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WELCOME

Welcome to Valparaiso University for Permutation Patterns 2022! We hope that you
enjoy the conference and the greater Valparaiso area.

We’ve included some suggestions of things to see this week in the Local Information
section of this book.

If you need anything during your stay, please don’t hesitate to reach out to one of our
local organizers (Jon Beagley, Rick Gillman, or Lara Pudwell), who will be happy to
help.

Whether you came from down the street or across the globe, thank you for joining us.
We're glad you're here and we hope you have a fantastic week!

Lara Pudwell

(on behalf of the organizing committees)

SPONSORS

Permutation Patterns 2022 is hosted by the Department of Mathematics and Statistics
at Valparaiso University. It is also supported by National Science Foundation grant
DMS-1901853 and by National Security Agency grant H98230-20-1-0286.



LocaL INFO

Important numbers

Harre Union front desk 1-219-464-5415
(open 7:30-19:00)

Union/Conference Services Administration 1-219-464-5413
(open 8:30-17:00)

On-call conference phone 1-219-405-0105
(after hours)

Valparaiso University Police Department 1-219-464-5430

The nearest urgent care is at Northwest Health Urgent Care - Valparaiso. It is located
at 809 LaPorte Ave, Valparaiso, IN 46383, 0.5 miles west of Beacon Hall. The main
number is 1-219-263-4977. They are open from 9:00-21:00 each day.

The nearest emergency room is at Northwest Health Porter. It is located at 85 E ULS.
Huwy 6, Valparaiso, IN 46383, 8 miles from campus. The main number is 1-219-983-8300.

You should call 911 if you have a medical emergency.

Campus Dining

Campus dining is available in the Harre Union.

Monday, Wednesday, and Friday meals

Meals are available in the Founders’ Table, and our lunch breaks coincide with other
groups on campus.

Meal times are:

Breakfast 8:00-9:45
Lunch 12:00-13:40
Dinner 17:45-18:30

If you prepaid for meals when you registered, use a voucher to pay for your meal in
Founders’.

If you did not prepay, on Monday, Wednesday, and Friday you can pay cash in
Founders at the following rates (*all prices include tax):

Breakfast $8.03*
Lunch $11.24*
Dinner $13.64*



Tuesday and Thursday meals

Since we are the only group on campus these days, meals will be catered in the
Founders” Wing of the Harre Union for those who prepaid for meal vouchers. Founders’
Wing is the dining seating area adjacent to Founders’, but the setup will be just for
our group.

If you did not prepay, on Tuesday and Thursday, you will need to find off-campus
alternatives for meals.

Local restaurants

Valparaiso is a local hub of independent restaurants. In addition to many known na-
tional chains, we recommend checking out La Cabana, Santo Taco, Uptown Cafe,
Prime Smoked Meats, Chunkys Tacos, Rise N Roll Bakery, Industrial Revolution,
Louie Wingz & Catfish, Kelsey’s Steakhouse, Tomato Bar, Kin Khao Thai and Sushi,
Ricochet Tacos, Valparaiso Soup Company, Don Quixote, Blackbird Cafe, Radius,
Meditrina, Brick Street Burrito, Blockhead Beerworks, Stacks, Pikks, Valpo Velvet,
Bangkok Thai, Pestos, Burgerhaus, Le Peep, and more. (These are loosely ordered
from close-to-campus to further afield.)

Parking

If you requested a parking pass during registration, it will be provided when you
check in.

If you are staying in Beacon Hall, it is recommended that you park in the row of
commuter parking spaces south of Beacon Hall (due east of the tennis courts) or the
row of commuter parking spaces south of Scheele and Lankenau Halls.
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If you are staying off campus, it is recommended that you park in the rows of com-
muter /staff parking spaces due east of Urschel Hall.

£y

: East
eering & Entrance

Sturdy Rd/SR

Things to do
While you're in Valparaiso, you may enjoy visiting some of the following;:

¢ The Chapel of the Resurrection lies at the heart of campus. It was dedicated in
1959 and is one of the largest collegiate chapels in the world. You are welcome to
walk in and explore this space. If you walk down the spiral stairs near the west
entrance, you can access a hallway that includes pictures of the chapel while it
was under construction. Also particularly recommended: walk to the middle of
the space and look back up at the impressive Fred and Ella Reddel Memorial
Organ. If you're lucky, you may even happen by the building while the organ is
in use!

¢ The Christopher Center Library (CCLIR) has a fourth floor terrace that offers
nice views of campus. Also, the Automated Storage and Retrieval System has
interesting history and it’s fun to see it in action. Ask one of the librarians at the
main circulation desk if they’re willing to show off the “storage robot” and tell
you more about it.

¢ Valparaiso’s downtown is home to Central Park Plaza, with many free commu-
nity events throughout the summer. On Tuesday, June 21, they’ll be showing the
movie Encanto at dusk. There is also a farmers market in the park Tuesday and
Saturday from 9:00-13:00. Even if you don’t go for a particular event, look out
for the bench where you can take your picture with a statue of Orville Reden-
bacher, the business magnate who chose Valparaiso for the popcorn factory that
made him a household name.

Fun fact: every September Valparaiso hosts a regionally-popular “Popcorn Fes-
tival” that was started to celebrate the Redenbacher connection to the city.

¢ The Porter County Museum is located at 20 E. Indiana Avenue. The original
museum building across the street is the county’s original 1870s era jail. The
museum is free and open from 11:00-16:00 every day except for Monday. This
could be an interesting way to spend a lunch break or Friday afternoon.



* Go on a scavenger hunt. In spring 2022, the city of Valparaiso commissioned
local artists to make sculptures of 10 native birds, and they are hidden around
downtown Valparaiso. You can learn more about the project (and download the
one-page clue guide) at http://tinyurl.com/ValpoBirds.

¢ Go for a walk — in addition to campus, there are a number of nice parks around
in town. If you have a car, Coffee Creek Watershed, 10 miles north of campus,

and Sunset Hill Farm, 7 miles north of campus, are lovely free places to take a
hike.

¢ If you're a conference regular, you may know Valparaiso is home to Four Fathers
Brewing, a brewery that once made a small batch beer called Permutation Pattern.
They’re bringing the beer back for conference week. You'll be able to try it at the
Tuesday reception and Thursday conference banquet. Want to sample more of
the Four Fathers menu? Or want to buy some 4-packs of the conference beer to
take home? Make sure to visit them at 3705 Bowman Dr, Suite B. They’re open
12:00-20:00 Tuesday through Saturday.


http://tinyurl.com/ValpoBirds

MORE ABOUT VALPO

A bit of history...

Valparaiso University was founded in 1859 by the Methodist Church and has been
co-educational since its beginning. After going bankrupt in 1878, the university was
purchased by Henry Brown and run as a for-profit institution, eventually becoming
the second largest college in the country by 1914. After Brown’s death, Valpo again
fell on hard times and was eventually purchased by a group of Lutheran businessmen
in 1925 during the height of the culture wars of the Roaring Twenties. (There is a
long, long story about the why and how of this — ask Rick Gillman for more details.)

Fun fact: Valpo’s university colors are brown and gold. Valparaiso is one of only a
handful of colleges nationwide that use brown as a school color. In our case, it’s a
tribute to former University President Brown.

The Campanile...

A central figure in the Lutheran history of Valpo is President O.P. Kretzmann, who
proclaimed that Valpo should uplift both “faith and reason on one fair campus,”
in contradiction to Tertullian’s 4th Century claim that Athens and Jerusalem cannot
be reconciled. This vision is embodied physically by the campanile, located in the
physical center of campus and surrounded by the Chapel and the Library.

The Chapel...

Built in 1958, the Chapel of the Resurrection has been described as the largest univer-
sity chapel in the United States, and one of the largest in the world. Take time to walk
all the way up into the chancel to see the stained glass windows. As you do, notice
how the building draws you into Christ resurrected. Then, as you turn to leave, notice
how the building sends you out into the world.

The Library...

The Library (also known as the Christopher Center or the CCLIR) is a fun place to
visit, from the coffee shop on the first floor, to the storage system on the main floor, to
the university archives on the third floor, and the terrace on the fourth floor. Among
the first students to enjoy this facility were participants in Valpo’s VERUM program,
a summer Research Experience for Undergraduates in mathematics targeting second
year students at small colleges across the country.



The radio beacon...

As you walk by Schnabel Hall on your way to Urschel Hall from the center of campus,
you walk over a very faded model of a radio beacon in the paving stones. This
model represents the work of the both the Department of Communication and the
Department of Meteorology which are housed in the building. You aren’t likely to see
it, but Valpo also has its own Doppler radar!

Speaking of beacons...

If you are staying on campus, you are staying in Beacon Hall. The yearbook is called
the Beacon, and in 2021 we changed our school nickname to the Beacons. Ask Rick
Gillman if you want to hear the full story.

The Solar Furnace...

If the day is sunny, you may see students and faculty working at the solar furnace,
located on the east side of the Gellersen Engineering & Mathematics Center. Valpo is
the only university in the United States with a research-focused solar furnace.

More About Gellersen...

Speaking of Gellersen, when our college of engineering, currently ranked 13th in the
nation among undergraduate programs, built the building in 1969, they wanted a
friendly housing partner and picked the math department. It was very much a tenant
situation; engineering faculty had keys to all of the building, but math faculty only
had keys to part of it! Take a few minutes to visit the west wing, housing the math
faculty on the first and second floors and displaying posters of recent research work.

Wandering West...

If you head west from the Harre Union, you will first come to a statue “Homeless
Jesus” who reminds us of our mission to serve others. Across the street, on the facade
of the Arts & Sciences Building, you will see the university’s motto “In thy light,
we see light” shared in many different languages. A bit further on, you will see the
burned remains of the Art/Psychology Building. This small building burned just a
few months ago, but played a critical role in the history of the university as it was built
in 1946 by engineering students who were returning soldiers from the just-ended war.
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CONFERENCE SociAL EVENTS

Monday, June 20: Estimathon!

Have you participated in Estimathon at Mathfest or elsewhere? Andy Niedermaier
(Jane Street Capital) is organizing a special Estimathon just for the PP community.

Estimathon will take place in the Brown and Gold room on the second floor of the
Harre Union.

Tuesday, June 21: Poster session and reception

A reception and poster session will be held in the Community Room of the Christo-
pher Center for Library and Information Sciences. Come see poster presentations and
visit with conference attendees. Appetizers and drinks will be provided.

Wednesday, June 22: Excursion

Valparaiso is conveniently located near Indiana Dunes, one of the newest National
Parks in the United States. A visit to the Dunes is planned for Wednesday afternoon.
This excursion is included in the cost of registration for participants.

Thursday, June 23: Conference banquet

A conference banquet will be held in ballrooms on the second floor of the Harre
Union. The banquet is included in the cost of registration for participants.
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CONFERENCE SCHEDULE
(ALL EVENTS ARE IN URSCHEL 202 UNLESS OTHERWISE SPECIFIED.)

Monday
8:15-9:00 Registration (Urschel Lobby)
9:00-9:30 Conference Welcome
9:30-10:00 A Game of Darts
—-Andy Niedermaier
10:00-10:30 The shallow permutations are the unlinked permutations
—Alexander Woo
10:30-11:00 Break (Urschel Lobby)
11:00-11:30 On Combinatorial Models of Affine Crystals
—Adam Schultze
11:30-12:00  Stirling numbers of type B
—Bruce E. Sagan
12:00-14:00 Lunch Break
14:00-14:30 A lifting of the Goulden-Jackson cluster method to the
Malvenuto-Reutenauer algebra
—Yan Zhuang
14:30-15:00 Connections between permutation clusters and generalized
Stirling permutations
—Justin M. Troyka
15:00-15:30 Break (Urschel Lobby)
15:30-16:00 Pattern-Avoiding Involutions and Brownian Bridge
— Erik Slivken
16:00-16:30 The Expected Number of Distinct Patterns in a
Random Permutation
— Anant Godbole
16:30-17:00 The first occurrence of a pattern in a random sequence
— Yixin (Kathy) Lin
19:00-20:00 Estimathon! (Harre Union Brown & Gold Room)

12



Tuesday

9:00-9:30

9:30-10:00

10:00-10:30

10:30-11:00

11:00-12:00

12:00-14:00

14:00-14:30

14:30-15:00

15:00-15:30

15:30-16:00

16:00-16:30

Using Constraint Programming to Enumerate Permutations
avoiding Mesh Patterns
— Ruth Hoffmann

Combinatorial Exploration: An Algorithmic Framework for
Enumeration
— Jay Pantone

The interval posets of permutations seen from the
decomposition tree perspective
— Lapo Cioni
Break (Urschel Lobby)
Invited talk
Limits of constrained permutations and graphs via
decomposition trees
— Mathilde Bouvel
Lunch Break

Preimages under the Bubblesort operator
— Luca Ferrari

Shuffle Sorting Permutations
— Rebecca Smith

Break (Urschel Lobby)

Restricted generating trees for weak orderings
— Juan B. Gil

Enumerating Orderings on Matched Product Graphs
— Daryl DeFord

13



Tuesday (continued)

16:45-18:00 Poster Session and Reception
(Christopher Center for Library & Information Resources (CCLIR),
Community Room)

Posters:
An analogue of direct sum, skew sum of permutations
and chain permutational posets to words

— Amrita Acharyya

Recursive maps for derangements and nonderangements
— Melanie Ferreri

Restricted Grassmannian permutations
— Juan B. Gil and Jessica A. Tomasko

Unimodality of g-twotorials via alternating gamma vectors
— Jordan Tirrell
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Wednesday

9:00-10:30

10:30-11:00

11:00-11:30

11:30-12:00

12:00-13:00

13:00-18:00

Virtual Posters (in Zoom)
Posters:

2-avoidance
— Murray Elder

Pattern-avoiding binary trees and permutations
— Namrata

Long paths, deep trees and dual cycles
— Michal Opler

Break (Urschel Lobby)

Continuity of Major index on involutions
— Eli Bagno

Occurrences of a specific pattern in hypercube orientations,

aka Statistics on reciprocal sign epistasis in fitness landscapes
— Manda Riehl

Lunch Break

Conference Excursion
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Thursday

9:00-9:30

9:30-10:00

10:00-10:30

10:30-11:00

11:00-12:00

12:00-14:00

14:00-14:30

14:30-15:00

15:00-15:30
15:30-16:30

18:00-20:00

Descents on nonnesting multipermutations
— Sergi Elizalde

Pattern avoidance in parking functions
— Ayo Adeniran

Cycle structure of random parking functions
—J. E. Paguyo

Break (Urschel Lobby)
Invited talk
Generalizations of parking functions and a connection
to pattern avoidance
— Pamela Harris

Lunch Break

On the generating functions of pattern-avoiding Motzkin paths
— Christian Bean

Transport of patterns by Burge transpose
— Giulio Cerbai

Break (Urschel Lobby)
Open Problem Session

Conference Banquet (Harre Union Ballrooms)
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Friday

9:00-9:30

9:30-10:00

10:00-10:30

10:30-11:00

11:00-11:30

11:30-12:00

12:00

Maximum Number of Common Increasing Subsequences
of several Permutations
— Kento Nakada

A g-analogue and a symmetric function analogue
of a result of Carlitz, Scoville and Vaughan

— Yifei Li

On permutation classes defined by pin sequences
— Ben Jarvis

Break (Urschel Lobby)

An extension of the Lindstrom-Gessel-Viennot theorem
—Yi-Lin Lee

Boolean RSK tableaux and fully commutative permutations
— Jianping Pan

Farewell! Hope to see you at PP2023!
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AN ANALOGUE OF DIRECT AND SKEW SUM OF PERMUTATIONS, CHAIN
PERMUTATIONAL POSETS TO WORDS

Amrita Acharyya University of Toledo

In this presentation, I will describe a way to construct direct sum and skew sum of
words that are not necessarily permutations in a similar method they are defined for
permutations. Here I discuss some familiar statistics for example four fundamental
Statistics 1b,rb,Is,rs by Wachs and White towards direct and skew sum of restricted
growth functions corresponding to set partitions and other words along with Isg,rsg.
An analogue to chain permutational poset is defined replacing the set of permutations
by set of words of certain finite lengths. Some examples of such posets in terms of
familiar set partition posets, divisor posets for any positive integer n using their Hasse
diagrams are given.

REFERENCES

[1] Xin Chen, A q=-1 Phenomenon for Pattern-Avoiding Permutations Volume 12, Issue
2, Rose Hulman Undergraduate Mathematics Journal (2011)

[2] Rodica Simion, Frank W. Schmidts, Restricted Permutations, European ]J. Combin.
6 (1985), no. 4, 383-406.

[3] Lindsey R. Campbell, Samantha Dahlberg, Robert Dorward, Jonathan Ger-
hard,Thomas Grubb, Carlin Purcell, Bruce E Sagan, Restricted growth function
patterns and statistics, Adv. in Appl. Math., 100 (2018), 1-42.
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PATTERN AVOIDANCE IN PARKING FUNCTIONS

Ayo Adeniran Colby College
This talk is based on joint work with Lara Pudwell

Given a one-way street with n spots, in how many ways can n cars park on the street
without any collisions or any car having to exit the street? This question is the crux
of the classical parking problem. The solution to this problem is given by the concept
of parking functions.

Parking functions and Dyck paths

Let us recall the following definitions:

Definition 1. A parking function is a sequence a; - - -a, € [n]" such that if b; < by, <
-+ - < by is its increasing rearrangement, then b; <iforall1 <i <mn.

Definition 2. A Dyck path is a lattice path from (0,0) to (n,n) in the Cartesian plane
consisting of n north-steps and n east-steps that never crosses below the line y = x.

Figure 1: Labeled Dyck path representing 6144231

We can represent parking functions as Dyck paths with labeled north-steps. In such
a path, we may label each of the n north-steps with a distinct integer from {1,...,n}
such that consecutive north-steps must have their labels in increasing order. In this
representation, the labels of north-steps along y = k correspond to the cars who
prefer spot k 4+ 1. For example, the parking function 6144231 corresponds to the

representation:
{2,7},{5},{6},{3,4},9,{1},®
with the associated permutation 2756341 (see Figure 1).

21



Patterns in Parking functions

We follow the definition of Remmel and Qiu in [1] to extend the classical definition
of patterns in permutations to parking functions. In particular, we study parking
functions that avoid permutations of length 3. For example, the parking function
6144231 avoids the pattern 213 since the permutation associated with its labeled Dyck
path representation avoids the pattern 213.

We have enumerated parking functions avoiding any collection of two or more per-
mutations of length 3. A number of well known combinatorial sequences arise in our
analysis, and this talk will highlight several enumeration results and conjectures.

REFERENCES

[1] J. Remmel and D. Qiu, Patterns in ordered set partitions and parking functions,
Permutation Patterns 2016 (slides), available electronically at https://www.math.
ucsd.edu/"duqiu/files/PP16.pdf.
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CONTINUITY OF MAJOR INDEX ON INVOLUTIONS

Eli Bagno Jerusalem College of Technology
This talk is based on joint work with Yisca Kares

We find the range of the major index on the various conjugacy classes of involutions
in the symmetric group S;. In addition to indicating the minimum and the maximum
values, we show that except for the case of involutions without fixed points, all the
values in the range are attained. For the conjugacy classes of involutions without
fixed points we show that the only missing values are one more than the minimum
and one less than the maximum.

Involutions, tableaux and the RSK

Let I, be the set of all involutions in the symmetric group S,. For a shape A, let
SYT(A) be the set of standard Young tableaux of shape A.

