ }_{m}{ }_{m}\right)} \operatorname{inc}_{l}(S)$ is given by:

$$
S=\left\langle w_{i ; m}^{ \pm}\right\rangle \quad\binom{n-1}{l}+\binom{n-m}{l-1} .
$$

By classification of order ideals S with $m=\# S \leq 4$, we get:

Theorem (N .)

Let $n \geq 1, m \geq 1$ and $0 \leq l \leq n$. Then:
(1) If $m \leq 3$ and $n \geq m$, then $\max _{S \in\left({ }_{\left(\mathcal{E}_{n}\right.}^{m}\right)} \operatorname{inc}_{l}(S)$ is given by:

$$
\binom{n-1}{l}+\binom{n-m}{l-1} .
$$

(2) If $m=4$ and $n \geq 3$, then $\max _{S \in\binom{\mathcal{E}_{n}}{m}} \operatorname{inc}_{l}(S)$ is given by:

$$
\begin{cases}3\binom{n-3}{l-1}+\binom{n-3}{l} \\ 4\binom{n-4}{l-2}+4\binom{n-4}{-1}+\binom{n-4}{l} & \text { if } n=3, \\ \binom{n-1}{l}+\binom{n-4}{l-1} & \text { if } 4 \leq n \leq 2 l\end{cases}
$$

Note $n=2 l-1 \Rightarrow\binom{n-1}{l}+\binom{n-4}{l-1}=4\binom{n-4}{l-2}+4\binom{n-4}{l-1}+\binom{n-4}{l}$.

By classification of order ideals S with $m=\# S \leq 4$, we get:

Theorem (N .)

Let $n \geq 1, m \geq 1$ and $0 \leq l \leq n$. Then:
(1) If $m \leq 3$ and $n \geq m$, then $\max _{S \in\left({ }_{m}^{\mathcal{F}_{n}}\right)} \operatorname{inc}_{l}(S)$ is given by:
$S=\left\langle w_{i ; 4}^{ \pm}\right\rangle$

$$
\binom{n-1}{l}+\binom{n-m}{l-1} .
$$

(2) If $n=4$ and $n \geq 3$, then $\max _{S \in\binom{\mathcal{E}_{n}}{m}} \operatorname{inc}_{l}(S)$ is given by:

$$
\begin{cases}3\binom{n-3}{l-1}+\binom{n-3}{l} & \text { if } n=3, \\ 4\binom{n-2}{l-2}+4\binom{n-4}{l-1}+\binom{n-4}{l} & \text { if } 4 \leq n \text { and } n \geq 2 l-1 . \\ \binom{n-1}{l}+\binom{n-4}{l-1} & \text { if } 4 \leq n \leq 2 l-1,\end{cases}
$$

Note $n=2 l-1 \Rightarrow\binom{n-1}{l}+\binom{n-4}{l-1}=4\binom{n-4}{l-2}+4\binom{n-4}{l-1}+\binom{n-4}{l}$.

By classification of order ideals S with $m=\# S \leq 4$, we get:

Theorem (N.)

Let $n \geq 1, m \geq 1$ and $0 \leq l \leq n$. Then:
(1) If $m \leq 3$ and $n \geq m$, then $\max _{S \in\left(\mathcal{S}_{m} n\right)} \operatorname{inc}_{l}(S)$ is given by:

$$
\binom{n-1}{l}+\binom{n-m}{l-1} .
$$

(2) If $n=4$ and $n \geq 3$, then $\max _{S \in\binom{\mathcal{E}_{n}}{m}} \operatorname{inc}_{l}(S)$ is given by:

$$
\left\{\begin{array}{cl}
3\binom{n-3}{l-1}+\binom{n-3}{l} & \text { if } n=3, \\
4\binom{n-4}{l-2}+4\binom{n-4}{l-1}+\binom{n-4}{l} & \text { if } 4 \leq n \text { and } n \geq 2 l-1 . \\
\binom{n-1}{l}+\binom{n-4}{l-1} & \text { if } 4 \leq n \leq 2 l-1,
\end{array}\right.
$$

Note $n=2 l-1 \Rightarrow\binom{n-1}{l}+\binom{n-4}{l-1}=4\binom{n-4}{l-2}+4\binom{n-4}{l-1}+\binom{n-4}{l}$.

