Boolean RSK Tableaux and Fully Commutative Permutations

Jianping Pan
Joint work with Emily Gunawan, Heather Russell, \& Bridget Tenner

NC STATE UNIVERSITY

Permutation Patterns 2022
June 24,2022

Outline

(1) Introduction
(2) The run statistic
(3) Boolean RSK tableaux

44 Fully Commutative Permutations and the Weak Order

Basics of Permutations

We write S_{n} for the set of permutations of $\{1, \ldots, n\}$.
The simple reflections in S_{n} are $\left\{s_{1}, \ldots, s_{n-1}\right\}$, where s_{i} swaps i and $i+1$

- $s_{i} s_{j}=s_{j} s_{i}$ when $|i-j|>1$ (commutation)
- $s_{i} s_{i+1} s_{i}=s_{i+1} s_{i} s_{i+1}$ (braid)

We will represent permutations in two ways:

- in one-line notation, as $w=w(1) w(2) \cdots w(n) \in S_{n}$, and
- as reduced words: (shortest) products of the s_{i} 's.

Ex. 51342 (in one-line notation) has a reduced word $s_{4} s_{2} s_{3} s_{2} s_{4} s_{1}$ or [423241] for short.

The RSK Correspondence

The RSK correspondence is a bijection

$$
w \mapsto(P(w), Q(w))
$$

from S_{n} onto pairs of size- n standard tableaux of identical shape $\lambda(w)$.
Build the insertion tableau $P(w)$ and the recording tableau $Q(w)$ using Schensted insertion.

Ex. $P(4132)=$\begin{tabular}{|l|l}
\hline 1 \& 2

\hline 3 \&

\hline 4 \&

,$Q(4132)=$

\hline 1 \& 3

\hline 2 \&

\hline 4 \&
\end{tabular}\quad and $\quad \lambda(4132)=(2,1,1)$.

Thm. [Schensted] The length of the first row (resp., first column) of $\lambda(w)$ is equal to the length of a longest increasing (resp., decreasing) subsequence in the one-line notation for w.

The run statistic

Question. $\lambda_{1}(w)$ is the length of a longest increasing subsequence of w. Is there a concrete interpretation for $\lambda_{2}(w)$ and beyond?

A run is an increasing or decreasing sequence of consecutive integers.
For $w \in S_{n}$, let $\operatorname{run}(w)$ be the fewest number of runs needed to form a reduced word for w.
Ex. The set of reduced words for $w=4132$ is $\{[3231],[3213],[2321]\}$.
(audience participation)
From $\left[\begin{array}{ll}321 & 3\end{array}\right]$ and $[2321]$, we get $\operatorname{run}(w)=2$.
[3213] and [23 21] are called optimal run word for w.

Runs and RSK tableaux

Thm. [Tenner/Mazorchuk] For any boolean $w \in S_{n}$,

$$
\operatorname{run}(w)=\lambda_{2}(w)=n-\lambda_{1}(w)
$$

Our first theorem generalizes this to arbitrary permutations.
Thm. 1 [BGPRT] For any $w \in S_{n}, \operatorname{run}(w)=n-\lambda_{1}(w)$.
Ex. Let $w=4132 \in S_{4}$.

$$
P(4132)=\begin{array}{|l|l}
\hline 1 & 2 \\
\hline 3 & \\
\hline 4 & \\
\hline
\end{array} \quad \text { and } \quad Q(4132)=\begin{array}{|l|l|}
\hline 1 & 3 \\
\hline 2 & \\
\hline 4 & \\
\hline
\end{array}
$$

So $\lambda_{1}(w)=2$, and indeed $n-\operatorname{run}(w)=4-2=2$.

Fully Commutative and Boolean Permutations

We will focus on two classes of permutations:

- fully commutative (FC) permutations: all reduced words are related by commutations (not braids)
- boolean permutations: all reduced words use no repeated simple reflections

Thm. [Billey/Jockusch/Stanley; Tenner] A permutation is fully commutative iff it is 321-avoiding.

Cor. w is fully commutative iff $P(w)$ has at most two rows.
Thm. [Tenner] A permutation is boolean iff it is 321 - and 3412-avoiding.
$\{$ boolean permutations $\} \subset\{$ fully commutative permutations $\}$

Boolean permutations and RSK tableaux

Recall: If w is a boolean permutation, $\operatorname{run}(w)=\lambda_{2}(w)$.
Question. When w is boolean, what is the 2nd row of $P(w)$?
Ex. Let $w=412563$, a boolean permutation. The reduced words for w are [364521], [634251], [364251], [321 645], [346521],

We define the canonical word of a boolean permutation as follows:

- Starting from the smallest word
- pushing decreasing runs to the left
- pushing increasing runs to the right
- [346521]
- [321 645]
- [321 645$]$
- canon $(w)=[321645]$

Boolean permutations and RSK tableaux

Let $\operatorname{Row}_{2}(P(w))$ denote the set of elements in the 2 nd row of $P(w)$.
Thm. 2 [BGPRT] Let w be boolean. Then
$\operatorname{Row}_{2}(P(w))=\{i+1 \mid i$ is the leftmost entry in a run of canon $(w)\}$.
Ex. Let $w=4125736$, a boolean permutation.

- canon $(w)=\left[\begin{array}{lll}321 & 6 & 45\end{array}\right]$
- $P(w)=$| 1 | 2 | 3 | 6 |
| :--- | :--- | :--- | :--- |
| 4 | 5 | 7 | |
| | | | |

Cor. [BGPRT] Let w be boolean. Then the canonical word for w is optimal.
Cor. [BGPRT] If w is boolean, then $\operatorname{Row}_{2}(P(w))$ can not contain 3 consecutive numbers.