The descent set of a standard Young tableau T is
Des(T) := {i | i+ 1 appears in a lower row of T than i}.

Define also the major index of a standard Young tableau T by

maj(T) = ) i

i€Des(T)

The following are two crucial properties of the RSK correspondence which maps each
permutation 7t € S, to a pair of standard Young tableaux of the same shape (P, Qx),
on which we rely heavily in this work.

Fact 1. Foreach t € S, Qr = P 1.

The RSK correspondence is a Des-preserving and hence also maj- preserving bijection
in the following sense.

Fact 2. For every permutation 7w € Sy,

Des(P;) = Des(m ') and Des(Qr) = Des(r).

It follows from Fact 1 that 7 is an involution if and only if P; = Q so that by restrict-
ing the RSK correspondence to the set of involutions I,, we get a Des— preserving
bijection from I, to the set of standard Young tableaux of order n, SYT (n).

Conjugacy classes in S, are determined by their cycle structures, which are partitions
of n. The conjugacy classes of involutions in S, have the form (2¥,1") such that
0<r<n0<k<73and2k+r = n. In other words, conjugacy classes of involutions
are distinguished one from another by the number of fixed points.
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The following known result by Schiitzenberger [3] gives a full description of the image
of each conjugacy class of involutions under the RSK correspondence.

Proposition 3. An involution 1t € I, has r fixed points if and only if P(7t) has r columns of
odd length.

In light of this characterization, denote the set of Young diagrams of size n having
exactly r odd columns by D, (r). The set of standard Young tableaux of shapes taken
from D, (r) is denoted by SYT),(r).

The discussion above can now be concisely formulated as follows.

Proposition 4. Let C,, be the conjugacy class of the partition y = (2%,17). Then the restric-
tion of the RSK correspondence R : C,, — SYT,(r) is a bijection which preserves the major
index, i.e. for each t € C,, we have maj(rr) = maj(R(7)).

Definition 5. For a shape A = (Ag, Aq,..., Ay), let

u

b(A) = YAy

i=0

The continuity of maj inside a single shape has been recently proven by Billey, Kon-
valinka and Swanson in [1] (see Theorem 1.1. there). The following is a reformulation
of their result.

Proposition 6. Let A be a Young diagram. Then we have:

m(A) := Min{maj(T) | T € SYT(A)} = b(A).

M(A) := Max{maj(T) | T € SYT(A)} = (’;) —b(A).

Moreover, every value between m(A) and M(A) appears at least once except in the case when
A is a rectangle with at least two rows and columns, in which case the values m(A) 4+ 1 and
M(A) — 1 are missing.

Range of the major index on conjugacy classes of involutions

Our main result is the following.

Theorem 7. Let u = (25,17) be a partition of n and let Cy be the corresponding conjugacy
class of involutions in S,,. Then

* Ifr # 0 then the major index on C,, attains all values between k and (3) — (3).

e Ifr = 0 then it attains all the values above, excluding k + 1 and (3) — 1.
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Any other value outside this range is not attained.

Before presenting the sketch of the proof, we need a lemma and a definition.

The following lemma determines the diagrams of D,(r) which attain the minimum
and the maximum of the major index.

Lemma 8. Let n =2k + .
1. The minimum value of the major index on D,(r) is k. It is attained by the diagram
A=n—kk)=(k+rr).

2. The maximum value of the major index on Dy(r) is () —
diagram A = (r,1%).

(3). It is attained by the

Definition 9. Recall that a diagram of the form (u,1" ") is called a hook. If the length
of the leg of A, n —u + 1 is odd then A will be called an odd hook. It will be called an
even hook otherwise.

Sketch of the proof of Theorem 7

By Propositions 3 and 4, it is sufficient to prove our results for the set SYT,(n) con-
sisting of all standard tableaux of shapes having exactly » odd columns.

This will be done by ordering the set D, () of diagrams of size n with exactly r odd
columns, by reverse dominant order and presenting an algorithm which starts with
the diagram A’ = (n —k,k) = (k +r,k), attaining the minimum value of maj over
D, (r) which is k and ends with the odd hook diagram A° = (r,1%f), attaining the
maximum value of maj over D,(r) whichis (3) — (;) (see Lemma 8.2). The algorithm
traverses the set D,(r) in such a way that in each step, one or two squares of a
diagram A € D, (r) are transferred to a new place to obtain a diagram v € D,(r) such
that following condition is satisfied:

M(A) = m(v), (1)

where M(A) (m(v)) is the maximum (minimum) value of maj on SYT(A) (SYT(v)),
respectively as in Proposition 6. Together with Proposition 6, we are done.

The algorithm

Let A = (Ag, A1, ..., A¢). We add infinite number of zeroes at the end of A and write
A as a Young diagram. Also, for each i, denote the last square of the row A; by A} .
Now perform the following steps:

1. If A is an odd hook then we are done by Lemma 8.2.
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2. If A is an even hook then we distinguish between two cases:

e If A = (1%)),ie. r = 0, then again we are done by Lemma 8.2.

¢ Otherwise, let v be the shape obtained from A by removing the square Aj
and placing it at the end of the first column of A. This v is an odd hook so
we are back in (1).

3. If there is some 0 < j < t such that A; > A1 > A, then let i be maximal
with respect to this property. Since A; > A; 11 > A2, we have in A a column of
length i + 1 and a column of length i + 2. Now, remove A} and place it as the
last square of row i + 2 and let v be the resulting shape.

Comment 10. This case is illustrated in Figs. 2 and 3.

/\: * —— V =

Figure 2: A =(4,3,1,1) and v = (3,3,2,1),i = 0.

A= |— = | [ ]

Figure3: A =(3,2,1)andv =(3,1,1,1),i = 1.

4. Otherwise, if there isno 0 < j <t such that A; > A;,1 > A5 then there must
exist some j such that A; > A;; = Aj,» (we can always choose j = t to get
A¢ > Ayp1 = 0 = Ay4p). Let i be maximal with respect to this property and such
that A; > 1.

Observe that we must have A;_; = A; since otherwise we have already had
treated this case in (3). This means that the squares A ; and A} form a vertical
domino.

We distinguish between two sub-cases.

(a) If we have A; — A; 11 = 1 then by the maximality of i we must have A; = 2.
In this case we put the domino at the end of the first column.

(b) Now, if A; —A;41 > 1 then we move that domino to the pair of squares
located right after A7, ; and A} ,.

5. Back to step (1) with A = v.
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ON THE GENERATING FUNCTIONS OF PATTERN-AVOIDING MOTZKIN
PATHS

Christian Bean Reykjavik University
This talk is based on joint work with Antonio Bernini, Matteo Cervetti, and Luca Ferrari

A Motzkin path of length n is a lattice path starting at (0,0) and ending at (1,0)
consisting of up steps (U = (1,1)), down steps (D = (1, —1)) and horizontal steps (H =
(1,0)) that never goes below the x-axis. Let M be the set of all Motzkin paths, My
be the set of Motzkin paths that start with a horizontal step, and My be the set of
Motzkin paths starting with an up step. The “folklore" result on Motzkin paths says
that every Motzkin path in My can be written as Hw for some w in M, and every
Motzkin path in My; can be written UxDy for some x,y in M as shown in Figure 4.

M =€ U ._’M U / M

Figure 4: A pictorial representation of the structural decomposition of Motzkin paths.

Akin to investigations for other combinatorial structures (eminently for permutations,
but also for graphs), there has been interest in studying properties related to the
notion of patterns in the context of lattice paths. A Motzkin path p contains a pattern
g in {U, H, D}*, written q < p, if g occurs as a subword in p. If p does not contain ¢
we say p avoids q and write g A p. For a set P of patterns, we say a path avoids P if it
avoids all g € P and define the set of Motzkin paths avoiding P as

Av(P) = {p € M | p avoids P}.

In this talk, we outline an algorithm using the decomposition in Figure 4 for com-
puting a combinatorial specification for sets of Motzkin paths avoiding an arbitrary set
of patterns. Such a specification then gives a method for computing the generating
function but also the ability to sample uniformly from these sets.

Finally, we prove the following theorem by describing a recursive procedure to com-
pute the generating function for Motzkin paths avoiding a single pattern.

Theorem 1. Let q be a fixed pattern and let a,, be the number of q-avoiding Motzkin paths of
length n. Then the generating function Ag(x) = Y50 anx" is rational over x and C(x) =
Y >0 C,,x2", where C, is the n-th Catalan number.
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LIMITS OF CONSTRAINED PERMUTATIONS AND GRAPHS
via DECOMPOSITION TREES

Mathilde Bouvel Université de Lorraine, CNRS, Inria, LORIA, France

This talk is based on joint work with Jacopo Borga, Frédérique Bassino, Michael Drmota,
Valentin Féray, Lucas Gerin, Mickaél Maazoun, Adeline Pierrot, Benedikt Stufler.

In this talk, I would like to survey several recent results showing how the substitution
decomposition of permutations can be used to answer (some instances of) the ques-
tion: “for a permutation class C, what does a large permutation of C typically look
like?”. T would also like to discuss the parallel approach on hereditary families of
graphs using the modular decomposition.

Permutations

As reviewed in [1], every permutation (of size > 1) can be expressed as the inflation of
a simple permutation. More precisely, every permutation (of size > 1) can be uniquely
expressed as one of the following (see [2]):

o lay, ..., ax] for k > 2 and permutations «; which are &-indecomposable;

o Sluy, ..., ax] for k > 2 and permutations «; which are S-indecomposable;

e 0y, ..., n for o a simple permutation of size k > 4.

Above, @[...] and &]...] denote respectively (direct) sums and skew sums, or equiv-
alently increasing and decreasing permutations of any size at least 2.

This allows to recursively represent a permutation by a tree, whose root is ©, © or o,
to which the trees associated with the a; are attached. It is not always the case that
the family of trees associated with a permutation class C is conveniently described.
But when it is, we will see that this encoding can be used to derive limiting results for
uniform permutations in C. More precisely, we will be able to describe the permuton
limit of uniform permutations in C.

Permutons are probability measures on the unit square with uniform projections on
the axes. They can be understood as normalized permutation diagrams, of permu-
tations which may be of infinite size. Consequently, when describing the permuton
limit of a uniform permutation in a class C, we are essentially describing the limit of
the diagram of a large typical permutation in C. Permutons are tightly related to pat-
terns in permutations: indeed, the convergence in the permuton sense of a sequence
of permutations (c;,), is characterized by the convergence, for any (classical) pattern
T, of the density of occurrences of T in ¢;,. This extends to the setting where the
permutations (0y), are random, in which case (perhaps surprisingly) convergence in
expectation of the pattern densities is enough.

In all the classes C that we studied, the approach is similar. Using the tree encoding
of the permutations in C, we describe the generating function of C. In addition, for
every pattern T, we describe the generating function of permutations of C with ||
marked elements which form an occurrence of the pattern 7. Performing singularity
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analysis of these generating functions, we derive the limit of the expected densities of
occurrences of T, hence the permuton limit.

This is the approach used in [4] for substitution-closed classes (essentially, the classes
whose permutations are encoded by all possible trees obtained from a set of allowed
simple permutations o). It is extended in [6] to permutation classes whose trees are
described by a finite combinatorial specification (and this includes all classes contain-
ing a finite number of simple permutations).

We note that an alternative approach is possible, proving the convergence of the trees
encoding the permutations, and then deducing the limiting permuton result. This
approach is used in our first article [3] on the topic, describing the limit of separable
permutations (those where only @ and © appear in the decomposition trees). See also
the invited talk of Lucas Gerin at the on-line workshop PP2021. We have extended
this approach in [5] to substitution-closed classes.

In many cases, the limiting permuton is a biased Brownian separable permuton, which
is a simple deformation of the (unbiased) Brownian separable permuton which first
appeared in [3] as the limit of uniform separable permutations. This is an instance
of a universality phenomenon, with many families sharing essentially the same limit.
Nevertheless, in other situations, the same methods allow to establish convergence to
permutons which are different from Brownian separable permutons.

Graphs

Permutations are not the only objects which enjoy an encoding by trees through a
recursive decomposition. In particular, the modular decomposition of graphs allows
to encode each graph by a tree, similarly to the encoding of permutations described
above. (Unlike for permutations, these trees are however non-plane, which is a frame-
work slightly more complicated.) The role of @ is played by the independent sets
(graphs with no edges), © corresponds to cliques (a.k.a. complete graphs), and the
analogue of simple permutations are the prime graphs (containing no module, the ana-
logue of an interval in permutations).

In the first part of this abstract, we have seen how to use the substitution decompo-
sition of permutations to prove permuton convergence of uniform permutations in
permutation classes. We would like to extend this idea to the framework of graphs,
making use of the analogy between substitution decomposition of permutations and
modular decomposition of graphs. Of course, this requires to also have analogues of
permutons and of permutation classes.

Permutons were actually defined as a permutation analogue to a corresponding no-
tion in graphs, describing the limits of dense graphs: the graphons. Although the
definition of graphons is less intuitive than for permutons, the graphon convergence
enjoys a characterization analogous to the permuton case: by convergence of all den-
sities of induced subgraphs.

Permutation classes are defined as sets of permutations closed downward for taking
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patterns. The natural analogue of patterns in permutations are induced subgraphs
in graphs. This leads us to consider hereditary classes of graphs, that is, families of
graphs which are closed downward by taking induced subgraphs.

We start with the simplest case, which is the graph analogue of separable permuta-
tions: the family of cographs (defined, for instance, by the avoidance of induced Py,
the path with 4 vertices). As in the permutation case, there are two approaches to
establish their graphon limit: using generating functions and singularity analysis [7],
or using random trees [5]. Again, the limiting object is a Brownian object, called the
Brownian cographon. Knowing the graphon limit of cographs, it is possible to show that
a uniform random cograph contains no clique nor independent set of linear size. In
other terms, this means that P, does not have the so-called asymptotic linear Erds-
Hajnal property [9], answering a question of Kang, McDiarmid, Reed and Scott in
2014.

The approach can be extended to other families of graphs, whose modular decompo-
sition is well-behaved. This is the topic of the PhD thesis of Théo Lenoir (who started
in September 2021 under the supervision of F. Bassino and L. Gerin), and I will try to
present his first results.
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TRANSPORT OF PATTERNS BY BURGE TRANSPOSE

Giulio Cerbai University of Iceland
This talk is based on joint work with Anders Claesson

Ascent sequences (A) were introduced in 2010 [2] as an auxiliary set of objects that
most transparently embodies the recursive structure of (2 + 2)-free posets, Stoime-
now’s matchings and Fishburn permutations (F). Since then, pattern avoiding ascent
sequences have been quite thoroughly investigated [1, 3], but a framework capable
of producing general results is missing. Pattern avoidance on F has been studied
in [4]. The main purpose of this work is to initiate the development of a theory
of transport of patterns from Fishburn permutations to ascent sequences, and vice
versa, aiming towards a more general understanding of pattern avoidance. Instead
of ascent sequences we use their modified version, that is the bijective image A of A
under the x — £ mapping [2]. Our approach is in fact more general and can trans-
port patterns between permutations (S) and equivalence classes of so called Cayley
permutations (Cay).

- y

A
Figure 5: Bivincular pattern f characterizing Fishburn permutations, on the left. Bijec-
tions relating A, A and F, on the right.

Burge words and Burge transpose

A word consisting of positive integers that include at least one copy of each integer
between one and its maximum value is called a Cayley permutation. Denote by Cay the
set of Cayley permutations. Define the set of Burge words:

Bur, = {(Z) cu €I, veCay, D(u) C D(v)},

where I, is the subset of Cay, consisting of the weakly increasing Cayley permutations
and D(v) = {i : v(i) > v(i + 1)} is the set of weak descents of v. We shall define a
transposition operation T on Bur, as follows. Let w € Bur,. To compute the Burge
transpose w' of w, turn each column of w upside down and then sort the columns in
ascending order with respect to the top entry, breaking ties by sorting in descending
order with respect to the bottom entry. Observe that T is an involution on Bur,.
Define the map v : Cay, — S, by

() - (5)
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for any v € Cay, where id is the identity permutation and sort(v) is obtained by
sorting v in weakly increasing order. If o € S is a permutation, then (¢) = ¢! (and
thus v is surjective). Moreover, if £ is a modified ascent sequence then y(x) = (&) is
the Fishburn permutation corresponding to £ (see Figure 5).

The transport theorem

We extend the notion of pattern containment on Burge words as follows. To ease
notation we will often write biwords as pairs. Let (v,y) € Bury and (u,x) € Bur,,.
Then (v,y) < (u, x) if there is an increasing injection « : [k] — [n] such that 1 o « and
x o « are order isomorphic to v and y, respectively. The next two results show that T
behaves well with respect to pattern containment.

Lemma 1. Let (v,y) € Bury and (u, x) € Bur,. Then:

v u o\’ u\"

()= () =) =)

y X y X
Corollary 2. Let x € Cay,,.

1. Ify € Cay, and y < x, then y(y) < v(x).

2. Ifo € Sk and o < 7y(x), then there exists y € Cay, such that y < x and y(y) = 0.
Corollary 2 can be reformulated in terms of equivalence classes of Cayley permuta-
tions. Let y ~ v/ if and only if ¢(y) = (y'). Denote by [y] the equivalence class of y,

and denote by [Cay] the quotient set. Let us extend the notion of pattern containment
to [Cay]| by [x] > [y] if x’ > v/ for some x’ € [x] and ¥’ € [y].

Theorem 3 (The transport theorem). Let x,y € Cay. Then

] > [y] <= 7y(x)=2y) and  y([Cay]ly]) = S(v(v)).

Since v(c 1) = ¢ for any ¢ € S, we can also write
v([Cayllo™"]) = S(0).

A remarkable consequence is that the sets S(o) and [Cay][c ] are equinumerous. We
also found a constructive procedure for the set [c—!] which we omit for lack of space.

Transport of patterns from F to A

Theorem 3 can be specialized by choosing a representative in each equivalence class
of [Cay|. Among the resulting examples, the most significant one is that of transport
of patterns between Fishburn permutations and modified ascent sequences, which
follows immediately since A C Cay and 7 is injective on A.
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Q C(Q) Counting Sequence
21 11 1,1,...
12 12 1,1,...
213 112 p
312 121 2n-1
132 122 on-1
123 123 2n—1
231 212 Catalan
3142 1212 Catalan
2134 1123 Catalan
1423 132 Catalan
3412 312 A202062
231,4132 212,221 Odd indexed Fibonacci
231,4123 212,231 Al116703
231,4312 | 212,211,321 | Odd indexed Fibonacci

Table 1: Sets of patterns Q and C(Q) such that F(Q) = ¢(A(C(Q2))).

Theorem 4 (Transport of patterns from F to A). For any permutation o and Cayley
permutation y we have

~

F(o)=y(Ale™"]) and y(Aly]) = F(r(y))

Therefore, for any permutation o and n > 1 we have | F,(0)| = |An[c1]|.

Many examples where this approach can be pushed further by interpreting the corre-
spondence described in Theorem 4 in terms of (plain) ascent sequences can be found
in Table 1.
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THE INTERVAL POSETS OF PERMUTATIONS SEEN FROM THE
DECOMPOSITION TREE PERSPECTIVE

Lapo Cioni Universita degli studi di Firenze

This talk is based on joint work with Mathilde Bouvel (LORIA, France) and Benjamin Izart
(LORIA, France)

Recently, Bridget Tenner defined the interval posets associated with permutations, and
described some properties of these posets in [2]. In this talk we will describe the
interval poset of a permutation by its decomposition tree, and we will use this point of
view to solve the open problems posed by Bridget Tenner and some other enumerative
problems.