By classification of order ideals S with $m=\# S \leq 4$, we get:

Theorem (N.)

Let $n \geq 1, m \geq 1$ and $0 \leq l \leq n$. Then:
(1) If $m \leq 3$ and $n \geq m$, then $\max _{S \in\left(\mathcal{S}_{m} n\right)} \operatorname{inc}_{l}(S)$ is given by:
$S=\left\langle s_{1}, s_{2} s_{1}\right\rangle$

$$
\binom{n-1}{l}+\binom{n-m}{l-1} .
$$

(2) If $n=4$ and $n \geq 3$, then $\max _{S \in\binom{\mathcal{E}_{n} n}{m}} \operatorname{inc}_{l}(S)$ is given by:

$$
\begin{cases}3\binom{n-3}{l-1}+\binom{n-3}{l} & \text { if } n=3, \\ 4\binom{n-4}{-2}+4\binom{n-4}{l-1}+\binom{n-4}{l} & \text { if } 4 \leq n \text { and } n \geq \\ \binom{n-1}{l}+\binom{n-4}{l-1} & \text { if } 4 \leq n \leq 2 l-1,\end{cases}
$$

Note $n=2 l-1 \Rightarrow\binom{n-1}{l}+\binom{n-4}{l-1}=4\binom{n-4}{l-2}+4\binom{n-4}{l-1}+\binom{n-4}{l}$.

Introduction

order ideal of \mathfrak{S}_{n}

When $l=n-2$, the values $\max _{S \in\binom{\mathfrak{S}_{n}}{m}} \operatorname{inc}_{n-2}(S)$ for $m=1,2,3,4$ are:

$$
\begin{aligned}
& m=1 \\
& m=2 \\
& m=3 \\
& m=4
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{n^{2}-n}{2} \quad=2 n-3 \quad=n \\
& = \begin{cases}3 & n=3 \\
4 & n=4 \\
n-1 & n \geq 5\end{cases}
\end{aligned}
$$

Back to Motivation.

In information theory, especially in coding theory, one of the subjects is error correction of inputs. Among various types of errors, deletion errors of t bits are known to be one of the most difficult problems to correct.

Figure: 3-Deletion channel

In information theory, especially in coding theory, one of the subjects is error correction of inputs. Among various types of errors, deletion errors of t bits are known to be one of the most difficult problems to correct.

Figure: 3-Deletion channel

In information theory, especially in coding theory, one of the subjects is error correction of inputs. Among various types of errors, deletion errors of t bits are known to be one of the most difficult problems to correct. How difficult?

Figure: 3-Deletion channel

In information theory, especially in coding theory, one of the subjects is error correction of inputs. Among various types of errors, deletion errors of t bits are known to be one of the most difficult problems to correct.

How difficult?
If $t=1$, then it is well-known. [Varshamov-Tenengolts code]

$$
\begin{gathered}
\text { input } \\
01001100 \longrightarrow \text { Channel } \longrightarrow 01010
\end{gathered} \begin{array}{r}
\text { output }
\end{array}
$$

Figure: 3-Deletion channel

In information theory, especially in coding theory, one of the subjects is error correction of inputs. Among various types of errors, deletion errors of t bits are known to be one of the most difficult problems to correct.

How difficult?

If $t=1$, then it is well-known. [Varshamov-Tenengolts code] If $t=2$, the problem is already difficult and no satisfactory theory has been developed.

Figure: 3-Deletion channel

In information theory, especially in coding theory, one of the subjects is error correction of inputs. Among various types of errors, deletion errors of t bits are known to be one of the most difficult problems to correct.