Characterizing Boolean RSK Tableaux

We say T is a boolean (RSK) tableau if $T=P(w)$ for some boolean permutation w. Question Every boolean tableau has at most two rows, but not vice versa.

Can we characterize boolean tableaux? Yes!
A set of integers S is crowded if S contains more than $z+1$ of the elements of some closed interval of even length $2 z$.
Thm. 3 [BGPRT] A standard tableau T with at most two rows is a boolean tableau iff $\operatorname{Row}_{2}(T)$ is uncrowded.
Ex. Are they boolean tableaux? (audience participation)

$$
\begin{aligned}
& T_{1}=\begin{array}{|l|l|l|}
\hline 1 & 2 & 3 \\
\hline 4 & 5 & 6 \\
\hline
\end{array}, \\
& \text { No } \\
& T_{2}=\begin{array}{|l|l|l|l|}
\hline 1 & 2 & 5 & 7 \\
\hline 3 & 4 & 6 & \\
\hline
\end{array}, \\
& \text { Yes } \\
& T_{3}=
\end{aligned}
$$

Prop. 4 [BGPRT] The set of boolean tableaux with n boxes are in bijection with the set of 01 -words of length $n-1$ in which all run-lengths of 1 s are odd. (A028495 in OEIS.)

The (right) weak order

Goal.

- Analyze the poset of FC permutations under the right weak order
- and how boolean permutations live in it

The right weak order turns S_{n} into a poset:
$v \lessdot w$ if $v s_{i}=w$ for some simple reflection s_{i} and $\ell(v)+1=\ell(w)$.

Boolean core for a fully commutative Permutation

$\operatorname{supp}(w)$: the support of a permutation w; the set of simple reflections which appear in any reduced word for w.

Prop. 5 [BGPRT] Let w be a FC permutation. Then we can write $w=b w^{\prime}$, where $\ell(w)=\ell(b)+\ell\left(w^{\prime}\right)$, the permutation b is boolean, and $\operatorname{supp}(b)=\operatorname{supp}(w)$. Furthermore, this b is uniquely determined by w.

Here we call b the boolean core of w. It is also the maximal boolean permutation that is smaller than w in the right weak order.

To find the boolean core of a FC permutation, select the leftmost appearance of each letter in its reduced word.

Ex. Let $w=456123=[\mathbf{3 2 1 4 3 2 5 4 3}]$, a non-boolean FC element.

- $b=412563=[32145]$
- $w^{\prime}=[3243]$

Insertion tableaux under the weak order

Prop. 6 [BGPRT] If v and w are FC permutations with $v \lessdot w$ in the right weak order, then $\operatorname{Row}_{2}(P(v)) \subseteq \operatorname{Row}_{2}(P(w))$. When not equal, they differ by exactly one element.

Cor. If b is the boolean core of a FC permutation w, then $\operatorname{Row}_{2}(P(b)) \subseteq \operatorname{Row}_{2}(P(w))$. Ex.

- $v=41623785=[\mathbf{3 2 1 5 4 6 7 3}]$
- $w=v s_{5}=41627385=[\mathbf{3 2 1 5 4 6 7 3 5}]$
- boolean core $b=41263785=[3215467], \quad b \lessdot v \lessdot w$
-

$$
P(b)=P(v)=\begin{array}{|l|l|l|l|l}
1 & 2 & 3 & 5 & 8 \\
4 & 6 & 7 &
\end{array} \quad \text { and } \quad P(w)=\begin{array}{|l|l|l|l|}
\hline 1 & 2 & 3 & 5 \\
\hline 4 & 6 & 7 & 8 \\
\hline
\end{array}
$$

Thm. 7 [BGPRT] Suppose that v and w are FC permutations with $w=v s_{i}, \ell(w)=\ell(v)+1$, and $s_{i} \in \operatorname{supp}(v)$. Suppose, moreover, that v and w are uncrowded, then $P(v)=P(w)$.

Order Ideal of Uncrowded Permutations

An FC permutation is uncrowded if its insertion tableau is boolean and is crowded otherwise.

- The crowded permutations form a dual order ideal of the poset.
- The uncrowded permutations form an order ideal of the poset.

Characterizing Minimal Crowded Permutations

Thm. 8 [BGPRT] A FC permutation w is a minimal crowded permutation iff w satisfies:
(1) $\operatorname{des}(w)=\{a, a+2, \ldots, a+2 k\}$ and $w(a), w(a+2), \ldots, w(a+2 k)$ is crowded.
(2) Contains the pattern 415263 . Every occurrence must be consecutive.
(3) $w(a+2 i) w(a+2 i+1) w(a+2 i+2) w(a+2 i+3) w(a+2 i+4) w(a+2 i+5)$ is either of pattern 415263 or 315264 for $0 \leq i \leq k-2$.
(9) If $a>1$, then $w(a-1)<w(a+1)$.

When (1)-(4) hold, $\operatorname{Row}_{2}(P(w))=\{w(a), w(a+2), \ldots, w(a+2 k)\}$.
Ex. $w=41627385$,
(1) $\operatorname{des}(w)=\{1,3,5,7\}, 4678$ is crowded;
(2) 416273 and 627385 , both consecutive;
(3) 416273 and 627385 are both of the pattern 415263;
(4) $a=1$, so hold trivially.

Thank you!