For our purpose, an interval of a permutation ¢ = 0103 ... 0y, is an interval [}, j + h] of
values (for some 1 < j < n and some 0 < h < n — j) which is the image by ¢ of an
interval [i,i + h| of positions (for some 1 <i < n — h).

The inclusion relation naturally equips the set of intervals with a poset structure: the
elements of this poset are the intervals, and the relation is the set inclusion. We can
consider two versions of this poset: a first one in which the empty interval is an
element, and a second one which excludes the empty interval.

While posets are essentially “unordered” objects, we follow [2] and consider a partic-
ular plane embedding of the poset of a permutation ¢. The chosen embedding put an
interval I to the left of an interval | if I appears to the left of | in ¢. We denote P (o) (if
we ignore the empty interval) and P, (0) (if we include the empty interval) this plane
embedding of the interval poset of ¢.

Finally, the decomposition tree T (o) of ¢ is the tree whose internal nodes are labeled by
@, © or a simple permutation, where the label corresponds to which decomposition
is applied at that point in the recursive decomposition of ¢ in sums, skew-sums and
inflations of simple permutations.

{THSHOHTH2 {3H{4H9} {57

Figure 6: From left to right: The interval poset P(c), and the decomposition tree
T(o), for 0 = 786123495. The substitution decomposition of ¢ is indeed o =
3142[e[®(1,1],1],®[1,1,1,1],1,1].
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From decomposition trees to interval posets of permutations

In our talk, we will describe an algorithmic procedure to obtain P(c) (and P (0)) from
T(c). This allow us to give alternative proofs of some of the results in [2] regarding
the structure of P(c) and P, (c). For example, we have that P, (c) is a lattice for every
o, but it is modular if and only if ¢ is simple or has size at most 2, and it is also
distributive only in the latter case.

Also, using the approach of symbolic combinatorics (see [1, Part A] for example), we
are able to exactly enumerate both the interval posets and the tree interval posets
(that is, the interval posets that are also trees) with respect to the number of minimal
elements, also finding the asymptotic behavior of these sequences.

Finally, we compute the Mobius function of any interval of the interval poset of a
permutation, which is as follows.

Theorem 1. Let o be a permutation of size n whose substitution decomposition is 7|y, ..., a|.
Forany I € Po(0), it holds that

;

1 if I = [1,n),
-1 if I is covered by [1,n] (i.e., I is a coatom),
k—1 if I =@ and 7t is either simple or 12 or 21,

u(L [1,n]) = .
1 ifrris12...kork...21 for some k > 3
and 1 is covered by the two coatoms of Pe(0),
\O otherwise.
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ENUMERATING ORDERINGS ON MATCHED ProODUCT GRAPHS

Daryl DeFord Washington State University
This talk is based on joint work with Amir Barghi

In this talk we present enumerative results about the matched product for graphs,
motivated by a popular construction for modeling multiplex networks. Results con-
necting these products to permutation patterns are obtained by relating reorderings
of the nodes to consecutive-minima polygons.

The Matched Product

We begin by defining a formal graph product that generalizes the construction of the
matched sum [4]. To this end, we define the matched product of a sequence of layer
graphs (G1, Gy, ..., Gx) with respect to a k node structure graph C as follows.

Definition 1 (Matched Product). Let Gy, Gy, ..., Gx be an ordered list of graphs, each
with n nodes and a common labeling of the nodes and let C be a graph with k ordered

nodes. The matched product (G1,Gy, ..., Gy) is the graph with node set |J V; and
two nodes v¥ and vf in (G1,Ga, ..., Gy) are connected if and only if either
1. ey ~cpandi=j

2. a = pand vj ~ 0}
where ¢, and cg are nodes in C and v} represents the copy of node i in G,.

This definition allows for expressing several common multiplex models in compact
form, as well as recovering several commonly studied combinatorial products as spe-
cial cases:

Theorem 2. There are labelings of the graphs below such that the following hold:

1. The cartesian product of G and H can be represented by (G,G,...,G)

2. The rooted product of G and H can be represented by (G,Ey, Ep, ..., En)

3. The hierarchical product of G and H with subset {a;} C H can be represented by
(Gl,Gz,...,Gk) where Gi: {G Zfl < {611‘}.

E, otherwise

4. For a multiplex defined on G1, Gy, . . ., Gy the disjoint layers, matched sum, and temporal
matched sum can be represented by (G1,Gy,...,Gy), (G1,Gy,...,Gy), and

(G1, Gy, ..., Gy) respectively.
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pavpey

(a) Petersen Graph (b) Cylinder Graph (c) Not Planar

Figure 7: Examples of the matched product construction. Plots (a) and (b) show
non-isomorphic orderings of (Cs, Cs) while (c) shows a non-planar labelling of

(Ps, Ps).

Enumerating Relabellings

A distinguishing feature of the matched sum from other graph products is that it
depends on the labelling of nodes. Figures 1(a) and 1(b) show two realizations of
(Cs,Cs) with different node orderings, demonstrating that properties like pla-
narity may not be preserved as the labellings are permuted. This gives rise to the
interesting question of which permutations of the labels lead to planar embeddings,
characterized for paths in Theorem 4 below.

Proposition 3. Let G and H be connected graphs on n nodes. There exists a labeling so that
of (G, H) is planar if and only if G and H are outerplanar.

We will also state and prove similar results for other common graph-theoretic prop-
erties, such as the existence of Eulerian and Hamiltonian paths. The proof of the
previous proposition gives a sense of what can go wrong, even in the outerplanar
case, as the labeling may form a subgraph equivalent to K33 if the ordering was cho-
sen poorly. Figure 1(c) above shows a labeling of (P5, P5) that is not planar, since
contracting vertex 0 to 1, 4 to 3, 9 to 8, and 5 to 6 gives a graph that is isomorphic to
Ks3. Further, for all n > 5 there is always such a labeling for connected graphs, via
a similar construction. A natural related question is the enumerating the number of
orderings that give rise to a non—planar graph. For P, the sequence is 1, 2, 6, 24, 104,
464, 2088, 9392, 42064, 187296 and the permutations appear to be exactly the square
[1, 5] permutations (OEIS A128652 [6]) enumerated by 2(n +2)4" % — 4(2n — 5)(>"~9).
We are able to construct a bijection proving this relationship by embedding a path
graph inside the convex minimal polygon.

Theorem 4. There is a combinatorial bijection from labelings of P, such that (Py, Py) is
planar and the square permutations of the same order.

As with the existence results mentioned above we compute similar enumerations for
other common graph properties.

Finally, we use the matched product to formulate new families of graphs where the
The matched product also allows us to enumerate graph Stirling numbers of the first
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kind [2, 3] and graph factorials with combinatorial techniques. We will use [(]3] to

denote the number of decompositions of a given graph G into j disjoint cycles and [(];]
to represent decompositions where we allow 1-cycles, which is equivalent to adding a
self loop to each vertex in the graph. The total number of rearrangements is denoted

—

by the graph factorials G! = ) [%] and G! = ¥, [(];], chosen to reflect the fact that
K,! =nl.

Throughout our combinatorial discussion we mostly focus on applications to two
graphs with the P, product. Even this simple subcase leads to several interesting ob-
servations and applications and indeed many of the problems considered in [2, 3] can
be constructed using the matched product. For example, Theorem 9 in [3] concerns

(G,G) for bipartite G while examples 10 and 11 in the same paper compute

Yl IEC’Z’C")] and Y [ Iic"’c")] explicitly. We also provide some computational
examples on matched products where the graphs are isomorphic regardless of la-
belling. The graph factorials are displayed in Table 1.

n

2 9 48 4 9 4 9

3 49 293 9 48 20 82

4 140 2022 49 345 121 577

5 394 15657 216 2994 589 4876

6 1093 135044 1773 30957 4820 49789

7 2986 1287813 12113 369132 35293 587182

8 8056 13480938 128036 4996761 365633 7887553

9 21504 153879977 1172341 75625710 3525212 118596664
10 56889 1903771512 14885241 1265833149 43894725 1974218701

Table 2: This table reports the number of rearrangements of several natural matched products whose structure are
not determined by the ordering of the nodes on the layer graphs. None of these sequences currently appear in the
OEIS.
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2-AVOIDANCE

Murray Elder University of Technology Sydney, Australia
This talk is based on joint work with Yoong Kuan (Andrew) Goh

Motivated by a problem in stack sorting, we propose a different kind of pattern avoid-
ance which we call 2-avoidance.

Let F, G be sets of permutations. A permutation 2-avoids (F,G) either if it avoids F
in the usual sense of pattern avoidance, or if it contains some pattern f € F, then the
entries of the permutation that are order-isomorphic to f are themselves contained in
a pattern order-isomorphic to some g € G.

Informally, the patterns in G “save” a permutation from being forbidden on the basis
of containing a pattern in F.

The poster will give a precise definition of 2-avoidance, explain how it is similar to
and different from other popular non-classical avoidance notions, and give some (we
believe) intriguing open questions about 2-avoidance classes.
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DESCENTS ON NONNESTING MULTIPERMUTATIONS

Sergi Elizalde Dartmouth College

Motivated by recent results on quasi-Stirling permutations, which are permutations
of the multiset {1,1,2,2,...,n,n} that avoid the “crossing” patterns 1212 and 2121,
we consider nonnesting permutations, defined as those that avoid the patterns 1221
and 2112 instead. We show that the polynomial giving the distribution of the num-
ber of descents on nonnesting permutations is a product of an Eulerian polynomial
and a Narayana polynomial. It follows that, rather unexpectedly, this polynomial is
palindromic. We provide bijective proofs of these facts by composing various trans-
formations on Dyck paths, including the Lalanne-Kreweras involution.

Definitions

Given a sequence of positive integers m = 7712 ... 7T, We say that i is a descent of 7
if 7t; > m;yq, that it is a plateau if 71; = 741, and that it is a weak descent if 7r; > ;4.
Denote by des(7r), plat(7r) and wdes(7r) = des(7r) + plat(7r) the number of descents,
plateaus and weak descents of 7, respectively.

The distribution of descents on the set S, of permutations of [n] := {1,2,...,n} is
given by the Eulerian polynomials

An(t) = Z tdeS(U)/

reS,
whose generating function is

z" t—1

LA = e @

In 1978, Gessel and Stanley [3] introduced Stirling permutations, defined as permu-
tations 71177y . .. 1o, of the multiset [n] U [n] := {1,1,2,2,...,n,n} satisfying that, if
i < j<kand 7m; = 7, then 71; > 71;; in other words, avoiding the pattern 212. They
showed that the distribution of the number of descents on such permutations is re-
lated to the Stirling numbers of the second kind. There is an extensive literature on
these permutations and their generalizations to other multisets.

In 2019, Archer et al. [1] introduced a variation of Stirling permutations, which they
call quasi-Stirling permutations. These are permutations 7117, . .. 1o, of [n] U [n] that
avoid 1212 and 2121, meaning that there do not exist i < j < ¢ < m such that
7; = 71y and 71j = 70, The number of such permutations is n! Cat, = %, where
Caty, is the nth Catalan number. The generating function for these permutations with
respect to the number of descents and plateaus was later found in [?], expressed as a

compositional inverse of the generating function (1).

A permutation 77 of [n] U [n] can be viewed as a labeled matching of [2n], by placing
an arc with label k between i with j if 77; = 71; = k. The condition that 7t avoids
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1212 and 2121 is equivalent to the fact that this matching is noncrossing; see [4, Exer.
60]. With this perspective, it is natural to also consider permutations for which this
matching is nonnesting; see [4, Exer. 64].

—~ S~ TN TS OSSN

4 43 1 15 2 25 3 353 25 2141 4

Figure 8: The matchings corresponding to the quasi-Stirling (noncrossing) permuta-
tion 4431152253 and the nonnesting permutation 3532521414 € Cs.

Definition 1. A permutation 7t of the multiset [n] U [n] is called nonnesting if it avoids
the patterns 1221 and 2112; equivalently, if there do not exist i < j < £ < m such that
7; = 7y, and 71; = 714. Denote by C, the set of nonnesting permutations of [n] LI [].

The above condition on 7 is equivalent to the requirement that the subsequence of 7
determined by the first copy of each entry coincides with the subsequence determined
by the second copy of each entry. This subsequence, which is a permutation in S,,, will
be denoted by o (7). For example, if 77 = 3532521414 € Cs, then o (1) = 35214 € Ss.

As in the noncrossing case, the number of nonnesting matchings of [2n] is again the
nth Catalan number [4, Exer. 64]. Since there are n! ways to assign labels to the arcs
of a nonnesting matching to form a nonnesting permutation, it follows that

(2n)!

P— ' P—
|Cy,| = n!Cat, CES

Motivated by the results on the distribution of the number of descents and plateaus
on Stirling and quasi-Stirling permutations, here we describe the distribution of these
statistics on nonnesting permutations. We are interested in the polynomial

Cu(t,u) = Z pdes(r)  plat(r) 2

ey,

Let D, be the set of lattice paths from (0,0) to (2n,0) with steps u = (1,1) and
d = (1,—1) that do not go below the x-axis. Elements of D, are called Dyck paths.
A peak in a Dyck path is an occurrence of two adjacent steps ud. A peak is called a
low peak if these steps touch the x-axis, and a high peak otherwise. Denote the number
of low peaks and the number of high peaks of D € D, by lpea(D) and hpea(D),
respectively. Consider the Narayana polynomials

N, (t,u) = Z ¢hpea(D), Ipea(D)
DeD,

From the usual decomposition of Dyck paths by the first return, one can easily deduce
that

; 1
E N, (t,u)z" = .
S0 T4+ (1 +t—2u)z+ /121 +t)z+ (1 —1)222
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Main Results

We obtain the following strikingly simple expression for the polynomial C, (¢, u) from
Equation (2), as a product of an Eulerian polynomial and a Narayana polynomial.

Theorem 2. Forn > 1,
Cn(t, M) - An(t) Nn(t, M).

As a consequence, using the palindromicity of A,(t), N,(t,t) and N,(¢,1), we obtain
the following two unexpected symmetries.

Corollary 3. The distribution of the number of weak descents on C,, is symmetric, i.e.,
[{m € C,:wdes(rt) =r}| =|{meC,:wdes(m) =2n—r}|

forallr.

Corollary 4. The distribution of the number of descents on C, is symmetric, i.e.,
{meC,:des(n) =r}| =|{meC,:des(mr) =2n—2—r}

forallr.

To establish Theorem 2, we prove a slightly stronger statement. For o € S,, define
C5={meC:0(n) =0}, sothat Cy = |lyes, C5. Letting

Coltyu) = Y tdestmlyiat)

neCy
we prove the following refinement.

Theorem 5. Forall o € S,,,
Co(t,u) = 95N, (¢, u).

Corollary 6. For each o € S, the distribution of the number of weak descents on C; is
symmetric, i.e.,

|{m € C, :wdes(m) —des(c) =r}| = |{m e, :wdes(rr) —des(c) =n+1—r}|
forallr.

Corollary 7. For each o € Sy, the distribution of the number of descents on Cy, is symmetric,
ie.,

|[{m e C, :des(rt) —des(c) =r}| = |{m €C) :des(r) —des(c) =n—1—r}

forall r.

All our proofs are bijective.
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PREIMAGES UNDER THE BUBBLESORT OPERATOR

Luca Ferrari University of Firenze
This talk is based on joint work with Mathilde Bouvel, Lapo Cioni

Bubblesort is a very well known sorting algorithm for sequences of elements of a
totally ordered set. Here we are interested in the Bubblesort operator B, which cor-
responds to applying one pass of Bubblesort to a permutation. Specifically, B(7) is
obtained from 71 by scanning its elements from left to right, each time exchanging
an element with the one sitting to its right whenever the latter is smaller. Thereby
the left-to-right maxima of the permutation “bubble up” to the right, until they are
blocked by the next left-to-right maximum.

For example, for m = 42163785, the left-to-right maxima are 4,6,7 and 8 (shown in
bold) and B(7r) = 21436758.

Similarly to what happens for other sorting operators, such as those associated with
Stacksort and Queuesort, the set of bubble-sortable permutations can be character-
ized in terms of pattern avoidance: they are precisely the permutations avoiding the
two patterns 231 and 321.

Following the footprints of what have been done for the sorting maps associated with
Stacksort [2, 4] and Queuesort [3], in the present work we are interested in studying
preimages of permutations under B.

Our first result is a complete characterization and enumeration of the set of preimages
of a given permutation.

Proposition 1. Let 0 = 01 - - - 0, be a permutation of size n ending with its maximum. Let
k be the number of left-to-right maxima of o. There is a bijective correspondence between the
preimages of o under B and the subsets of the k — 1 left-to-right maxima of o different from
n. Foranyset S = {s1 < --- < s} of j < k — 1 left-to-right maxima of o different from
n, writing o = Bos1B1s2By . .. sj_1Bj_18;Bjn (for the B; possibly empty sequences of integers,
which contain the k — j left-to-right maxima not in S and the elements of o which are not
left-to-right maxima), the corresponding preimage of o is s1Bos2B .. .s;Bj_1nB,;.

Corollary 2. The cardinality of B~'(c) is 2871, and for any 1 < j < k, the number of
preimages of o with j left-to right maxima is (']‘j)

We can also characterize and enumerate permutations having a given number of
preimages. This is an immediate consequence of the above propositions and of the
classical Foata bijection, which maps permutations of size n with k cycles to permu-
tations of size n with k left-to-right maxima.

Corollary 3. For any k > 1, permutations having exactly 25~ preimages under B are those
ending with their maximum and having k left-to-right maxima. In particular, there are {Z:H

permutations of size n having 25~ preimages under B, where [}!| are the (unsigned) Stirling

numbers of the first kind.
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We further consider, for each n, the tree T, recording all permutations of size 7 in its
nodes, in which an edge from child to parent corresponds to an application of B (the
root being the identity permutation). Also, given a permutation 7 € S,, we define the
tree of its preimages T (77) as the subtree of T, with root 7.

An interesting property of T, is that, for 7t € S,, all possible shapes of the trees T ()
can be found starting at depth 1 in T;,.

Proposition 4. For every permutation 7w € Sy, 70 # idy, there exists a child T of id, in T,
such that T(7t) and T(T) are isomorphic.

Next we describe how the “shape” of any tree T(7r) is completely determined by a
small piece of information about 7r, which we encapsulate in its label. The label of
a permutation ¢ is the pair (k,m,), where k is the number of left-to-right maxima of
7t and my is the size of the (possibly empty) maximal suffix of left-to-right maxima
of 7. Moreover, the skeleton of a tree T(7) is obtained from T(7t) by replacing each
permutation at a node with its label.

Given a permutation 71, we can determine the skeleton of T(7r) using only the pair
(k,my). Specifically, it is the tree with root labeled by (k, m,), and whose children (and
recursively, descendants) are obtained as described in the next proposition.

Proposition 5. Let 7t € S, with label (k,my). Let T be the skeleton of T(7t). Then the root
of T has label (k, my) and its children have the following labels:

e foreveryh =0,...,my—2:

Q foreveryi=1,...,k—1—h, there are (kf;h) children with label (k — i, h);

e if 7T # id,, we also have the case corresponding to h = m, — 1:

Q foreveryi=0,...,k—my, there are (k*im”) children with label (k —i,m; — 1) =
(k—1i,h).