How difficult?

If $t=1$, then it is well-known. [Varshamov-Tenengolts code] If $t=2$, the problem is already difficult and no satisfactory theory has been developed.
If $t \geq 3$, it is hopeless.

Figure: 3-Deletion channel

The reconstruction model, first introduced by Levenshtein in 2001, assumes that an input x of some code C is transmitted over k identical t-deletion channels and that these channels generate k outputs $y_{1}, y_{2}, \cdots, y_{k}$ with distinct errors:

Figure: The Reconstruction Model

The transmitted word x is reconstructed using all of the channels' outputs $y_{1}, y_{2}, \cdots, y_{k}$.

Back to Information theory

reconstruction model for deletion channel

Let $\mathrm{B}_{t}^{\mathrm{D}}(x)$ be the set of possible channel outputs, i.e., the t-deletion error ball surrounding the word x.

Let $\mathrm{B}_{t}^{\mathrm{D}}(x)$ be the set of possible channel outputs, i.e., the t-deletion error ball surrounding the word x.

Then, Levenshtein has proved in 2001, that unique decoding of the transmitted word is guaranteed to succeed if and only if

$$
\begin{equation*}
k>\max _{x_{1}, x_{2} \in C, x_{1} \neq x_{2}}\left|\mathrm{~B}_{t}^{\mathrm{D}}\left(x_{1}\right) \cap \mathrm{B}_{t}^{\mathrm{D}}\left(x_{2}\right)\right| . \tag{2.1}
\end{equation*}
$$

Let $\mathrm{B}_{t}^{\mathrm{D}}(x)$ be the set of possible channel outputs, i.e., the t-deletion error ball surrounding the word x.

Then, Levenshtein has proved in 2001, that unique decoding of the transmitted word is guaranteed to succeed if and only if

$$
\begin{equation*}
k>\max _{x_{1}, x_{2} \in C, x_{1} \neq x_{2}}\left|\mathrm{~B}_{t}^{\mathrm{D}}\left(x_{1}\right) \cap \mathrm{B}_{t}^{\mathrm{D}}\left(x_{2}\right)\right| . \tag{2.1}
\end{equation*}
$$

However, if the number k of the channels does not satisfy the inequality in (2.1), then exact reconstruction of the transmitted word is not always possible as there may be several transmitted words leading to the same channels' outputs.

Let $\mathrm{B}_{t}^{\mathrm{D}}(x)$ be the set of possible channel outputs, i.e., the t-deletion error ball surrounding the word x.

Then, Levenshtein has proved in 2001, that unique decoding of the transmitted word is guaranteed to succeed if and only if

$$
\begin{equation*}
k>\max _{x_{1}, x_{2} \in C, x_{1} \neq x_{2}}\left|\mathrm{~B}_{t}^{\mathrm{D}}\left(x_{1}\right) \cap \mathrm{B}_{t}^{\mathrm{D}}\left(x_{2}\right)\right| . \tag{2.1}
\end{equation*}
$$

However, if the number k of the channels does not satisfy the inequality in (2.1), then exact reconstruction of the transmitted word is not always possible as there may be several transmitted words leading to the same channels' outputs. So, the value of the RHS of (2.1) is important as the threshold for the number k of channels.

However, even when inequality (2.1) does not hold, if there are only two candidates for input, the situation is much better than if there are too many candidates.

