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Maximal Number of Common Increasing Subsequences of Several Permutations

Introduction

Notations

In this talk, we denote by Sn the symmetric group of degree
n, and by

w =

(
1 2 3 · · · n

w(1) w(2) w(3) · · · w(n)

)
(two-line notatione)

= w(1)w(2)w(3) · · ·w(n) (one-line notatione)

Example

w =

(
1 2 3 4 5
2 1 3 5 4

)
(two-line notatione)

= 21354 (one-line notatione)
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Maximal Number of Common Increasing Subsequences of Several Permutations

Introduction

Notations

Denote by Incl(w) the set of increasing subsequences of
length l of w, and by incl(w) its cardinality:

Incl(w) :=

{
w(i1)w(i2) · · ·w(il)

i1 < i2 < · · · < il and
w(i1) < w(i2) < · · · < w(il)

}
,

incl(w) := #Incl(w).

Example

Incl(21354) = {235, 234, 135, 134},

incl(21354) = 4.
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Maximal Number of Common Increasing Subsequences of Several Permutations

Introduction

Notations

For an m-subset S = {w1, w2, · · · , wm} ⊆ Sn of
permutations, we denote by Incl(S) = Incl(w1, w2, · · · , wm)
the intersection of Incl(wi)’s, and by
incl(S) = incl(w1, w2, · · · , wm) its cardinality:

Incl(S) :=
∩
wi∈S

Incl(wi),

incl(S) := #Incl(S).

Example

Incl(21354) = {235, 234, 135, 134},
Incl(12534) = {125, 123, 124, 134, 234},

Incl(21354, 12534) = {134, 234},
incl(21354, 12534) = 2.
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Maximal Number of Common Increasing Subsequences of Several Permutations

Introduction

Notations

In order to describe the properties of Incl(S), we use the weak
right Bruhat order of Sn,

as the Weyl group of type An−1.

definition

If u, v ∈ Sn satisfy

usi = v and ℓ(u) + 1 = ℓ(v)

for some 1 ≤ i ≤ n− 1, we denote u<̇v, where si = (i, i+ 1)
denotes the simple reflection (or the adjacent transposition),
and ℓ(w) denotes the length of w (the number of inversions of
w). The reflexive and transitive closure of <̇ is denoted by ≤,
which is called the weak right Bruhat order of Sn.
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Introduction

Notations

e

12, 13, 14,
23, 24, 34

1234

s1

23, 24,
13, 14, 34

2134

s2

13, 12,
14, 34, 24

1324

s3

12, 14,
13, 24, 23

1243

s1s2

23, 24, 34, 14

2314

s2s1

34, 12, 14, 24

3124
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1342
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Introduction

order ideal of Sn

Hence, we get:

Proposition

A maximal in
{
Incl(S) S ∈

(
Sn

m

) }
with respect to set

inclusion is achieved by some order ideal S.

We desire to give an explicit formula for

max
S∈(Sn

m )
incl(S).

8 / 23
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Introduction

order ideal of Sn

First, we give two typical examples:

For m ≥ 1, we put
w+

i;m := sisi+1 · · · si+m−2 and w−
i;m := sisi−1 · · · sj−(m−2).

In particular, we have w+
i;1 = w−

i;1 = e and w+
i;2 = w−

i;2 = si.
If 1 ≤ m′ < m, then we have w±

i;m′ < w±
i;m in weak right

Bruhat order. The order ideal ⟨w+
i;m⟩ generated by w+

i;m is
given by:

⟨w+
i;m⟩ =

{
w+

i;m′ ∈ Sn 1 ≤ m′ ≤ m
}
∈
(
Sn

m

)
.

Hence we get:

Incl
(
⟨w+

i;m⟩
)
= Incl

(
w+

i;m

)
.

incl
(
⟨w+

i;m⟩
)
= incl

(
w+

i;m

)
=

(
n− 1

l

)
+

(
n−m

l − 1

)
.
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Let 1 ≤ i, j ≤ n− 1 with |i− j| ≥ 2. Then the order ideal
⟨sisj⟩ generated by sisj is given by:

⟨sisj⟩ = {e, si, sj, sisj} ∈
(
Sn

4

)
.

Hence we get:

Incl(⟨sisj⟩) = Incl(sisj).

incl(⟨sisj⟩) = incl(sisj)

= 4

(
n− 4

l − 2

)
+ 4

(
n− 4

l − 1

)
+

(
n− 4

l

)
.
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Introduction

order ideal of Sn

By classification of order ideals S with m = #S ≤ 4, we get:

Theorem (N.)

Let n ≥ 1, m ≥ 1 and 0 ≤ l ≤ n. Then:

1 If m ≤ 3 and n ≥ m, then maxS∈(Sn
m ) incl(S) is given by:

S = ⟨w±
i;m⟩ RS = ⟨s1, s2s1⟩

R

S = ⟨sisj⟩

U

S = ⟨w±
i;4⟩

N

(
n− 1

l

)
+

(
n−m

l − 1

)
.