The previous proposition provides a recursive description of T, which is useful (a-
mong other things) to study enumerative properties of nodes and leaves, which is the
last part of our work. The next proposition, which concerns nodes of T}, is essentially
a consequence of results in [1] and [5]. In particular, a crucial property is that permu-
tations sorted by at most k applications of the operator B are those avoiding the set of
patterns I'y,», where I'; is the set of all permutations of size k whose last element is 1.

Proposition 6. The number of nodes at height k in T, is k! - ((k+1)"~% — k"=F). The average
height of a node in T, is asymptotically equal to n — /% + O(1).

Next we can find an analogous result for a subtree T(7r) by exploiting Proposition 5.

Proposition 7. For a permutation 7t having label (k, my), different from an identity permu-
tation, the number of nodes of T(7t) is

N(k,mg) = Y j1( + 1), M
j=0
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Moreover, denoting with N;(k,m,) the number of nodes at height j in T(7), we have that
Nj(k,me) = j1(j +1)*.

The same information can be provided for leaves.

Proposition 8. The number of leaves at height k in T, is k!(k(k+ 1)" 1 — (k — 1)k"—%-1).
The average height of a leaf in T, is asymptotically equal to n — /5" + O(1).

Proposition 9. Given a permutation 1t having label (k, my), different from an identity per-
mutation, the number of leaves of T () is

mgfl .
L(k,mg) = Y G+ 1)+ myl(my + 1), (2)
p

Moreover, denoting with Lj(k,my) the number of leaves at height j in T(7t), we have that
Li(k,mg) = jlj(j + 1)=i=1 for j < my, and Ly, (k,mg) = my!(my + 1)k=me,
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RECURSIVE MAPS FOR DERANGEMENTS AND NONDERANGEMENTS

Melanie Ferreri Dartmouth College

This talk is based on joint work with Peter Doyle

Derangements and Nonderangements

Definition 1. A derangement is a permutation with no fixed point. We denote by D,
the set of derangements of [n] contained in the symmetric group S,,.

Definition 2. Similarly, a nonderangement is a permutation with at least one fixed
point. We denote by D,, the set of nonderangements of [n] contained in S,,.

Definition 3. We denote by E, the set of permutations with exactly one fixed point,
and we use E, to denote the complement of E, in S, i.e. the set of permutations that
do not have exactly one fixed point.

It can be shown from well-known recurrence relations that
dy = ey + (—1)" (1)

where d, = |D,| and e, = |E,|. It can also be shown that

dy = nd,_1 — (—1)". )

where d, = |D,|.

Recursive Maps

We present an involution on S, which exchanges elements of D, and E, excluding one
element, and describe a recursive map that gives a bijection exhibiting the identity (1).
We then show the combinatorial interpretation of this map and how it compares with
another known bijection [2]. This map can be used to obtain a map from D, to E,
excluding one element, and can be combined with a bijection from E, to [n] x D,,_;
to give a bijective proof of the one-term identity for nonderangements (2).
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RESTRICTED GENERATING TREES FOR WEAK ORDERINGS

Juan B. Gil Penn State Altoona
This talk is based on joint work with D. Birmajer, D. Kenepp, and M. Weiner

Motivated by the study of pattern avoidance in the context of permutations and or-
dered partitions, we consider the enumeration of weak-ordering chains obtained as
leaves of certain restricted rooted trees. A tree of order n is generated by inserting a
new variable into each node at every step. A node becomes a leaf either after n steps
or when a certain stopping condition is met. In this talk we will focus on conditions
of size 3. Some of the cases considered here lead to the study of descent statistics of
certain ‘almost” pattern-avoiding permutations.

Introduction

A weak-ordering chain in the variables x1, xp, ..., x, is an expression of the form
xil Op xi2 Op T Op xin’

where op is either < or =. We let WOC(n) denote the set of all weak-ordering
chains in n variables. Every w € WQOC(n) corresponds to an ordered partition of
[n] = {1,...,n} obtained from the indices of the variables in w, where the numbers i
and j are in the same block of the partition whenever x; = x;. For example,

Yo <xi=xs <1 <x3 —— {{2},{4,5}, {1}, {3}).

Every element w € WOC(n) can be recursively generated starting with x;, and then
inserting x; (together with either < or =) into a previously constructed weak-ordering
chain of length i — 1. This process generates a rooted labeled tree whose nodes at level
i are labeled by the elements of WOC(i). For example, for n = 3, we get the tree

21 12 12
321 231 231 213 213 312 123 123 312 132 132 123 123

where ij is a shortcut for x; < x; and ij represents x; = x;.

Now, suppose that we wish to stop the above generating process as soon as we have
a tie. In other words, suppose that we do not allow nodes with x; = x; for some i > j
to have descendants. Then, the above tree would take the form

21 12 12

IR

321 231 231 213 213 312 132 132 123 123 (1)
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with only 11 leaves instead of 13. We call (1) a restricted generating tree of weak-
ordering chains subject to the stopping condition x; = x;.

As another example, consider the stopping condition x; < x; < x; withi < j <k. In
this case, the generating tree at level 3 looks like the tree for WOC(3):

21/1\

12
TR RN

321 231 231 213 213 312 123 123 312 132 132 123 123

12

but the node with label 123 will have no descendants as the generating tree grows.

The enumeration of weak-ordering chains subject to a stopping condition is equivalent
to counting the number of leaves of the corresponding restricted generating subtree.

Stopping conditions of size 3

Let e, 4 be the number of 123-avoiding permutations on [#] having exactly d descents.
Letg1s=84=0g0=1andforn>3and1<d<n-3,

nq = #{0 € S, | 0 has a 123 pattern, d descents, and ¢’ € S,,_1(123)},
where ¢’ € S,,_1 denotes the permutation obtained from ¢ € S, by removing n.

Theorem 1. If wy, is the number of weak-ordering chains in YWOC (n), subject to the stopping
condition x;, < x;, < xj, with iy < iy < i3, then

" .

n—1 j—3
we =Y 2%+ Y Y 29,
d=0 i=3d=0

The generating function W(x) = Y. w,x" satisfies

n=1

x+xv1— 8x + 8x2
2(1—x)v/1—8x +8x2

Theorem 2. If w,, is the number of weak-ordering chains in WOC (n), subject to the stopping
condition x;, < x;, < x;, with iy < iy < i3, then

W(x) =

. .

n—1 -1
—1—d i—1—d
wp =Y 2" e+ )Y 2 e
=0 j=3d=2

The generating function W(x) = Y. w,x" satisfies
n=1
x 1—2x —2x2

= + )
T—2  (1—22)V/1—4x — 422
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Let N,, ; be the number of 213-avoiding permutations on [#] having exactly d descents.
Lettl1g=1"0,4=0,031=1,andforn>3and1<d <n-3,

lyq =#{0 € S, |0 has a 213 pattern, d descents, and ¢’ € S,,_1(213)},

where ¢’ € 5,,_1 denotes the permutation obtained from ¢ € S,, by removing n.

Theorem 3. If w,, is the number of weak-ordering chains in YWOC (n), subject to the stopping
condition x;; < x;, < x;, with iy < iy < i3, then

. .

n—1 j—2
wp =Y 2'Nya+ Y Y 29,
d=0 j=3d=1

The generating function W(x) = Y. w,x" satisfies
n=1
(1 —x)2—(1-3x)V1—6x + x2

W) = 41— V1 —6x + 22
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RESTRICTED GRASSMANNIAN PERMUTATIONS

Juan B. Gil and Jessica A. Tomasko Penn State Altoona

A permutation is called Grassmannian if it has at most one descent. In this poster,
we present recent results [1] on pattern avoidance and parity restrictions for such
permutations. We derive formulas for the enumeration of Grassmannian permuta-
tions that avoid a classical pattern of arbitrary size. In addition, for patterns of the
form k12--- (k—1) and 23 - - - k1, we provide combinatorial interpretations in terms of
Dyck paths, and for 35124-avoiding Grassmannian permutations, we give an explicit
bijection to certain pattern-avoiding Schroder paths. .

Grassmannian & related permutations

If 4, denotes the set of Grassmannian permutations on [n] = {1,...,n}, then

e w9, ifand onlyif 7'° € ¥,.
* |4 =2"—nforn>1.(1,2,512,27,58,121,248,503,1014,...)
A permutation, 7, is called biGrassmannian if both 7, n! e, Form e ¥, the

inverse 77! has at most one dip, i.e. a pair (i,j) with i < j such that (i) = 7(j) + 1.
A biGrassmannian permutation has at most one descent and at most one dip.

Proposition 1. A Grassmannian permutation is biGrassmannian if and only if it avoids the
pattern 2413. In other words, 4, N9, = 4,(2413) for every n. Moreover,

G Ng T =1+ <”;1>.

Proposition 2. For n € IN, we have 4, U9, ! = S,,(321,2143). Moreover,

1
G Ug, | = 2" — <n; ) —2n—1.
Proposition 3. 7w € ¥, is an involution if and only if it is of the form
7 = idy, @ (idy, ©idy, ) @ idk,

for some ki, kp, ks € N U {0} with ki + 2ko + k3 = n, where idg = «.
Moreover, i,, the number of Grassmannian involutions of size n is given by

2 . .
{”4*3 if nis odd,
in —

= if nis even.
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Pattern avoidance

Theorem 4. Ifk > 3 and o € Sy with des(c) = 1, then

|9, (0)| = 1—1—]2 (]f1> forn € N.

|o| Sequence |¥,(0)] OEIS
3 |1,2,4,7,11,16,22,29,37,46, . .. A000124
4 1,2,5,11,21,36,57,85,121, 166, . .. A050407
5 1,2,5,12,26,51,92,155,247,376, . .. A027927
6 1,2,5,12,27,57,113,211,373,628, . .. n/a

7 1,2,5,12,27,58,120,239,457,838, . .. n/a

8 1,2,5,12,27,58,121,247,493,958, . .. n/a

Table 3: Enumeration of ¢, (c) for a pattern o with des(c) = 1.

Proposition 5. For k > 3, the elements of 4, (k12 --- (k — 1)) are in one-to-one correspon-
dence with the Grassmannian Dyck paths of semilength n having at most k — 2 peaks at height
greater than 1.

Proposition 6. For k > 3, the elements of 4,(23---k1) are in one-to-one correspondence
with the Grassmannian Dyck paths of semilength n and height at most k — 1.

Proposition 7. The set ¢4,1(35124) is in bijection with the set of Schroder paths of semi-
length n that avoid the pattern UUDD.
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THE EXPECTED NUMBER OF DISTINCT PATTERNS IN A RANDOM
PERMUTATION

Anant Godbole East Tennessee State University

This talk is based on joint work with Verénica Borrds-Serrano, Isabel Byrne, Nathaniel Veimau.

This talk will focus on how perfectly random permutations pack distinct patterns.

The Consecutive Case

Let 77, be a uniformly chosen random permutation on [#n]. Using an analysis of the
probability that two overlapping consecutive k-permutations are order isomorphic,
the authors of Allen et al [2] showed that the expected number of distinct consecutive
patterns of all lengths k € {1,2,...,n} in 7, is ”72(1 —0(1)) as n — oo. This exhibits
the fact that random permutations pack consecutive patterns near-perfectly.

The Non-Consecutive Case

Beginning with a question asked by Herb Wilf at the inaugural Permutation Patterns

Conference held in Dunedin in 2003, several authors have studied the maximum value

P(7,) of the number of distinct patterns in a permutation 71, on [#]. This includes the

successive work of Coleman [3], Albert et al [1], and Miller who showed in [4] that
2" — O(n?2" V) < max (7,) < 2" @(n2"~ V), (1)

YIS
In this talk we obtain results for both the number of pairs of non-isomorphic patterns
and the number of distinct patterns in a random permutation.

REFERENCES

[1] Michael Albert, Micah Coleman, Ryan Flynn, Imre Leader. Permutations contain-
ing many patterns, Ann. Comb. 11 (3) 265-270, 2007.

[2] Austin Allen, Dylan Cruz Fonseca, Veronica Dobbs, Egypt Downs, Evelyn
Fokuoh, Anant Godbole, Sebastidn Papanikolaou Costa, Christopher Soto, Lino
Yoshikawa. The Expected Number of Distinct Consecutive Patterns in a Random
Permutation, to appear in Pure Mathematics and Applications, 2022+

[3] Micah Coleman. An answer to a question by Wilf on packing distinct patterns in
a permutation. Electron. J. Combin., 11 (1), 4 pp., 2004.

[4] Alison Miller. Asymptotic bounds for permutations containing many different
ymp p & y
patterns. J. Comb. Theory, Series A, 116 (1), 92-108, 2009.

55



(GENERALIZATIONS OF PARKING FUNCTIONS AND A CONNECTION TO
PATTERN AVOIDANCE

Pamela Harris Williams College

We begin this talk by introducing parking functions and results related to their enu-
meration and related statistics. One result will establish a bijection between parking
functions with displacement one and the set of ideal states on the Tower of Hanoi
game. We then consider a variety of generalizations of parking functions including
L-interval (rational) parking functions, which are related to Fubini competitions, and
MVP parking functions, which yield a connection to permutations avoiding certain
patterns. The talk will conclude with an opportunity to discuss further directions and
open problems in this area.
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UsING CONSTRAINT PROGRAMMING TO ENUMERATE
PERMUTATIONS AVOIDING MESH PATTERNS

Ruth Hoffmann University of St Andrews
This talk is based on joint work with Ozgiir Akgiin, Chris Jefferson

Constraint programming is a proven technology for solving complex combinatorial
decision, optimisation or enumeration problems. Constraints are a natural, powerful
means of representing and reasoning about complex problems that impact all of our
lives. Constraint programming offers a means by which solutions to such problems
can be found automatically, and proceeds in two phases. First, the problem is mod-
elled as a set of decision variables, and a set of constraints on those variables that
a solution must satisfy. A decision variable represents a choice that must be made
in order to solve the problem. The domain of potential values associated with each
decision variable corresponds to the options for that choice.

Enumerating permutations avoiding mesh (or other) patterns lends itself perfectly to
constraint programming. We have created a model which represents the definition
of a mesh pattern [1] in Essence [3]. We then use Conjure [2] to solve a range of
permutation pattern problems. We can find if a pattern is present inside a target
permutation at all, or count how many permutations of a certain length (or range of
lengths) avoid the pattern or a set of patterns.

Essence is a high-level problem specification language: it natively supports deci-
sion variables with abstract domains like set, multi-set, function, relation, partition
domains and operations defined on these domains. Conjure translates problem spec-
ifications into concrete models suitable as input to standard constraint programming
toolkits. Conjure allows practitioners to explore alternative approaches to convert
problem specifications to concrete models and allows the use of different state-of-the-
art black box solvers. The solver that we use in this work are Minion[4] and an AIISAT
solver nbc_minisat_all [5].

The main benefit of modelling permutation patterns as a set of constraints is that
constraint models are highly modular. This means it is easy to use the same (or only
slightly modified) code to find the permutations which satisfy a set of patterns, or
find permutations which contain one mesh pattern, but do not contain a second mesh
pattern.

Modelling Mesh Patterns

We will present our model for finding all permutations in S, which avoid a set of
mesh patterns (code in Figure 9. This model can easily be extended to consider many
similar problems. Our models are given in Essence , a high-level constraint modelling
language.
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language Essence 1.3
given avoid : set of (sequence(injective) of int, relation of (int*int))

given n : int
find perm : matrix indexed by [int(0..n+1)] of int(0..n+1)

such that
perm[0] = 0, perm[n+1] = n+i,
allDiff (perm)

such that
forAll (av, mesh) in avoid
exists avinv: matrix [int(0..lav|+1)] of int(0..lav|+1),
and ([avinv[0] = 0, avinv[lav|+1] = |av]|+1,
(forAll i: int(l..lavl) . avinv[av(i)] = i)].
forAll ix : matrix indexed by [int(0..lavI+1)] of int(0..n+1),
and ([ 1ix[0]=0 /\ ix[lav|+1]l=n+1
, forAll i : int(O0..lav|) . ix[i] < ix[i+1]
, forAll nl, n2 : int(1..]lav]|) , nl1 < n2
av(nl) < av(n2) <-> perm[ix[n1]] < perm[ix[n2]]
iD)
( exists i,j: int(0..lavl]).
(i,j) in mesh /\
exists z: int(ix[i]+1..ix[i+1]-1).
(perm[ix[avinv([j]l]] <= perm[z] /\ perm[z] <= perm[ix[avinv[j+1]1]1]1)

Figure 9: The Essence specification of the mesh pattern avoidance.

One of the most difficult part of modelling mesh patterns is edge conditions. The cells
in the mesh which are around the edge and represent “all other values”. We want to
avoid having to handle these values specially. To avoid having to special case the
edges of the mesh, we extend the permutation perm we search for from a permutation
pin S, to a permutation on {0,...,n + 1}, where 0 = 0 and (n + 1) = n+ 1 (Lines
6-10).

The mesh pattern is stored as a set of pairs (av, mesh) (Line 3), where av is an
injective sequence (representing the permutation) and mesh is a relation representing
the cells in the mesh which cannot contain values. The mesh pattern is defined in
a separate file which represents the given information, alongside n which represents
the length of target permutations in S,,. An example file of a mesh pattern is found in
Figure 10, which represents the mesh pattern in Figure 11.

We dynamically calculate avinv, the inverse of av. Similarly to the permutation, we
extend this with an extra value, where avinv[0]=0 and avinv[x+1] = n+1 (where x
is the length of the pattern av) (Lines 14-16).

We then search for all occurrences of the pattern in the permutation (Lines 17-21.
Similarly when searching for the pattern in a permutation, we add an extra fixed
value to the start and end of the pattern, which map to 0 and 7 4 1 respectively.

Finally, when we find an occurrence of the pattern, we check that at least one member
of the mesh contains a value (which means the mesh is not actually present) (Lines
23-27).
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language Essence 1.3
letting n be 4

letting avoid be {(sequence(1,3,2), relation((1,2),(2,3),(3,0),(3,1)))%}

Figure 10: The Essence parameter file of a particular mesh pattern and the length of
permutations that will be enumerated.

—

Figure 11: Mesh pattern as defined in the parameter file.

We will talk about the model, give more insights into how it and the solving of it
works. We will present results to show how competitive using a general purpose
declarative method (constraint programming) can be in comparison to bespoke al-
gorithms when solving NP-complete enumeration problems and specifically when
enumeration mesh pattern avoiding permutations.
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ON PERMUTATION CLASSES DEFINED BY PIN SEQUENCES

Ben Jarvis Open University
This talk is based on joint work with Robert Brignall

Pin sequences were introduced by Brignall, Huczynska and Vatter [1] as a means of
studying simple permutations. Since then they have attracted interest as a method of
constructing permutation classes with a large number of simples, and in connection
with monotone griddability - see [3]. In this talk we consider so-called "pin classes” -
permutation classes consisting of all finite permutations contained in a given infinite
pin sequence - with a focus on the smallest possible growth rates that these classes
can have. We will conclude with a brief discussion of the application of this theory to
the study of growth rates of permutation classes with bounded oscillations.