However, even when inequality (2.1) does not hold, if there are only two candidates for input, the situation is much better than if there are too many candidates.
Abu-Sini and Yaakobi considered in 2020 the case where there are only at most m candidates for input and considered the value

$$
\mathrm{N}_{t}^{\mathrm{D} n, 2}(m):=\max _{S \in\binom{C}{m}} \# \bigcap_{x \in S} \mathrm{~B}_{t}^{\mathrm{D}}(x)
$$

However, even when inequality (2.1) does not hold, if there are only two candidates for input, the situation is much better than if there are too many candidates.
Abu-Sini and Yaakobi considered in 2020 the case where there are only at most m candidates for input and considered the value

$$
\mathrm{N}_{t}^{\mathrm{D} n, 2}(m):=\max _{S \in\binom{C}{m}} \# \bigcap_{x \in S} \mathrm{~B}_{t}^{\mathrm{D}}(x) .
$$

They has proved:

Theorem (Abu-Sini=Yaakobi, 2020)

If $\mathrm{N}_{t}^{\mathrm{D} n, 2}(m+1)<k \leq \mathrm{N}_{t}^{\mathrm{D} n, 2}(m)$, then there are only at most m candidates for input.

Theorem (Abu-Sini=Yaakobi, 2020)

If $\mathrm{N}_{t}^{\mathrm{D} n, 2}(m+1)<k \leq \mathrm{N}_{t}^{\mathrm{D} n, 2}(m)$, then there are only at most m candidates for input.

Theorem (Abu-Sini=Yaakobi, 2020)

If $\mathrm{N}_{t}^{\mathrm{D} n, 2}(m+1)<k \leq \mathrm{N}_{t}^{\mathrm{D} n, 2}(m)$, then there are only at most m candidates for input.

Proof of this theorem is easy. But we have no explicit formula of $\mathrm{N}_{t}^{\mathrm{D} n, 2}(m)$.

Theorem (Abu-Sini=Yaakobi, 2020)

If $\mathrm{N}_{t}^{\mathrm{D} n, 2}(m+1)<k \leq \mathrm{N}_{t}^{\mathrm{D} n, 2}(m)$, then there are only at most m candidates for input.

Proof of this theorem is easy. But we have no explicit formula of $\mathrm{N}_{t}^{\mathrm{D} n, 2}(m)$.
Abu-Sini $=$ Yaakobi gave the formula for $t=2$ and $m \leq 4$:

Theorem (Abu-Sini=Yaakobi, 2020)

$\mathrm{N}_{2}^{\mathrm{D} n, 2}(1)$	$\mathrm{N}_{2}^{\mathrm{D} n, 2}(2)$	$\mathrm{N}_{2}^{\mathrm{D} n, 2}(3)$	$\mathrm{N}_{2}^{\mathrm{D} n, 2}(4)$
$\frac{n^{2}-3 n+4}{2}$	$2 n-4$	n	$\begin{cases}2 & n=3 \\ 4 & n=4 \\ n-1 & n \geq 5\end{cases}$

Generalize to q-ary code case.

Generalize to q-ary code case.

Remark

If $q=4$, there is an application to DNA codes.
Deletion error is a typical error of copy of DNA strands.

definition

Let $q \geq 2$. For $x \in(\mathbb{Z} / q \mathbb{Z})^{n}$, the t-deletion ball $\mathrm{B}_{t}^{\mathrm{D}}(x)$ is similarly defined. We put:

$$
\mathrm{N}_{t}^{\mathrm{D} n, q}(m):=\max _{S \in\binom{Q^{n}}{m}} \# \bigcap_{x \in S} \mathrm{~B}_{t}^{\mathrm{D}}(x)
$$

definition

Let $q \geq 2$. For $x \in(\mathbb{Z} / q \mathbb{Z})^{n}$, the t-deletion ball $\mathrm{B}_{t}^{\mathrm{D}}(x)$ is similarly defined. We put:

$$
\mathrm{N}_{t}^{\mathrm{D} n, q}(m):=\max _{S \in\binom{Q^{n}}{m}} \# \bigcap_{x \in S} \mathrm{~B}_{t}^{\mathrm{D}}(x)
$$

Then, similarly we get:

definition

Let $q \geq 2$. For $x \in(\mathbb{Z} / q \mathbb{Z})^{n}$, the t-deletion ball $\mathrm{B}_{t}^{\mathrm{D}}(x)$ is similarly defined. We put:

$$
\mathrm{N}_{t}^{\mathrm{D} n, q}(m):=\max _{S \in\binom{Q^{n}}{m}} \# \bigcap_{x \in S} \mathrm{~B}_{t}^{\mathrm{D}}(x)
$$

Then, similarly we get:

Theorem (N.)