2 If m = 4 and n ≥ 3, then maxS∈(Sn
m ) incl(S) is given by:


3
(
n−3
l−1

)
+
(
n−3
l

)
if n = 3,

4
(
n−4
l−2

)
+ 4

(
n−4
l−1

)
+
(
n−4
l

)
if 4 ≤ n and n ≥ 2l − 1.(

n−1
l

)
+
(
n−4
l−1

)
if 4 ≤ n ≤ 2l − 1,

Note n = 2l−1 ⇒
(
n−1
l

)
+
(
n−4
l−1

)
= 4

(
n−4
l−2

)
+4

(
n−4
l−1

)
+
(
n−4
l

)
.
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When l = n− 2, the values maxS∈(Sn
m ) incn−2(S) for

m = 1, 2, 3, 4 are:

m = 1 m = 2 m = 3 m = 4

(
n−1
n−2

)
+

(
n−1
n−3

) (
n−1
n−2

)
+

(
n−2
n−3

) (
n−1
n−2

)
+

(
n−3
n−3

) 
3
(
n−3
n−3

)
+

(
n−3
n−2

)
n = 3

4
(
n−4
n−4

)
+ 4

(
n−4
n−3

)
+

(
n−4
n−2

)
n = 4(

n−1
n−2

)
+

(
n−4
n−3

)
n ≥ 5

= n2−n
2

= 2n− 3 = n =


3 n = 3
4 n = 4
n− 1 n ≥ 5
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Back to Information theory

reconstruction model for deletion channel

Back to Motivation.
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Back to Information theory

reconstruction model for deletion channel

In information theory, especially in coding theory, one of the
subjects is error correction of inputs. Among various types of
errors, deletion errors of t bits are known to be one of the
most difficult problems to correct.

How difficult?

If t = 1, then it is well-known. [Varshamov-Tenengolts code]
If t = 2, the problem is already difficult and no satisfactory
theory has been developed.
If t ≥ 3, it is hopeless.

input

01001100 - Channel -
output

01010

Figure: 3-Deletion channel
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Back to Information theory

reconstruction model for deletion channel

The reconstruction model, first introduced by Levenshtein in
2001, assumes that an input x of some code C is transmitted
over k identical t-deletion channels and that these channels
generate k outputs y1, y2, · · · , yk with distinct errors:

C ∋ x

� Channel 1
* Channel 2
...

...

R Channel k

- y1
- y2

...
...

- yk

Figure: The Reconstruction Model

The transmitted word x is reconstructed using all of the
channels’ outputs y1, y2, · · · , yk.
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Back to Information theory

reconstruction model for deletion channel

C ∋ x

�
Channel 1

* Channel 2...
...

RChannel k

- y1
- y2

...
...

- yk

Let BD
t (x) be the set of possible channel outputs,

i.e., the t-deletion error ball surrounding the word x.

Then, Levenshtein has proved in 2001, that unique decoding
of the transmitted word is guaranteed to succeed if and only if

k > max
x1,x2∈C,x1 ̸=x2

|BD
t (x1) ∩ BD

t (x2)|. (2.1)

However, if the number k of the channels does not satisfy the
inequality in (2.1), then exact reconstruction of the
transmitted word is not always possible as there may be
several transmitted words leading to the same channels’
outputs. So, the value of the RHS of (2.1) is important as
the threshold for the number k of channels.

16 / 23
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Back to Information theory

reconstruction model for deletion channel

However, even when inequality (2.1) does not hold, if there are
only two candidates for input, the situation is much better
than if there are too many candidates.

Abu-Sini and Yaakobi considered in 2020 the case where there
are only at most m candidates for input and considered the
value

NDn,2
t (m) := max

S∈(Cm)
#

∩
x∈S

BD
t (x).

They has proved:

Theorem (Abu-Sini=Yaakobi, 2020)

If NDn,2
t (m+ 1) < k ≤ NDn,2

t (m), then there are only at most
m candidates for input.
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Back to Information theory

reconstruction model for deletion channel

Theorem (Abu-Sini=Yaakobi, 2020)

If NDn,2
t (m+ 1) < k ≤ NDn,2

t (m), then there are only at most
m candidates for input.

Proof of this theorem is easy. But we have no explicit formula
of NDn,2

t (m).
Abu-Sini=Yaakobi gave the formula for t = 2 and m ≤ 4:
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Generalize to q-ary code case.

Remark

If q = 4, there is an application to DNA codes.
Deletion error is a typical error of copy of DNA strands.
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definition

Let q ≥ 2. For x ∈ (Z/qZ)n, the t-deletion ball BD
t (x) is

similarly defined. We put:

NDn,q
t (m) := max

S∈(Q
n

m )
#

∩
x∈S

BD
t (x).

Then, similarly we get:

Theorem (N.)

If NDn,q
t (m+ 1) < k ≤ NDn,q

t (m), then there are only at most
m candidates for input.
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When t = 2, we have

Theorem (N. for q ≥ 3

(A=Y for q = 2)

)

NDn,q
2 (1) NDn,q

2 (2) NDn,q
2 (3) NDn,q

2 (4)

q = 2 n2−3n+4
2

2n− 4 n


2 n = 3
4 n = 4
n− 1 n ≥ 5

q ≥ 3 n2−n
2

2n− 3 n


3 n = 3
4 n = 4
n− 1 n ≥ 5

Same table as maxS∈(Sn
m ) incn−2(S) for q ≥ 3 !!!
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In general, we have:

Theorem (N.)

When we fix n, t and m, the value NDn,q
t (m) is weakly

increasing for q and constant for q ≥ n.
The constant is given by maxS∈(Sn

m ) incn−t(S):

lim
q→∞( or n)

NDn,q
t (m) = max

S∈(Sn
m )

incn−t(S).
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Thank You !!
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