Classifying small pin classes

We begin with a definition, following Bassino, Bouvel, and Rossin [2]:

Definition 1. A pin sequence is an word (finite or infinite) over the language

{1,2,3,4}({L,r}{u,d})*U{1,2,3,4}({u,d}{L r})*

A finite pin sequence can be converted into a 2-by-2 gridded permutation by the
following procedure (see Fig. 12 for an illustration of this process):

1. Place an initial point in the quadrant specified by the initial number (counting
anti-clockwise from the top-right);

2. At all subsequent steps, place a point either up, down, left or right (depending
on the letter u, d, 1, or r) of the bounding rectangle of all previous points (in-
cluding a ‘ghost point” at the origin) at the end of a "pin” which separates the
last point from all points before.

Note that this definition almost guarantees that a permutation produced from a pin
sequence will be simple - and it is in fact this connection with simple permutations
that has motivated much of the study of pin sequences. Given an (infinite) pin se-
quence we can define the corresponding pin class as the downward closure of the set
of all permutations produced by a finite initial subsequence. In this talk we develop
the theory of pin sequences and apply this to classify the growth rates of 'small” pin
classes.
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Figure 12: The permutation 3,1,4,7,5,2,6 (in a 2-by-2 grid), constructed from the pin
sequence 2lurdld. The numbers refer to the order in which the points were placed:
the first point was placed in quadrant 2 (due to the 2 at the start of the pin sequence);
then, the second point was placed to the left (due to the ) of the bounding rectangle
of the first point and the origin, at the end of a pin separating point 1 from the origin;
next, point 3 was placed above (or "up’, due ot the u) the bounding rectangle of the
tirst two points and the origin, at the end of a pin separating point 2 from point 1 and
the origin; and so on...

We begin with the class O, the downwards closure of the increasing oscillations,
which is also the pin class defined by the sequence 1(ur)*. The growth rate of this
class is k¥ ~ 2.20557; it is known that this is the smallest possible growth rate of a pin
class and that O is “essentially’ the only pin class that achieves it.

Figure 13: The first 11 points given by the pin sequence 1(ur)*, defining the permu-
tation 3,1,5,2,7,4,9,6,11,8,10. The downward closure of this pin sequence is the pin
class O, the class of increasing oscillations.

We shall show that, somewhat surprisingly, the next smallest pin class does not appear
until the (significantly larger) growth rate v ~ 3.069, achieved by the class V, defined
by the pin sequence 1(ulur)*; see Figure 14. This is the first pin class to visit two
quadrants infinitely often - though much more exotic behaviour is possible in two
quadrants; for example, non-periodic pin sequences.
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Figure 14: The first 16 points given by the pin sequence 1(ulur)*; the downward
closure of this pin sequence is the pin class V

In seeking to find the next possible growth rate of a pin class, we are naturally led to
define the class ) from the pin sequence 1(uldlur)*; this has growth rate ¢y ~ 3.366
and can be shown to be the smallest pin class that visits three quadrants infinitely
often. This leaves open the question of what happens between V and ); we will
address this problem, as well as briefly looking beyond <y at the smaller pin classes
in three and four quadrants, concluding with a classification of what we shall call the
’small” pin classes.

Figure 15: The first 17 points given by the pin sequence 1(uldlur)*; the downward
closure of this pin sequence is the pin class Y
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AN EXTENSION OF THE LINDSTROM-GESSEL-VIENNOT THEOREM

Yi-Lin Lee Indiana University at Bloomington

Consider a weighted directed acyclic graph G having an upward planar drawing. We
give a formula for the total weight of the families of non-intersecting paths on G with
arbitrary starting and ending points. While the Lindstrom-Gessel-Viennot theorem
([31,[2]) gives the signed enumeration of these weights (according to the permutation
generated by these paths), our result provides the straight count, expressing it as a
determinant whose entries are signed counts of lattice paths with given starting and
ending points.

Statement of main results

We consider a directed acyclic graph (simply called a graph) G with a weight function
wt : E(G) — R that assigns elements in some commutative ring R to each edge of
G. On the graph G, the weight of a path p is the product wt(p) = [], wt(e), where
the product is over all edges e of the path p. A path with length zero has weight 1 by
convention. The weight of an n-tuple of paths P = (py,..., pn) is the product of the
weights of each path: wt(P) = [TiL; wt(p;). We say two paths are non-intersecting if
they do not pass through the same vertices.

An upward planar drawing of a graph G is a drawing of G on the Euclidean plane such
that each edge is drawn as a line segment that is either horizontal or up-pointing, and
no two edges may intersect except at vertices of G. In [1], a graph G has an upward
planar drawing if and only if G is a subgraph of an st-planar graph on the same vertex
set.

Given an st-planar graph G and its subgraph G having the same vertex set. Let
U = {u,...,u,} be the set of n distinct starting points and V = {vy,...,v,} be
the set of n distinct ending points; these points will be called the marked points. We
introduce the notations for the set of directed paths going from U to V as follows.

* P(uj,vj) denotes the set of paths going from u; € U tov; € V.

e P™(U,V) denotes the set of n-tuples of paths (p1, ..., pn), where
pi € @(ui,vn(i)) for 1 <i < n. The permutation 7 is called the connection type.

e 2(U,V) is the set of all n-tuples of paths connecting U to V; i.e.,, 22(U,V) is
the union of 27 (U, V) over all the permutations 7 € &,,.

e Zy(U,V) (resp., Z§(U,V)) is the subset of (U, V) (resp., 2™ (U, V)) consist-
ing of non-intersecting n-tuples of paths.

* The generating function of the sets of paths &7 according to the weight wt is
given by GF(Z) = Y_pc.p» wt(P).
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Definition 1. Let s be the source and t be the sink of the st-planar graph G, and let
p € Z(u,v) be a path in the subgraph G. The left side of the path p is the closed region
of the plane bounded by the following paths in G:

¢ the leftmost path (i.e., the path obtained by taking the leftmost step at each
stage) from s to u,

¢ the path p itself,
¢ the leftmost path from v to ¢, and

o the left boundary of G going from s to ¢.

We write L(p) for the collection of marked points of U U V which are on the left side
of the path p; this includes the starting point u and the ending point v of the path p.

Definition 2. The path sign of a path p € & (u,v) is defined to be

sgn(p) = (—1)!*P)L.

The path sign of an n-tuple of paths P = (p1,...,px) € Z(U,V) is defined to be the
product of all path signs of the p;’s:

n

sgn(P) = [ [sgn(pi).

i=1

Theorem 3 (Main theorem). Given an st-planar graph G and a subgraph G having the same
vertex set. Let U = {uq,uy, ..., uy}and V.= {v1,0vy,...,0,} be two sets of n marked points
of G. Let M be the n x n matrix whose (i, j)-entry is

Y. sgn(p)wt(p).

pe@(ui,vj)
Then the total weight of families of non-intersecting paths connecting U to V is given by
GF(Zy(U,V)) = ) GF(Z§(U,V)) = |detM]|.

e,
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A g-ANALOGUE AND A SYMMETRIC FUNCTION ANALOGUE OF A
RESULT OF CARLITZ, SCOVILLE AND VAUGHAN

Yifei Li University of Illinois at Springfield

Let f(z) = Y o o(—1)"z"/n!n!. In their 1975 paper, Carlitz, Scoville and Vaughan pro-
vided a combinatorial interpretation of the coefficients in the power series 1/f(z) =
Yoo wyz" /n'n!. They proved that w, counts the number of pairs of permutations of
S, with no common ascent. In this talk, I will give a combinatorial interpretation of a
natural g-analogue of w;,.

Theorem 1. Let D,, denote the set {(0,7) € S, X Sy | 0 and T have no common ascent},
and let Wn(q) = Z(U,T)GD,, qinV(U')+il’1V(T). Thenfor n>1,

n Ty 2 )
»-[i] comi o )
i=o Lt1q

where ['}]q is the g-analogue of the binomial coefficient (7).

Theorem 1 gives a combinatorial interpretation to the coefficients of a reciprocal g-
Bessel function. This result is obtained by studying the top homology of the Segre
product of the subspace lattice B,(q) with itself. We also derive an equation that is
analogous to a well-known symmetric function identity: Y* (—1)’e;h,_; = 0, which
then generalizes our g-analogue to a symmetric group representation result.
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THE FIRST OCCURRENCE OF A PATTERN IN A RANDOM SEQUENCE

Yixin (Kathy) Lin Dartmouth College
This talk is based on joint work with Sergi Elizalde

We introduce an analogue for permutations of the famous Penney’s ante game for
coin tosses.

Introduction

In Penney’s game, player A selects a binary word of length n > 3, then player B
selects another binary word of the same length. A fair coin is tossed repeatedly
to determine a random binary word, until one of the players” words appears as a
consecutive subword, making that player the winner. It is known that, for any word
picked by player A, player B can always pick a word will be more likely to appear
first. The exact odds of winning can be computed using Conway’s algorithm [4], in
terms of the overlaps of the two words with themselves and with each other. The
same method applies to words over any finite alphabet.

In this talk, we consider the analogue of Penney’s game for permutations instead of
words. Let X = Xj, Xp,... be a sequence of i.i.d. continuous random variables. A
consecutive occurrence of a permutation ¢ € Sy is a subsequence X;, Xii1,..., Xitk—1
whose entries are in the same relative order as 01,07, ...,0r. Now player A chooses
a permutation ¢, and then player B chooses a permutation T (one may consider the
version where ¢ and 7 have different lengths). Then the random variables Xj, X», . ..
are drawn until a consecutive occurrence of ¢ or T appears, which determines the
winner.

Expected time to see the first occurrence of a pattern

For o € &, define the random variable T, as the smallest j such that Xj,...,X;
contains a consecutive occurrence of ¢. This definition, as well as the next theorem,
can be easily extended to vincular and classical patterns, but here we will focus on
the consecutive case, which is the analogue of Penney’s game.

Let a,(0) be the number of permutations in S, that avoid the consecutive pattern o,
and denote the corresponding exponential generating function by

P, (z) = r;zxn (a)%.

The expectation ET, has a surprisingly simple expression in terms of this generating
function.

Theorem 1. For every o,
IETU — Pg’(l).
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Expressions for Py (z) for various ¢ have been obtained by Elizalde and Noy [2, 3]. For
example, it follows from Theorem 1 that

1
L VB 7924, ETip= —— = 6.926.
2cos(§ +7)

ETi; =e, ETin =

12 =2¢ 123 1 fol g
Adapting Theorem 1 to vincular patterns, one can compute that the expected number
of tosses before the first occurrence of the vincular pattern 123 is ¢¢~! ~ 5.575, and
that this expected numberis ), % ~ 5.091 for any classical pattern of length 3. The
value ET, gives a measure of how easy it is to avoid ¢ in a random permutation. It is
interesting to compare these values for different patterns o.

Probability of seeing one pattern before another

Given two permutations ¢ and 7, we would like to obtain an analogue of Conway’s
formula to compute the probability that o appears before T in X, which we denote by
Pr(c < 7). While it is difficult to find a general formula for arbitrary ¢ and 7, we can
compute these probabilities in specific cases.

For example, we have the following result for the decreasing permutation &; = k(k —
1)...21.

Proposition 2.
1
Pr(12 < &) = o
We also have expressions for Pr(c < 7) for some patterns of length 3.

Proposition 3.

Pr(123 < 132) = Pr(213 < 231) = Pr(312 < 321) = %

Theorem 4. 5
Pr(132 < 231) = # ~ 0476,

Other expressions follow from these using that Pr(t < ¢) = 1 —Pr(c < 7) assum-
ing that neither of the patterns contains the other. Additionally, if ¢ denotes the
permutation such that o; = k+1—o0; for 1 < i < k, then Pr(c < 7) = % and
Pr(c < 1) =Pr(c < 7).

In the case of words, computing the probability that one word occurs before another is
closely related to the expected number of additional tosses to see one word assuming
that the sequence of tosses starts with the other word. For permutations ¢ € Sy and
T € &y, there are multiple different ways to define an analogue of this notion.

One is to define By—,r as the smallest j such that X3, ..., Xy, contains a consecutive
occurrence of T, conditioning on the fact that Xj, ..., Xj is an occurrence of ¢. In other
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words, B,_,r is the number of further steps needed to see 7, assuming that ¢ occurs at
the beginning of X. For example, one can show that EB,_,, = k! for any ¢ € §;. We
can adapt the cluster method from [3] to obtain formulas for EBy,_,s and EBs 1.

On the other hand, a related (but different) random variable, denoted by F,_,, is de-
fined as the number of further steps to see the pattern T after the first occurrence of
o, assuming that ¢ occurs before T in X. We following result shows that the expecta-
tion of the random variables F,_, is closely related to the probability that one pattern
occurs before another, in analogy to Collings” formula [1].

Theorem 5. For any two consecutive patterns o and T,

IEFT_)U + IETT - :[ETU
EF o+ EFr e

Pr(c < 1) =

Giving an expression for EF,_,. for arbitrary patterns is difficult, but we can compute
it in some cases.

Proposition 6.
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MaxiMuM NUMBER OF COMMON INCREASING SUBSEQUENCES OF
SEVERAL PERMUTATIONS

Kento Nakada Okayama University

For given distinct permutations wq, w»,--- ,w, € &, of degree n, we denote by
Inc;(wq, ws, - - -, wy) the set of common increasing subsequences of length I of them,
and by inc;(wq, wy, - - - , Wy, ) its cardinality.

Example 1. For wy = 2134, w, = 3124 € G4, we have

Incy(wq) = {23,24,13,14}, incy(wy) =4,
Incy(wy) = {34,12,14,24}, and incy(wy) =4, and
Incz(wl,wz) = {14,24} incz(wl, ZUz) =2.

Definition 2. For m,n > 1and 0 <[ < n, we put

inc;(n;m) 1= Sren(%f) inc;(S)

if ((fn”) is nonempty. If, on the other hand, (i”) is empty, then we do not define the
value inc;(n; m).

In this talk, we give explicit formulae of inc;(n;m) for m < 4. These formulae are
determined by calculation on the weak right Bruhat order over &,,.

Theorem 3. Letn > 1,m > 1and 0 <[ < n. Then:

1. Form < 3 and n > m, we have

inc;(n;m) = (n ; 1) + (7;:71”)

2. Form = 4 and n > 3, we have

3(1ZD) + (") if n=3,
inc/(m;m) =< 400 ) +40 )+ (Y if4<nand n>20-1.
"D+ if4<n<2—1,

Note that n + 1 = 21 implies (”1_1) + (';:f) = 4(7:;*) + 4(7:;*) + ("74).

The motivation for this study lies in coding theory. In coding theory on deletion
error correction, the reconstruction model is first introduced by V. I. Levenshtein in
[2] and developed by M. Abu-Sini and E. Yaakobi [1], which assumes that a codeword
of some code C is transmitted over m identical noisy deletion channels that output
distinct erroneous words. Our theorem can be used to compute a certain function
that gives the accuracy limit for reconstructing a codeword in their study.
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PATTERN-AVOIDING BINARY TREES AND PERMUTATIONS

Namrata University of Warwick
This talk is based on joint work with Torsten Miitze (University of Warwick)

Pattern-avoidance is a fundamental topic in combinatorics, and in this work we con-
sider pattern-avoidance in Catalan structures, specifically, in binary trees. The study
of pattern-avoidance in binary trees was initiated by Rowland [7], who considered
contiguous tree patterns, i.e., in a pattern match, the tree pattern appears as an
induced subtree of the host tree; see Figure 16 (a). Dairyko, Pudwell, Tyner and
Wynn [2] considered non-contiguous tree patterns, i.e., in a pattern match, the tree
pattern appears as a minor of the host tree; see Figure 16 (b). Non-contiguous tree
patterns are analogous to classical permutation patterns, where matched entries can
be arbitrarily far apart, whereas contiguous tree patterns are analogous to consecutive
permutation patterns, where matched entries must all be at consecutive positions.

tree pattern host trees

(a) contiguous P T
patterns
T contains P

T’ avoids P

(b) non-contiguous @ T U
.“‘.
patterns ./r_\
o b\-

" avoids Q

T’ contains Q

(¢) mixed R "
patterns /:///\_\
T" contains R

T avoids R

Figure 16: Different notions of tree pattern avoidance.

We generalize the two aforementioned types of tree patterns, by considering an ar-
bitrary mix of both types, i.e., each individual edge of the tree pattern can be con-
sidered either contiguous or non-contiguous, independently of the other edges; see
Figure 16 (c). This is analogous to vincular permutation patterns, where some pairs
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of entries are required to be consecutive, and some other pairs not.

Our first result is a bijection between all binary trees with n nodes that avoid any given
set of such generalized tree patterns, and a set of pattern-avoiding permutations of
length n. This avoidance characterization uses mesh patterns introduced by Brandén
and Claesson [1], and the mesh pattern corresponding to a tree pattern is derived from
a simple recursive procedure based on a pre-order traversal of the tree; see Figure 17.
This generalizes the earlier bijection of Pudwell, Scholten, Schrock and Serrato [6] for
non-contiguous tree patterns.

mixed tree pattern equivalent mesh pattern
2 1'3
12
N 11 ¢
3/ -8 ®10
[ e, 9 °
. e §°
4 6 13 7 *
@ o 6
11 5 ®
107 ™12 4
o ° 3 °
2 ]
{

1
°
Figure 17: Mixed tree pattern (left) and equivalent mesh pattern (right).

Our main contribution is to apply this bijection to provide exhaustive generation al-
gorithms for a large variety of pattern-avoiding binary trees, based on our permu-
tation language framework [3]. In particular, we discover many sequences new to
the OEIS [5], along with finding several known sequences. We also provide efficient
implementations of our generation algorithm in C++. This is a continuation of our
earlier work on exhaustively generating pattern-avoiding rectangulations [4].
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A GAME OF DARTS

Andy Niedermaier Jane Street Capital

We introduce a new problem related to permutation patterns and statistics: “mathe-
matical darts”, a game featuring n > 2 equally-skilled players who take turns throw-
ing darts at a dartboard. Initially, the players Pj, ..., P, stand in line before the dart-
board, with P; at the front. When it becomes player P;’s turn, she throws one dart.
If it is closer to the center of the board than every previous dart, she remains in the
game, and goes to the back of the line. Otherwise, she loses immediately and leaves
the line. The last player remaining in line is the winner.

Games of darts can be represented as permutations in S;, — namely, the set of n! — 1
permutations of {1,2,...,n} with at least one descent. We will present some results
of the game for 2,3, and 4 players; introduce some statistics and generating functions
on S); and conclude with conjectures on asymptotic bounds for player P’s chances of
winning.

(No actual darts will be thrown during the talk, we swear.)
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LoNG PATHS, DEEP TREES AND DUAL CYCLES

Michal Opler Charles University
This talk is based on joint work with Vit Jelinek, Jakub Pekdrek

In this talk, we will introduce structural properties of permutations classes defined
via containment of certain grid classes. We show how these properties influence the
structural complexity of permutations from the given class and moreover, that they
imply conditional lower bounds on the hardness of counting permutation patterns.

Definitions

Recall that a monotone gridding matrix is any matrix M with entries from the set
{Av(21), Av(12),@}. We say that a permutation 7t has an M-gridding if its plot can
be partitioned, by horizontal and vertical cuts, into an array of rectangles, where each
rectangle induces in 71 a subpermutation from the permutation class in the corre-
sponding cell of M. The permutation class Grid(M) then consists of all the permu-
tations that have an M-gridding.

Furthermore, we associate to a monotone gridding matrix M a cell graph, denoted by
G, whose vertices are the non-empty entries in M, with two vertices being adjacent
if they belong to the same row or column of M and there is no other non-empty entry
of M between them.