If $\mathrm{N}_{t}^{\mathrm{D} n, q}(m+1)<k \leq \mathrm{N}_{t}^{\mathrm{D} n, q}(m)$, then there are only at most m candidates for input.

Back to Information theory

reconstruction model for deletion channel

When $t=2$, we have

Theorem (N. for $q \geq 3$

$$
\mathrm{N}_{2}^{\mathrm{D} n, q}(1) \quad \mathrm{N}_{2}^{\mathrm{D} n, q}(2) \quad \mathrm{N}_{2}^{\mathrm{D} n, q}(3) \quad \mathrm{N}_{2}^{\mathrm{D} n, q}(4)
$$

$$
q \geq 3 \quad \frac{n^{2}-n}{2} \quad 2 n-3 \quad n \quad \begin{cases}3 & n=3 \\ 4 & n=4 \\ n-1 & n \geq 5\end{cases}
$$

Back to Information theory

reconstruction model for deletion channel

When $t=2$, we have

Theorem (N . for $q \geq 3(\mathrm{~A}=\mathrm{Y}$ for $q=2)$)

| | $\mathrm{N}_{2}^{\mathrm{D} n, q}(1)$ | $\mathrm{N}_{2}^{\mathrm{D} n, q}(2)$ | $\mathrm{N}_{2}^{\mathrm{D} n, q}(3)$ |
| :---: | :---: | :---: | :---: | $\mathrm{N}_{2}^{\mathrm{D} n, q}(4)$

When $t=2$, we have
Theorem (N . for $q \geq 3(\mathrm{~A}=\mathrm{Y}$ for $q=2)$)

$$
\begin{aligned}
& \mathrm{N}_{2}^{\mathrm{D} n, q}(1) \quad \mathrm{N}_{2}^{\mathrm{D} n, q}(2) \quad \mathrm{N}_{2}^{\mathrm{D} n, q}(3) \quad \mathrm{N}_{2}^{\mathrm{D} n, q}(4) \\
& \begin{array}{l}
q=2 \\
\hline \frac{n^{2}-3 n+4}{2}
\end{array} 2 n-4 \quad n \begin{cases}2 & n=3 \\
4 & n=4 \\
n-1 & n \geq 5 \\
q \geq 3 & \frac{n^{2}-n}{2} \\
3 & n=3 \\
4 & n=4 \\
n-1 & n \geq 5\end{cases}
\end{aligned}
$$

Same table as $\max _{S \in\binom{\mathcal{S}_{n}}{m}} \operatorname{inc}_{n-2}(S)$ for $q \geq 3$!!!

In general, we have:

In general, we have:

Theorem (N.)

When we fix n, t and m, the value $\mathrm{N}_{t}^{\mathrm{D} n, q}(m)$ is weakly increasing for q and constant for $q \geq n$.
The constant is given by $\max _{S \in\binom{\mathfrak{S}_{n}}{m}} \mathrm{inc}_{n-t}(S)$:

In general, we have:

Theorem (N.)

When we fix n, t and m, the value $\mathrm{N}_{t}^{\mathrm{D} n, q}(m)$ is weakly increasing for q and constant for $q \geq n$.
The constant is given by $\max _{S \in\binom{\mathfrak{S}_{n}}{m}} \mathrm{inc}_{n-t}(S)$:

$$
\lim _{q \rightarrow \infty}(\text { or } n)<\mathrm{N}_{t}^{\mathrm{D} n, q}(m)=\max _{S \in\binom{\mathcal{E}_{n}}{m}} \operatorname{inc}_{n-t}(S) .
$$