We say that a permutation class C has:

the long path property (LPP) if for every k, C contains a monotone grid subclass
whose cell graph is a path of length k,

the deep tree property (DTP) if there is a constant ¢ such that for every d, C contains
a monotone grid subclass whose cell graph is obtained from a binary tree of
depth d by subdividing every edge at most c times,

the bicycle property (BP) if C contains a monotone grid subclass whose cell graph is
connected and contains at least two cycles.

Structural complexity

We measure the structural complexity of permutations using the tree-width of a par-
ticular graph associated to each permutation. The incidence graph G, of a permutation
7T = my,..., 7y, is the graph whose vertices are the n entries 7y,..., 7,, with two en-
tries 71; and 71; connected by an edge if |i — j| = 1 or |7r; — 71;| = 1. In particular, the
graph G is a union of two paths, one of them visiting the entries of 7t in left-to-right
order, and the other in top-to-bottom order. The tree-width of 7, denoted by tw(7), is
defined as the tree-width of the incidence graph G.
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We remark that tree-width greatly influences the hardness of pattern matching, justi-
tying our choice of tree-width as the measure of structural complexity. In particular,
Berendsohn et al. [1] showed that patterns with bounded tree-width can be found in
polynomial time.

Theorem 1 ([1]). Given a permutation 7t of length k and a permutation T of length n, we can

decide if T contains 7t in time O(n™(0+1),

We are interested in the worst-case behavior in a given class C. To that end, we define
the tree-width growth function of a class C as

twe(n) = max{tw(m); m € CA|n| =n}.
We show that each of the three properties implies a different lower bound on the
tree-width growth function of the given class.

Theorem 2. For a permutation class C we have

e twe(n) € Q(v/n) if C has the long path property,
e twe(n) € Q(n/logn) if C has the deep tree property, and
e twe(n) € ©(n) if C has the bicycle property.
We remark that all of these bounds are asymptotically tight. On top of that, we

conjecture that the long path property exactly characterizes the classes with bounded
tree-width.

Conjecture 3. A permutation class C has unbounded tree-width if and only if it has the long
path property.

Principal classes

We have a full understanding of which properties are attained by principal classes,
i.e., classes defined by a single avoidance pattern, as summarized in the following
table. Note that we list only a single pattern from each equivalence class under the
usual permutation symmetries.

o LPP | DTP | BP tWAv(a)
1,21, 132 X | x | x| e

321 X [ xel/m

3142, 4213, 3412, 4123,41352 | V/ X X | Q(y/n)
All other | v v o0
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Pattern counting

We show that under standard computer-theoretic assumptions there cannot be fast
algorithms for counting patterns from classes with the long path and deep tree prop-
erties. Our lower bounds are based on the well-known and studied Exponential Time
Hypothesis (ETH) of Impagliazzo and Paturi [2] which states that 3-SAT cannot be
solved in subexponential time in the number of variables. Previously, Berendsohn et
al. [1] showed that assuming ETH, there cannot be an efficient algorithm for counting
permutation patterns in general.

Theorem 4 ([1]). Assuming the exponential-time hypothesis (ETH), there is no algorithm
that counts the number of occurrences of 7t in T in time f(k) - n°%/198%) where n is the length
of T and k is the length of 7, for any function f.

We show that similar lower bounds hold even when we restrict the patterns to a class
with the long path or deep tree property.

Theorem 5. Let C be a fixed permutation class. Assuming the exponential-time hypothesis
(ETH), there is no algorithm that counts the number of occurrences of = € C in T in time

o f(k)-n°V®) if C has the long path property, and

o f(k)-nok/ log” k) if C has the deep tree property,

where n is again the length of T and k is the length of 7, for any function f.
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CYCLE STRUCTURE OF RANDOM PARKING FUNCTIONS

J. E. Paguyo University of Southern California

Consider n parking spots placed sequentially on a one-way street. A line of n cars
enter the street one at a time, with each car having a preferred parking spot. The ith
car drives to its preferred spot, 7;, and parks if the spot is available. If the spot is
already occupied, the car parks in the first available spot after 77;. If the car is unable
to find any available spots, the car exits the street without parking. A sequence of
preferences 7T = (711,...,7,) is a parking function if all n cars are able to park.

More precisely, a sequence 7w = (711,...,7,) € [n]" is a parking function of size n if
and only if [{k : m; < i}| > iforalli € [n]. Equivalently, 7 = (my,...,7,) € [n]"
is a parking function if and only if 77;) < i for all i € [n], where (77(y),...,7T(,) is
7 sorted in a weakly increasing order 77(;) < --- < 7). Let PF, denote the set of
parking functions of size n.

Parking functions were introduced by Konheim and Weiss [7] in their study of the
hash storage structure. It has since found many applications to combinatorics, proba-
bility, and computer science, with connections to other combinatorial objects such as
noncrossing set partitions [11], hyperplane arrangements [12], and volume polynomi-
als of certain polytopes [9].

Probabilistic questions have also been considered, but tend to be more complicated
than enumeration problems. Connections between parking functions, empirical pro-
cesses, and the Brownian bridge were discovered in [2]. The asymptotic distribution
of the area statistic was studied in [5] and [6], where it was shown to converge to
normal, Poisson, or Airy distributions, depending on the ratio between the number of
cars and spots. More recently, the distribution of coordinates, descent pattern, area,
and other statistics of random parking functions were studied in [4].

Let u and v be probability distributions. The total variation distance between y and v is
dry(p,v) i= sup |u(A) —v(A)],
ACO

where () is a measurable space. If X and Y are random variables with distributions u
and v, respectively, then we write dry (X, Y) in place of dry (p, v).

Let Cx(7r) be the number of k-cycles in the parking function 7 € PF,. Our main
result gives an upper bound on the total variation distance between the joint distribu-
tion of cycle counts (Cy, ..., Cy) of a random parking function and a Poisson process
(Z3,...,24), where the Z; are independent Poisson random variables with rate %
This partially answers a question posed by Diaconis and Hicks [4].

Theorem 1. Let 7t € PF,, be a parking function chosen uniformly at random. Let Cy = Cy(71)
be the number of k-cycles in 7t and let W = (Cq,Cy, ..., Cy). Let Y = (Y1,Ya,...,Yy), where
{Yy} are independent Poisson random variables with rate % Suppose d = o(n'/?). Then

drv(W,Y) =0 (nd_sd>
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and the process of cycle counts converges in distribution to a process of independent Poisson
random variables,

(C1,Co. ) D (Y, Ya, )

as n — oo,

The proof uses a multivariate Stein’s method with exchangeable pairs. Stein’s method
via exchangeable pairs has previously been used to prove limit theorems in a wide
range of settings. Our limit theorem parallels the result of Arratia and Tavare [1] on
the cycle structure of uniformly random permutations. There is a vast probabilistic
literature on the cycle structure of random permutations, which includes the works
on ordered cycle lengths [10] and a functional central limit theorem for cycle lengths
with connections to Brownian motion [3]. Our work initiates the parallel study of the
cycle structure in random parking functions [5], but further study is fully warranted.
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BooLEAN RSK TABLEAUX AND FULLY COMMUTATIVE PERMUTATIONS

Jianping Pan North Carolina State University
This talk is based on joint work with Emily Gunawan, Heather Russell and Bridget Tenner

Permutations whose reduced words use no repeated simple reflections are called
boolean; they avoid the pattern 321 and 3412 [3]. Fully commutative permutations
are permutations that avoid the pattern 321. We present results on boolean and fully
commutative permutations and on their RSK tableaux.

The Run Statistic and RSK

We represent permutations of &, in one-line notation, as w = w(1)w(2) - - - w(n), and as
reduced words, that is, as shortest products of the {s;}. For example, 51342 (in one-line
notation) in &5 has a reduced word s45;53525451 or [423241] for short.

The RSK (Robinson-Schensted—-Knuth) correspondence is a bijective map between
permutations and pairs of standard Young tableaux of identical shape. Given a per-
mutation w, we denote its RSK insertion tableau by P(w), and its shape by A(w) =
(M (w), Ax(w), ... ). For example, if w = 4132, we have

1[2] 1[3]
P(w) = i and Q(w) = l 7 SO )\1(ZU) =2, /\z(HJ) =1, )L3(ZU) =1
14 E3

A permutation w is fully commutative if and only if A(w) has at most two rows [2].

Our first main result is a concrete interpretation of n — A1 (w) of a permutation w € &,,.
An increasing or decreasing sequence of consecutive integers is a run. We define
run(w) to be the fewest number of runs needed to form a reduced word for w.

Theorem 1. For any w € S, run(w) = n — Aq(w).

For example, the set of reduced words for w = 4132 is {[3231],[3213],[2321]}. From
[321 3] and [23 21], we get run(w) = 2, and indeed n — A (w) =4 —2 = 2.

Boolean Permutations and Canonical Reduced Words

Given a boolean permutation, the following algorithm from [1] will produce a reduced
word with fewest number of runs.

Definition 2. Let w be a boolean permutation, and let [s] be an arbitrary reduced
word for w. The following process will produce the canonical reduced word for w.

1. Let a be the smallest value appearing in [s].
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(a) If a4 1 does not appear in [s], write w = [a]w'.

(b) If a+1 is to the left of a, let b > a + 1 be the maximal value such that
i+ 1 is to the left of i for all i < b. Using commutation relations, write
w=1[bb-1) - -aw'.

(c) If a +1 is to the right of a, let b > a + 1 be the maximal value such that
i + 1 is to the right of i for all i < b. Using commutation relations, write
w=uwa---(b—1)b].

2. If @’ is not the identity permutation, repeat step 1 on an arbitrary reduced word
for w'. If w' is the identity, we are done.

In fact, the above process recovers the second row of P(w), which we denote by
Row; (P(w)).

Theorem 3. If w is boolean, then Rowy(P(w)) = {i+1 | i is the leftmost entry in a run of
the canonical word of w}.

For example, consider the boolean permutation w = 51237486. The canonical word of

wis [4321 65 7], and P(w) = | 1| 2 ]3] 4]6]
5|78

Boolean RSK tableaux

The insertion tableau of a boolean permutation has at most two rows, but not every
such standard tableau is the insertion tableau of a boolean permutation. We character-
ize the 2-row standard tableaux which are insertion tableaux of boolean permutations.

Definition 4. Let S be a set of integers. If, for all integers x > 0 and y > 0, we have
Ily,y +2x]NS| < x+1 (i.e., for every interval I of length 2x, S contains at most x + 1
elements of the interval I), then we will say that S is uncrowded. Otherwise, we say
that S is crowded.

For example, if S contains three consecutive integers, then S is crowded, since all three
integers live in a length-2 interval. (Here x = 1.)

Theorem 5. Let X be a subset of [2,n], and set L := {x —1: x € X}. The set X is equal to
Rowy (P (v)) for some boolean permutation v € S, if and only if L U {0} is uncrowded.

We call a 2-row standard tableau an uncrowded tableau if its second row is uncrowded,
and a crowded tableau if its second row is crowded.

Proposition 6. Let U, be the set of uncrowded tableaux and the one-row tableau with n
boxes, and let X, be the set of 01-words of length n — 1 in which all run-lengths of 1s are
odd. Then U, and X, are in bijection, and they are enumerated by the sequence A028495 in
https: //oeis. org/.
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Fully Commutative Permutations and the Weak Order

Next, we analyze the fully commutative permutations as a subposet of the right weak
order.

The support of a permutation w, denoted by supp(w), is the set of simple reflections
which appear in any reduced word for w.

Proposition 7 (Boolean core for a fully commutative element). Let w be a fully commuta-
tive permutation. Then we can write w = bw', where {(w) = ¢(b) + {(w'), the permutation
b is boolean, and supp(b) = supp(w).

For example, consider a a non-boolean fully commutative permutation w = 456123 =
[321453423]. Then b = 412563 = [32145] and w' = [3423].

Definition 8. The right weak order on &, is a poset structure on &, whose cover
relations are defined as follows: v < w if w = vs; where s; is some simple reflection
and {(w) = ¢(v) + 1.

Proposition 9. If v and w are fully commutative permutations with v < w in the right weak
order, then Row,(P(v)) C Rowy(P(w)).

In the previous example, b = 412563 = [32145] is smaller than w = 456123 =
[321453423] in the right weak order, and we have

1[2[3]6] 1/2]3
45| - P@ =456

P(b) =

Due to Proposition 9, the set of fully commutative permutations whose insertion
tableaux are crowded form a dual order ideal under the right weak order, and a
dual order ideal is generated by its minimal elements. We characterize the minimal
crowded permutations, which involves some vincular permutation patterns.

Theorem 10. Let w be a fully commutative permutation. Then w is minimal crowded if and
only if several conditions are satisfied. One of the conditions is that w contains the pattern
415263 such that every occurrence of the pattern is consecutive.

Theorem 11. Suppose that v and w are fully commutative permutations with w = vs;,
l(w) = l(v) + 1, and s; € supp(v). Suppose P(w) is an uncrowded tableau, then P(w) =
P(v).
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COMBINATORIAL EXPLORATION: AN ALGORITHMIC FRAMEWORK
FOR ENUMERATION

Jay Pantone Marquette University

This talk is based on joint work with Michael H. Albert, Christian Bean, Anders Claesson,
Emile Nadeau, and Henning Ulfarsson.

Since 2016, the Combinatorial Exploration project has sought to develop a rigor-
ous, algorithmic framework to discover combinatorial specifications—from which one
can obtain counting formulas, generating functions, random sampling routines, and
more—for sets of combinatorial objects. While this work was originally focused
specifically on permutation classes, it broadened into a domain-agnostic approach
that can be effectively applied to many different kinds of combinatorial objects. We
have recently released the first article of a series about Combinatorial Exploration [1].

Various aspects of this project have been discussed at several Permutation Patterns
conferences in recent years. This talk will give a broad summary of Combinato-
rial Exploration, with a particular focus on its applications to permutation patterns.
We will also introduce our new website, the Permutation Pattern Avoidance Library
(PermPAL) [2], available at https://permpal.com, which provides a reference data-
base for our enumerative results.

In the next section of this abstract, we give an abbreviated" list of permutation classes
for which Combinatorial Exploration is able to rigorously compute a combinatorial
specification. In the section that follows that, we show heatmaps derived by sampling
uniformly at random from each of the 55 non-finite 2 x 4 classes.

Successes of Combinatorial Exploration in Permutation Patterns

¢ We can find specifications automatically for six out of the seven symmetry
classes of permutations avoiding one pattern of length 4, all but Av(1324). These
include the first direct enumerations of Av(1342) and Av(2413), as previous enu-
merations were via bijections to each other and to other objects. The final class,
Av(1324), currently remains out of reach, but we are optimistic that several not-
yet-implemented strategies may lead to progress.

¢ We can find specifications for all 56 symmetry classes of permutations avoiding
two patterns of length 4. 53 have specifications that allow us to derive their
algebraic generating functions. The remaining three are conjectured to be non-
D-finite, and for these we can derive polynomial-time counting algorithms.

¢ Out of the 317 symmetry classes of permutations avoiding three patterns of
length 4, again we can find specifications for all of them. One is conjectured to
be non-D-finite; for the remaining 316 we find algebraic generating functions.

DA more complete list, including citations to the work mentioned here, can be found in Section 2.4
of [1].
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¢ Similarly, we can find specifications and generating functions for all symmetry
classes avoiding n patterns of length 4 for 4 < n < 24. We have not yet done a
comprehensive search for specifications for classes avoiding only length 5 pat-
terns, although we have found specifications for around 200 of these avoiding
between one and forty patterns.

¢ Bevan, Brignall, Elvey Price, and Pantone found improved lower and upper
bounds on the exponential growth rate of Av(1324) by considering a set of grid-
ded permutations that they called “domino permutations”. The enumeration of
these was challenging, requiring a bijection to a type of arch systems and several
pages of work to enumerate these arch systems. We can find a specification and
the algebraic generating function for the domino permutations.

¢ Defant recently studied the preimage of various permutation classes under the
West-stack-sorting operation, derives that the preimage of Av(321) is Av(34251,
35241,45231), and gives rough bounds on its exponential growth rate, but is
unable to enumerate it. We find a specification that permits us to compute 636
terms in the counting sequence. We are unable to conjecture the generating func-
tion from these terms, and thus we predict that it is non-D-finite. We estimate
that the growth rate is 6 + 2+/5.

¢ Béna and Pantone used Combinatorial Exploration to assist with the study of
five classes avoiding four patterns of length 5, and one class avoiding five pat-
terns of length 6.

¢ Egge conjectured that a group of permutation classes defined by avoiding two
patterns of length 4 and one of length 6 are all counted by the Schroder numbers.
Burstein and Pantone proved one of these conjectures, and then Bloom and
Burstein proved the remainder. We are able to find specifications and generating
functions for all of these classes.

¢ Guo and Kitaev explore the notion of “partially ordered permutations”. We are
able to find specifications for many of the classes they consider.

¢ Alland and Richmond recently showed that for a permutation 7, the Schubert
variety X, has a complete parabolic bundle structure if and only if 7 € Av(3412,
52341,635241). We are able to find a specification with a property that guaran-
tees that this class has an algebraic generating functions, but the system is too
large for us to solve. We can, however, compute the first 400 terms of the count-
ing sequence and conjecture a value for the generating function; it appears to be
algebraic with a minimal polynomial of order 6.

Heatmaps for Permutation Classes

When Combinatorial Exploration finds a specification for a permutation class, it typi-
cally allows us to sample permutations from that class uniformly at random. For each
of the 55 non-finite 2 x 4 classes (up to symmetry), we have sampled one million per-
mutations of length 300 and drawn their plots on top each other to form a heatmap.
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Darker areas of the heatmap indicate that many of the sampled permutations have
entries in this location, while lighter areas indicate that few do.
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OCCURRENCES OF A SPECIFIC PATTERN IN HYPERCUBE

ORIENTATIONS, AKA STATISTICS ON RECIPROCAL SIGN EPISTASIS IN
FITNESS LANDSCAPES

Manda Riehl

Rose-Hulman Institute of Technology

This talk is based on joint work with Lara Pudwell, Nate Chenette, and Reed Philipps

Fitness landscapes help model the theory of adaption, and can be used in applications
from designing antibiotic cycling regimens to finding speciation events and hopefully
in the future, to predicting evolution. In this work we will consider genetic fitness
landscapes abstractly as acyclic orientations of Boolean lattices. We focus on occur-
rences of reciprocal sign epistasis (RSE), which appears in the hypercube orientation
as a set of four edges oriented in a particular way. We computationally study which
combinations of peaks and RSEs are possible, and we determine bounds and limits
on occurrences of RSEs in both single-peaked and multi-peaked hypercube orienta-
tions. Our results can therefore be described as theorems on the joint distribution of
two patterns (peaks and RSEs) in acyclic Boolean lattices, and likewise finding the
maximum number of RSEs can be considered a form of pattern packing. Our main
theorem extends a theorem of Poelwijk to show that any orientation with k peaks
contains at least k — 1 occurrences of reciprocal sign epistasis, or in other words, at
least k — 1 occurrences of a face with no path lengths greater than 1.

We will consider genetic fitness landscapes abstractly as oriented Boolean lattices,
or equivalently oriented hypercubes. Each allele in a genotype is assumed to have
two possible configurations: the wild type (0) and a mutation (1). A genotype can
then be expressed as a bitstring describing which of the two options for each allele is
present. Each genotype has a particular fitness value associated with it, where larger
fitness values are better-adapted. The wild type, represented by the string 000 - - - 0, is
assumed to have the lowest fitness unless otherwise stated.

Under the strong-selection weak-mutation regime, a population is assumed to only
be able to travel from one genotype to a neighbor genotype which differs in only one
allele. Thus we will think of the Boolean lattice Q, as the graph whose vertex set
is labeled with binary words of length n and where two vertices are adjacent if and
only if their labels differ in exactly one bit. In an experimental setting, not all of these
allele combinations would exist as viable genomes, however we can consider those as
occurring in the landscape but having low enough fitness that they would never fix
in a population.

While Crona et al. [2] mostly worked with these lattices using the fitness values, we
use the values to assign each edge a direction (adjacent genotypes are assumed to
have different fitness values) and consider the directed Boolean lattice (hypercube).
Note that these orientations must be acyclic, or a genotype would have higher fitness
than itself. Accordingly we define a peak to be a vertex which has no edges directed
away from itself, and a valley to be a vertex with all of its adjacent edges directed away
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from itself. (In other fields those would be called sinks and sources respectively.) We
can then use the directed edges to examine whether reciprocal sign epistasis exists
on a face of the lattice, without considering the strength of that epistasis. Figure 18
shows the three different categories of faces, with both directed edges and vertices
labelled with hypothetical fitness values. If we imagine that the lowest vertex in
each diagram is wild type 00, and the topmost vertex is 11, then we see that no sign
epistasis corresponds to two beneficial mutations resulting in more benefit than either
single mutation. A casual way of expressing this would be “good + good = better". An
example of sign epistasis, the center diagram, is when both mutations are beneficial,
but exactly one of the single mutations is more beneficial than having both mutations
occur. Casually we might describe this as “good + good = better than one but not
the other". Reciprocal sign epistasis (commonly abbreviated as RSE), the rightmost
diagram, is when both single mutants are more fit than the double mutant. Casually
we might say “good + good = worse".

oée 0§9 eée

Figure 18: From left to right: no sign epistasis, sign epistasis, reciprocal sign epistasis;
vertices are labeled with fitness values.

Note however, that these examples assume that the single mutants are both benefi-
cial. We can also have no sign epistasis with deleterious (negative impact on fitness)
mutations, or a combination of beneficial and deleterious mutations. In these cases,
it is often easier to just consider the maximal paths in the faces in order to determine
whether there is sign or reciprocal sign epistasis. No sign epistasis faces have two
paths of length 2. Faces with sign epistasis have one path of length 1 and one path
of length 3. Faces with reciprocal sign epistasis have four paths of length 1. Thus
our biological question about RSEs can be rephrased in terms of occurrences of four
maximal paths of length 1 on a face of an acyclic orientation of a hypercube.

Figure 19: A 3-cube with one peak (red) and one RSE (edges highlighted in black);
vertices are labeled with fitness values.

Our primary focus is on which combinations of peak counts and RSE counts are pos-
sible, in other words the nonzero entries in the joint distribution of the two patterns
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peak and RSE. For example, the 3-lattice in Figure 19 has one RSE and one peak.
Many of our arguments rely on building larger lattices from smaller lattices with
known numbers of RSEs and peaks, and using a variety of “gluing methods" to com-
bine lattices. We list some of our results below as a sample. In all of our reported
results, we force the wild state to be a valley, fixing the orientation of its n edges
outward. Our first three results below all relate to the pattern-packing question: the
maximal number of RSEs in a single-peaked lattice.

Results

Theorem 1. Single-peaked n-dimensional lattices exist with r,, RSEs, where

ra=2"3(n*—5n+8) —1. (1)

Notably, the most significant term in this expression is 2”312, The number of faces
in a n-dimensional lattice can be written as 2"~3(n? — 1), which has the same most
significant term. This means that, in high enough dimensions, an arbitrarily large
proportion of the faces in a lattice can be RSEs while still having only one peak.

Theorem 2. A single-peaked n-dimensional lattice cannot have more than
2" 3(n? —n—2|n/2)) ()
RSE faces.

Conjecture 3. The maximum number of RSEs in a single-peaked n-dimensional lattice is
2"=3(n? —4n +4).

4 | 5 6 7 8

7 |31 ] 111 | 351 | 1023
8 | 36 | 128 | 400 | 1152
6|64 |192 | 576 | 1536

n
Lower bound (known to be possible)
Conjectured maximum
Upper bound (more is impossible)

O O O
= =W
—_

Table 4: The values provided by Theorems 1 and 2 and Conjecture 3 for small n.

Theorem 4. In any dimension, a lattice with k peaks contains at least k — 1 RSEs.

Theorem 5. For n > 4, an n-dimensional lattice with 2"~ 1 — (n — 1) peaks can have
2"=2(1) — (3) RSEs but not 2"~2(;) — () — 1 RSEs.

Theorem 6. For n > 4, if an n-dimensional lattice has at least 2"2(}) — (n — 1) — (n — 2)
RSEs, then it must have exactly:

o 2"72(7) (every face),
o 2" 2(0) —(n—1),0r
22— (n-1)— (1—2)

RSEs.
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STIRLING NUMBERS OF TYPE B

Bruce E. Sagan Michigan State University
This talk is based on joint work with Joshua Swanson

Let [n] = {1,2,...,n} and Z be the integers. If 7 = 71y ... 7, is a permutation in the
symmetric group &, then an inversion of 7 is a copy of the pattern 21. Equivalently,
an inversion of 77 is a pair of indices (7,j) with i < j and 71; > ;. We let inv 7t be the
number of inversions of 7r. If g is a variable, then we have the following well-known

generating function ‘
Z qlnvn' — [n]q! (1)
nes,

where [n], =14 ¢+ -+ 4" ! is the standard g-analogue of n and
[n]y! = [1]4[2]4 - - - [n]4. So equation (1) is a g-analogue of the fact that #&, = n!.

It is also possible to study g-analogues of the the Stirling numbers using inversions.
Let S([n], k) be the set of all partitions p of [n] into k subsets B, ..., B, called blocks.
We write p = By/ ... /By for such a partition. The Stirling numbers of the second kind
are S(n, k) = #S([n], k) where the hash symbol denotes cardinality. These numbers
can also be defined by the initial condition S(0,0) =1 and, for n > 1,

S(n,k)=S(n—1,k—1)+kS(n—1,k) ()

where S(n,k) = 0if k < 0 or k > n, conventions that we will continue to use for the
other objects defined below. The Stirling numbers satisfy many interesting identities.

The g-Stirling numbers S[n, k] were introduced by Carlitz. They can be defined by
S[0,0] =1and, forn >1,

S[n, k] = S[n — 1,k — 1] + [k]4S[n — 1,k].

Wachs and White defined four inversion-like statistics on restricted growth functions
whose generating functions are the S[n, k] or a closely related g-analogue. One of
them, when translated into the language of set partitions, can be expressed as follows.
We will write all of our partitions p = B;y/... /By in standard form meaning that
1 =minB; <... < min By. An inversion of p is a pair (b, B;) such that

1. b € B; for some i < j, and

2. b > min Bj.

Letting inv p be the number of inversions of p, one can then prove

Y ™ =S,
peS([nlk)
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Similarly, there are the signless Stirling numbers of the first kind, c¢(n, k), which count the
number of permutations in &, which have k cycles in their disjoint cycle decomposi-
tion. They satisfy ¢(0,0) = 1 and

cnk)=cn—1,k=1)+ (n—1)c(n—1,k)

for n > 1. A g-analogue can be constructed in the obvious way. And there is an
inversion statistic on disjoint cycle decompositions of permutations (as opposed to
the one-line notation used above) whose generating function gives these polynomials.

In order to define type B analogues of these Stirling numbers, it will be convenient to
look at them from the viewpoint of posets (partially ordered sets). Let P be a finite
poset with a unique minimum element 0. Suppose also that P is ranked, meaning
that for any x € P the lengths of all saturated chains from 0 to x are the same. This
common length is called the rank of x and denoted rk x. We also let Rk(P, k) be the set
of all x € P with rkx = k. The Whitney numbers of the second kind for P are

W(P, k) = #Rk(P, k).

To define the Whitney numbers of the first kind, we need the (one-variable) Mobius
function of P which is the function y : P — Z defined recursively by 1#(0) = 1 and

u(x) =—Y uy)

y<x

for x > 0. Then the Whitney numbers of the first kind for P are

w(P, k) = Z u(x).

x€RK(P k)

Now consider the partition lattice, IT,, consisting of all partitions p of [n] ordered by
refinement. It is immediate that W(I1,, k) = S(n, k) and can be proved that w(I1,, k) =
s(n,k) where s(n,k) = (—1)""*c(n, k) are the (signed) Stirling numbers of the first
kind. If G is a Coxeter group then let L(G) be G’s intersection lattice. It is well known
that I1, is isomorphic to this lattice for the Coxeter group A,_1. So define Stirling
numbers of type B by

SB(n,k) = W(L(B,),k) and sB(n,k) = w(L(B,),k)
where B, is the type B Coxeter group of rank n.

As an example, it follows from Zaslavsky’s theory of signed graphs that the S(n, k)
count partitions of the following type. A type B partition is a partition of the set

(ny:={-n,-n+1,...,n—1,n}

of the form
p=DBo/Bi1/By/ .../By

which satisfies
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1. 0 € By and if i € By then —i € By, and

2. fori > 1 we have By; = —B»;_,

where —B = {—b | b € B}. Letting Sg((n),k) denote the set of all B, partitions
with 2k + 1 blocks one can show that SB(n, k) = #Sg((n), k). From this description, it
follows that we have S?(0,0) = 1 and

SB(n,k) =SP(n—1,k—1)+ (2k+1)SP(n — 1,k).

One can now define a g-analogue S®|[n, k] by replacing the factor 2k + 1 by [2k + 1],.
We have found an inversion statistic on type B partitions whose generating function is
SB [n, k]. Further, we have been able to prove that these objects, as well as correspond-
ing ones for Stirling numbers of the first kind, have many interesting properties. In
particular, we calculate their ordinary and exponential generating functions, show
that they can be expressed in terms of elementary and complete homogeneous sym-
metric functions, and discuss their relationship with a recent conjecture of Zabrocki
about super diagonal covariants.
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ON COMBINATORIAL MODELS OF AFFINE CRYSTALS

Adam Schultze Saint Olaf College
This talk is based on joint work with Cristian Lenart and Carly Briggs

We biject two combinatorial models for tensor products of (single-column) Kirillov-
Reshetikhin crystals of any classical Lie type A — D: the quantum alcove model, which
is based on a variation of the Bruhat graph of (signed) permutation groups, and the
tableau model. This allows us to translate calculations in the former model (of the
energy function, the combinatorial R-matrix, keys, etc.) to the latter, which is simpler.

Introduction

Kashiwara’s crystals are colored directed graphs encoding the structure of certain
bases, called crystal bases, for representations of quantum groups, as the quantum pa-
rameter goes to zero. Kirillov-Reshetikhin (KR) crystals are finite dimensional crystals
corresponding to certain affine Lie algebras. In classical types, there are (type-specific)
models for KR crystals based on fillings of Young diagrams. While they are simpler,
they have less easily accessible information; so it is generally hard to use them in spe-
cific computations: of the energy function (which induces a grading on KR crystals),
the combinatorial R-matrix (the unique affine crystal isomorphism interchanging ten-
sor factors), etc. On the other hand, these computations are more easily carried out in
the quantum alcove model where the vertices of the crystal graph are given by certain
chains the the corresponding quantum Bruhat graph. Thus, our goal is to translate
these computations to the tableau models, via an explicit bijection between the two
models.

The map from the quantum alcove model to the tableau model is a “forgetful map”,
while the inverse map is nontrivial. In this talk we extend the previously known
bijections in types A and C to types B and D. There are significant complications
in constructing the new inverse maps, which we address by considering a new con-
cept and modifications in the algorithms, primarily through a permutation pattern
avoidance.

Background

Consider a finite root system with positive roots ®* and let W be the corresponding
Weyl group. Let p be the half sum of positive roots. Recall that W is the symmetric
group for root systems of type A and certain signed permutation groups for root
systems of types B,C,D. The length function on W is denoted by ¢(-). The Bruhat
order on W is defined by its covers w < ws,, for £(ws,) = ¢(w) + 1, where a € .

Definition 1. The quantum Bruhat graph QBG(W) on W is defined by adding down-
ward edges, denoted w < ws,, to the covers of the Bruhat order, i.e., its (labeled) edges

are w = ws, if w<ws, or L(ws,) = L(w) —2{p,a") +1, wherea € ®F.
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Figure 20: The quantum Bruhat graph for Ss, the Weyl group for the root system A,.
The classical Bruhat edges are in black and the quantum edges are in red.

Remark 2. The vertices for KR crystals in the quantum alcove model are indexed by
certain paths in the quantum Bruhat graph.

Remark 3. The vertices for KR crystals in the tableau model are realized in terms of
Kashiwara-Nakashima (KN) columns of height k. These are strictly increasing fillings
of the column with entries {1 < 2 < ... < n} in type A,_1, and entries {1 < ... <
n<0<n<..<1}in types B, Cy, and D, with some additional conditions.

Mapping the quantum alcove model to the tableau model

To map between these two models, we use the following convention for filling a
column with a given permutation as well as for assigning a permuation to a given
column filling.

1. Given a permutation w = wijwows ... wy,, we fill a column of height k < n with
the letters wyw, . .. wy.

Example 4. Consider the permutation 35421. We would then fill the column of

height 3 as follows: .

2. Given a filling of a column C of height k, we build a permutation on 7 letters by
listing out the values of the column and then concatenating the unused letters
in increasing order.

2
Example 5. Given the column , the permutation on 5 letters associated to it

would be 25413.
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There are certain stopping points in the quantum Bruhat graph paths that are deter-
mined by the choice of crystal. By considering the permutations at these stopping
points as fillings of columns and then reordering the columns increasingly, we get a
map from the vertices of the quantum alcove model to the tableau model.

Theorem 6. This map is an affine crystal isomorphism between the quantum alcove model
and the tableau model for KR crystals.

In type A, the inverse map is given by two algorithms: reorder, which is the inverse
of having sorted the columns increasingly, and path, which maps the resulting filling
(now viewed once again as a permutation) back to a path in the quantum Bruhat
graph. Similar algorithms work for type C. In types B and D, these algorithms both
fail unless we include a certain pattern avoidence between two columns, referred to

as being blocked-off.
Definition 7. We say that two columns C = (l,l,...,Ix) and C' = (rq,72,...,7¢) are
blocked off at i by b := r; if and only if the following hold:

1. |li| < b <k, where |[;| = b if and only if [; = b;

2. {1,2,..,b} C {|lh], |l2|, ..., |li|} and {1,2, ..., b} C {|r1],|r2], .., |7l };

3. {j:1<j< i,lj<0,r; > 0}] is odd.

Example 8. The following columns, considered as fillings from signed permutations,
are blocked-off at row 4 by the value 3:

el =
[l or[—
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PATTERN-AVOIDING INVOLUTIONS AND BROWNIAN BRIDGE

Erik Slivken University of North Carolina Wilmington
This talk is based on joint work with Christopher Coscia

In this talk, we show that 321-avoiding involutions convergence in some appropriate
sense to Brownian Bridge.

The limiting shape of 321-avoiding involutions

Let 7v,,(321) denote the involutions of size n that avoid the pattern 321. The asymp-
totics for fixed points of permutations sample uniformly from Zv, (321) were explored
in [2]. This talk will focus on the asymptotic shape of such permutations.

Let W, denote the collection of Simple Random Walk Bridges that start at (0, —1/2)
and end at (1, (—1)"1/2). Finally let b be the Brownian bridge from (0,0) to (1,0).

A somewhat classic result (see, for example, [1] is that for w € W,

) 1
O

where the convergence is in distribution with respect to the appropriate topology.

Utilizing a bijection between Zv,(321) and W, we show that for 7 € Zv,(321) chosen
uniformly at random,

2 (7([081) = [n))gpy —a (Blocrcr

where again the convergence is in distribution with respect to appropriate topology.
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SHUFFLE SORTING PERMUTATIONS

Rebecca Smith SUNY Brockport
This talk is based on joint work with Lara Pudwell

We introduce four new, but related sorting algorithms.

Introduction

There are many well-known sorting algorithms that can be applied to permutations.

Definition 1. A sorting function is a function f : Sy — Sy such that for all © € Sy,
there exists i € Z such that f'(7r) =123 - n.

In classifying our sortable permutations, the use of ascents and/or descents to de-
scribe these permutations is often helpful.

Definition 2. An ascent of permutation 7 is an index i where 7; < 741, while a
descent is an index i where 71; > 7T;11.

The new sorting functions we developed are motivated by shuffling cards. A common
way to shuffle is to cut a deck into two non-empty parts and then to riffle the two
parts together, so that each part remains in order, but the two parts are interleaved.
In practice, a deck can be cut anywhere, and a riffle may interleave the two parts of
the deck in many different ways.

To create shuffling algorithms that are both well-defined and sorting functions, we

¢ Determine where the cut is made and

* Create rules on how to riffle the parts.

In all four algorithms, the cut will be made immediately following the longest in-
creasing prefix of the permutation. We will use the following notation. Given a
permutation 7t with first descent at 71,1 > 7;, let 7/ =y -y and 7 = 71; - - - T

What varies is what priorities we take when riffling the two parts back together and
whether we keep the second part of the permutation in the original order or if we
reverse it. When we cut a deck and riffle it together, we may view this as a system of
two queues. When we cut a deck, then reverse the second half before riffling, this acts
a system of a queue and a stack.

Definition 3. A stack is a last-in, first-out data structure with push and pop operations.
A queue is a first-in, first-out data structure.
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Shuffle algorithms with the order of the second part retained

Our first two algorithms simply based on a cut-and-riffle shuffle algorithm. In both
cases, the permutation is cut after the longest increasing prefix. However, we use
two different conventions governing the riffle that interleaves the two parts. The
Prefix-Preserving Shuffle (PRE) prioritizes keeping all of the original prefix as part
of the maximum increasing prefix of the newly shuffled permutation. The Minimum
Shuffle (MIN) instead prioritizes shuffling so that smaller entries appear before larger
entries whenever possible.

While the intermediate outputs may be different for these two algorithms, the per-
mutations that require exactly k iterations of algorithm PRE to be sorted are exactly
the same as the permutations that require exactly k iterations of algorithm MIN to be
sorted. Indeed any combination of the two algorithms implemented a total of k times
will also sort these same permutations.

Proposition 4. For any permutation 7t is sorted to the increasing permutation after exactly
des(7r) iterations of algorithm PRE or after exactly des(t) iterations of algorithm MIN.

Corollary 5. The number of permutations in S, that are sortable after exactly k passes of
algorithm PRE or the algorithm MIN is given by the Eulerian numbers (OEIS A008292).

Shuffle algorithms with the order of the second part reversed

While the two previous algorithms were relatively straightforward to analyze, in this
section, we consider two new algorithms (PRE-REV) and (MIN-REV) which act as
algorithms PRE and MIN respectively, but where the second part of the original per-
mutation is reversed before being interleaved with the longest increasing prefix.

The following proposition can be shown by verifying the increasing prefix increases in
length with each iteration of the algorithm until the identity permutation is reached.

Proposition 6. Algorithm PRE-REV is a sorting function.

With the following definition, we can characterize the permutations requiring k itera-
tions of PRE-REV to sort.

Definition 7. Define prefix-suffix decomposition of 7 as follows: Let 1) = 7/ =
7y -+~ ;1 be the longest increasing prefix of 7t and let 77¢*() = (71)"** be the re-
versal of 7; - - - 71,.

If 777°°(1) is empty, then we are done.
Otherwise, given 711, ..., 79, set 1(’+1) to be the longest increasing prefix of 77¢°(*)
and recursively define 777°?(/+1) to be the reversal of the remaining digits.

Theorem 8. Consider t € S,,. If there are k 4 1 parts in the prefix-suffix decomposition of
7t, then algorithm PRE-REV requires k iterations to sort t.
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The algorithm MIN-REV is seems to be the most difficult of the four algorithms to
handle in general, but we can classify sortable permutations based on placements of
ascents and descents.

Theorem 9. Consider a non-identity permutation 7t € S,. Suppose there are d descents before
n and a ascents after n. Then 7t requires exactly max(2d,2a + 1) applications of MIN-REV
to be sorted.

Note that both PRE-REV and MIN-REV sort exactly the unimodal permutations with
one iteration, but unlike the PRE and MIN algorithms, this commonality in the case
of k = 1 does not extend to more applications of the algorithms.
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UNIMODALITY OF J-TWOTORIALS VIA ALTERNATING GAMMA VECTORS

Jordan Tirrell Washington College
This talk is based on joint work with Gabriel Johnson, Chloe Sass, and Max Tucker

We study the polynomials (1+4g)(1+4¢2)(1+4%) - - - (1+4"), which we call g-twotorials.
These are symmetric and unimodal polynomials which are closely related to the g-
factorials [n],! = (1+¢q)(1+q+4%) - (1+q+---+q"").

Question 1. Is there a combinatorial proof that the g-twotorials are unimodal?

We want to make progress on this question by exploiting the fact that they have alter-
nating y-vectors. We give a technique that provides an affirmative answer to Question 1
for all n < 25 except 11, 13, 16, and 19, and hopefully provides a foothold for future
progress. Our approach also works for some infinite families of cases of a more gen-
eral question (Question 2 below). The combinatorial interpretation requires objects
we call g-trees. These come from lists of permutations that can be arranged into a
binary tree. For example, let 7T be the following list.

1234
1243
1324
1324

We can draw this as a binary tree with root 1, having two children 2 and 3, themselves
each having two children, (34 and 43) and (24 and 24), respectively. We hope further
study of these permutations and g-trees can provide insights towards our main ques-
tions.

Introduction

A polynomial is called symmetric or palindromic with palindromic degree d if it has the
form f(q) = ap +a1q + - - + azq" where a; = a;_; for all 0 < i < d. We say f(q) is
unimodal if ag < --- < g > --- > ay forsome 0 < k < d.

Unlike the g-integers [n], = 14+ g+ --- +q""!, the factors 1 + g" of g-twotorials are
not unimodal in general. So while unimodality of g-factorials follows immediately
from the unimodality of the factors and the fact that unimodality is preserved by
products, the unimodality of g-twotorials is harder to establish. It is proven [3], but
not combinatorially. Also unlike the g-factorials, similar products like (1 + ¢)(1 +
q7)(1 + g°) are not unimodal. This suggests we expand our search. First we need to
mention that a palindromic f(g) can be written in the form

|d/2] ' i
flg)=Y gqd(+q+---+4"7%),
=0
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where ¢ = (8o, .-.,8|4/2)) is called the g-vector of f(q). Unimodality is equivalent to
non-negativity of its g-vector.

Question 2. Given a composition « = (a1, ...,a,) & d, consider the palindromic polynomial
(T+g") (1 +4%) - (1+4").

Is there a cancellation-free combinatorial interpretation of the g-vector?

We follow a roadmap laid out by Brittenham, Carroll, Petersen, and Thomas [1]. A
palindromic f(g) can also be written in the form

|d/2]
Z')/l 1+qd21

where v = (Yo0,...,7a/2)) is called the y-vector of f(q). These have some nice prop-
erties. Unlike g-polynomials, the vy-polynomials y(f;z) = Y7,z are multiplicative,
v(fg;z) = v(f;2)v(g;z). Both the g-integers and g-twos have y-vectors that alter-
nate in sign. This is preserved by products, so all polynomials we have mentioned
have alternating -y-vectors. They also have nice combinatorial interpretations using
domino tilings, as do many other alternating y-vectors [2]. The linear transformation
from <y-vectors to g-vectors is given by a matrix of ballot numbers, counted by ballot
paths. The strategy suggested in [1] is therefore to combine these domino tilings and
ballot paths to give a combinatorial interpretation for the g-vectors. We do exactly
this, and in some cases we are able to show it is cancellation-free.

Results

Formally, a binary tree of permutations of n > 1 is a list of 2"~2 permutations of n, say
it = (my, 70, ..., T2) such that 7, = 71;, when [i/2"7¥"1] = [j/2"~%71]. Here
i indicates the kth entry of the ith permutation. So for n = 3 there are the 12
pairs of permutations of 3, with each pair agreeing on their first entry (for example,
(123,132)). In general, the number of binary trees of permutations of 7 is

n-(n—1>2n-2)%...32""22"
We call a binary tree of permutations synchronous when each permutation is the same.

Roughly, a g-tree is obtained by applying 7 to a composition a (which may have mul-
tiplicities), assigning + signs to entries of each permutation, and removing anything
with a partial sum of zero. If we chose /& well, all partial sums may remain positive
and we would have a positive g-tree and a combinatorial proof of unimodality.

Formally, to define a g-tree for a - d, we begin with 77. For 1 <i < 2" we define

)1+[i/2”*’ﬂ‘

P;=(1,€i10n €inlty €inln ) where €;; = (—1

[i/4]17 [i/4127 "/ [i/4]n

Our g-tree is then defined as
T := T(a; 1) := {P,; : no partial sum is zero}.

We say T is a positive g-tree if no remaining partial sums are negative.
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Theorem 3. Given any positive g-tree T for a = d, we can interpret the g-vector of (1 +
g (A +q%2) - (14 q") as

gi=#HPeT:sum(P)=d—-2i+1},

which immediately leads to a combinatorial proof of unimodality.

In some cases it is not difficult to find positive g-trees.

Proposition 4. Given a composition of the form a« = (1,2,4,.. .,2k_1,(xk+1, ce, ) Fod,
there is a positive g-tree of o beginning +1+1+2+4+ - - - +251 with size 2% or 2% — 1
if and only if
n
E [ < 2k.
i=k+1

Moreover a corresponds to a synchronous g-tree.

For small n, we summarize our progress so far in Table 5.

4 5 6 7 8 9
13 42 149 653 3369 21304
13 41 145 626 3203 20047
13 40 141 595 3019 18831
13 37 121 477 2328 14328

len o ‘
(I14+44)--- (14 g*) unimodal
« has a positive g-tree

« has a synchronous pos g-tree
Proposition 4 applies

[N U Y |
N DNDND NN
g1 O1 U1 Q1| W

Table 5: Number of partitions with given length and properties.
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CONNECTIONS BETWEEN PERMUTATION CLUSTERS AND
GENERALIZED STIRLING PERMUTATIONS

Justin M. Troyka California State University, Los Angeles
This talk is based on joint work with Yan Zhuang

Permutation clusters are studied in the context of consecutive patterns in permuta-
tions, in the cluster method of Elizalde and Noy [2] which counts the permutations
avoiding a given consecutive pattern. We count 2134...(r 4+ 1) clusters according to
inverse descent number and according to inverse peak number, and we find connec-
tions to the r-Stirling permutations and rth-order Eulerian polynomials of [4, 3] and
the (1/2)-Eulerian polynomials of Savage and Viswanathan [5].

From these results, we can count the permutations avoiding the consecutive pattern
2134...(r+1). This is made possible using Zhuang’s [7] new analog of the cluster
method that applies to the Malvenuto-Reutenauer algebra of permutations, an alge-
bra which generalizes the symmetric functions, quasisymmetric functions, and non-
commutative symmetric functions. Applying various homomorphisms to this new
cluster method recovers Elizalde and Noy’s cluster method and Elizalde’s [1] g-analog
which counts according to inversions, and it also yields several other new permutation
cluster methods refined by various permutation statistics. The ones refined by inverse
descent number and inverse peak number allow us to count the pattern-avoiding
permutations according to these statistics, directly from our enumeration of clusters.

Definitions and notation

Given a permutation 7t:

e the descent number of 7t is des(rt) = #{j: n(j) > n(j+1)};
e the peak number is pk(rt) =#{j: n(j —1) < n(j) > n(j+1)};
e the inverse descent number of 7 is ides(7t) = des(7t!);

o the inverse peak number of 7 is ipk(7) = pk(mw~1).

Forr > 2 and k > 1, we say 7 € Sy is a 2134...(r + 1) cluster if for every i the
consecutive pattern 7t(ri + 1) 7t(ri 4+ 2) ... 7(ri +r + 1) has the same relative order
as 2134...(r +1). We define P to be the set of permutations 7w € Syx;1 such that
mlisa2134...(r + 1) cluster, and we define P = | |~ Px (with the convention that
Py = {1}). In these definitions, the 7 is fixed but suppressed from the notation. Our
study is primarily concerned with the enumeration of 2134 ... (r + 1) clusters refined
by ides and refined by ipk. Our primary focus is the distribution of ides and of ipk
on 2134...(r + 1) clusters, or equivalently the distribution of des and of pk on P.
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An r-Stirling permutation of degree k is a permutation p of the multiset {1”,...,k"} such
that the values between two t’s are all at least ¢; that is, if # < b < ¢ and p(a) = p(c),
then p(b) > p(a). We write Qy to denote the set of r-Stirling permutations of degree
k, and we define Q = | |~ 9k as the set of all r-Stirling permutations. Again, the r is
fixed but suppressed from the notation. Given an r-Stirling permutation p:

e the descent number of p is des(p) = #{j: p(j) > p(j+1)};
e the plateau—descent number of p is plde(p) = #{j: p(j — 1) = p(j) > p(j+1)}.

Let st: P — IN be a statistic on permutations in P. For i € IN, we define
P(k,i) = #{mr € Py: st(m) =i};

that is, IPS'(k,7) is the number of permutations in Py whose st value is i. Similarly, if
st: Q — Z is now a statistic on r-Stirling permutations, then we define

g (ki) = #{p € Qi: st(p) = i};

that is, g%(k, i) is the number of r-Stirling permutations of degree k whose st value is
i. By convention, we set IP!(k,7) = 0 and ¢%'(k,i) = 0 if i is a negative integer.

Main results

Recall the classical recurrence relation on the Eulerian numbers A(n,1):
Ami)=iAn—-1i)+(n—i+1)A(n—1,i—1)

(see e.g. [6, Sec. 1.4]). Since A(n,i) is the number of length-n permutations with
i — 1 descents, the recurrence relation can be proved combinatorially by looking at
where the value # is inserted into a length-(n — 1) permutation and whether it creates
a new descent. We have established the same kind of recurrence relation for the
numbers P4¢(k, i) and q¢(k, i), using the same method of proof as for the Eulerian
numbers. In fact, we have shown that the recurrence relation for ]Pdes(k, i) is exactly
the same as for q9°(k,i) (but with i shifted by 1), from which it will follow that
Pdes(k,i +1) = gdes(k, ).

Proposition 1. If r > 2and k > 1 and i € Z, then
Pees(k,i) = iPYS(k—1,i) + (rk —r —i +2) P9 (k — 1,i — 1).

Next, we proved the result for 9¢(k, i) with a straightforward generalization of the
elementary counting argument used by Gessel and Stanley [4] to prove the r = 2 case:

Proposition 2. If r > 2 and k > 1 and i € Z, then

gl (ki) = (i+1) g% (k—1,i) + (rk —r —i4+1) g% (k- 1,i — 1).
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From these (and suitable base cases) we immediately obtain:

Theorem 3. If r > 2 and k > 0 and i € Z, then P(k,i +1) = q9¢(k,i); that is,
the number of permutations in Py with i + 1 descents is equal to the number of r-Stirling
permutations of degree k with i descents.

The same type of recurrence relations for IPPX(k, i) and gP!9¢(k,i) allow us to obtain
the analogous result for peaks on P and plateau—descents on Q:

Theorem 4. If r > 2and k > 0 and i € Z, then PPk (k, i) = qplde(k, i); that is, the number
of permutations in Py with i peaks is equal to the number of r-Stirling permutations of degree
k with i plateau—descents.

Further considerations

The numbers p9s(k,i + 1) = q9¢5(k, i) are the rth-order Eulerian numbers, introduced by
Gessel [3] in the context of r-Stirling permutations. For r = 2, the numbers pP¥(k, i) =
gP'9¢(k, i) are the (1/2)-Eulerian numbers, introduced by Savage and Viswanathan [5].
Unfortunately, we do not get the (1/r)-Eulerian numbers for r > 3.

By taking the reverse, the complement, or the reverse—complement of 2134... (r +
1) clusters, we obtain results on (r +1)...4312 clusters, r(r +1)(r —1)(r —2)...1
clusters, and 1...(r —2)(r — 1)(r + 1)r clusters, which translate in a straightforward
way from our results on 2134... (r 4+ 1) clusters.
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THE SHALLOW PERMUTATIONS ARE THE UNLINKED PERMUTATIONS

Alexander Woo University of Idaho

There are many measures for how far a given permutation w € S, is from being the
identity. The most classical are length and reflection length, which are defined as
follows. Let s; denote the adjacent transposition s; = (i i + 1) and t;; the transposition
tii = (i j). The length of w, denoted /(w), is the smallest integer ¢ such that there
exist indices iy, ...,i, with w = s;, - - -s;,. It is classically known that the length of w is
equal to the number of inversions of w; an inversion is a pair (4, b) such thata < b but
w(a) > w(b). The reflection length of w, which we will denote ¢7(w), is the smallest
integer r such that there exist indices 7y, ...,i, and ji, ..., jy withw = #;; - - - t; ;. It is
classically known that ¢7(w) is equal to n — cyc(w), where cyc(w) denotes the number
of cycles in the cycle decomposition of w.

Another such measure is total displacement, defined by Knuth [4] as

td(w) = Y1 ; |w(i) — i| and first studied by Diaconis and Graham [?] under the name
Spearman’s disarray. Diaconis and Graham showed that ¢(w) + {7(w) < td(w) for
all permutations w and asked for a characterization of those permutations for which
equality holds. More recently, Petersen and Tenner [6] defined a statistic they call
depth on arbitrary Coxeter groups and showed that, for any permutation, its to-
tal displacement is always twice its depth. Following their terminology, we call the
permutations for which the Diaconis—-Graham bound is an equality the shallow per-
mutations.
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Figure 21: Knot diagram for w = 7563421

In a recent paper, Cornwell and McNew [1] interpreted the cycle diagram of a permu-
tation as a knot diagram and studied the permutations whose corresponding knots
are the trivial knot or the trivial link. Given a permutation w, to obtain the cycle
diagram, draw a horizontal line between the points (i,i) and (w~!(i),i) for each i and
a vertical line between (j,j) and (j,w(j)) for each j. Turn the cycle diagram into a
knot diagram by designating every vertical line to cross over any horizontal line it
meets. For example, Figure 21 shows the knot diagram for w = 7563421. They say
that a permutation is unlinked if the knot diagram of the permutation is a diagram
for the unlink, a collection of circles embedded trivially in R3. In their paper, they
mainly consider derangements, but it is easy to modify their definitions to consider
all permutations by treating each fixed point as a tiny unknotted loop.

Our main result is the following:

Theorem 1. A permutation is shallow if and only if it is unlinked.
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Readers can check that Figure 21 shows that the diagram of w = 7563421 is a diagram
of the unlink with 2 components, and ¢/(w) = 19, /7(w) = 5, and td(w) = 24, so
l(w) + br(w) = td(w).

Using this theorem and further results of Cornwell and McNew [I, Theorem 6.5],
we obtain a generating function counting shallow permutations. Let P be the set of
shallow permutations, and let

o]

Gx)=Y) ) «"

n=0PNS,
Then G satisfies the following recurrence.

Corollary 2. The generating function G satisfies the following recurrence:

*G 4 (x* = 3x+1)G*+ (Bx —2)G +1 =0.

This is sequence A301897 (defined as the number of shallow permutations) in the
OEIS [5].

Our proof relies on a recursive description of the set of unlinked permutations due
to Cornwell and McNew and a different recursive description of the set of shallow
permutations due to Hadjicostas and Monico [3]. We show by induction that all
permutations satisfying the description of Cornwell and McNew are shallow and
separately that all permutations satisfying the description of Hadjicostas and Monico
are unlinked.
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A LIFTING OF THE GOULDEN-JACKSON CLUSTER METHOD TO THE
MALVENUTO-REUTENAUER ALGEBRA

Yan Zhuang Davidson College

The study of consecutive patterns in permutations, initiated by Elizalde and Noy [2]
in 2003, extends the study of classical patterns in permutations. Consecutive patterns
in permutations are analogous to consecutive subwords in words, where repetition
of letters is allowed. In the latter realm, the cluster method of Goulden and Jackson
[5] provides a very general formula expressing the generating function for words by
occurrences of prescribed subwords in terms of a “cluster generating function”, which
is easier to compute. In 2012, Elizalde and Noy [3] adapted the Goulden—Jackson
cluster method to the setting of permutations, which allows one to count permutations
by occurrences of prescribed consecutive patterns. Their adaptation of the cluster
method has become a standard tool in the study of consecutive patterns, and a notable
recent development is a g-analogue [1] which also keeps track of the inversion number
statistic.

The main result of this talk is a lifting of the Goulden-Jackson cluster method for
permutations to the Malvenuto—Reutenauer Hopf algebra. Since the basis elements of
the Malvenuto—-Reutenauer algebra correspond to permutations, our cluster method
in Malvenuto-Reutenauer is in a sense the most general cluster method possible for
permutations. By applying standard homomorphisms, we recover Elizalde and Noy’s
cluster method for permutations as well as its g-analogue as special cases of our gen-
eralized cluster method. We also construct other homomorphisms which lead to new
specializations of our generalized cluster method that can be used to count permuta-
tions by occurrences of prescribed patterns while keeping track of other permutation
statistics.

The permutation statistics that we consider are “inverses” of several classical permu-
tation statistics related to descents and peaks, including the descent number, major
index, comajor index, peak number, and left peak number. Given a statistic st, we
define its inverse statistic ist by ist(7r) := st(7r~!). For example, given 7w = 72163584,
its inverse descent number is given by ides(71) = des(7r!) = des(32586417) = 4.

We consider these inverse statistics because they are inverses of “shuffle-compatible”
statistics. In [4], it is proven that if a permutation statistic st is shuffle-compatible
and is a coarsening of the descent set, then st induces a quotient of the algebra QSym
of quasisymmetric functions, denoted As. By composing the quotient map from
QSym to Ag with the canonical surjection from the Malvenuto-Reutenauer algebra to
QSym, we obtain a homomorphism on the Malvenuto-Reutenauer algebra which can
be used to count permutations by the corresponding inverse statistic. Applying these
homomorphisms to our generalized cluster method yields specializations that refine
by these inverse statistics, and these new specializations lead to new generating func-
tion formulas that count permutations by occurrences of various consecutive patterns
refined by inverse statistics.

Some preliminary results of this work were presented at Permutation Patterns 2021,
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and I am grateful to Sergi Elizalde for posing a question at PP 2021 which helped
spawn additional results, leading to the completion of the paper [6] on which this
talk is based.
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