Computers
Terminology

READ—FERM Computer Chapters 47 and 48
Computers
Terminology

Example (FEIM): Hardware

Which of the following terms is best defined as a device that holds data and instructions for further manipulation?
(A) buffer
(B) accumulator
(C) data bus
(D) modem

Answers (C) and (D) can be eliminated because these devices pass data and do not hold it. Answers (A) and (B) are both devices that hold data—one holds data before transfer only (the buffer) and one holds data for further processing (the accumulator).

Therefore, the answer is (B).
Example (FEIM): Software

Which of the following is a seven-bit code for representing characters as digital words?
(A) binary
(B) RS-232C
(C) ASCII
(D) EPROM

First, read the whole question and think! Binary is a digital code, so if one saw the words “code” and “digital” in the problem statement one might be hasty and answer (A). The RS-232C interface passes digital words, so one might also be hasty and answer (B). However, ASCII is correct.

Therefore, the answer is (C).
Computers

Spreadsheets

Cell Reference
• Columns – letter designators
• Rows – number designators

Absolute Cell Reference
• “absolute” designator – “$” (placed before the row and column designators; e.g., B4)

Absolute Column, Relative Row Cell Reference
• Column reference with a “$” (e.g., $B4)

Relative Column, Absolute Row Cell Reference
• Row reference with a “$” (e.g., B$4)

Relative Cell Reference
• Depends entirely on which cell it is located in (e.g., B4)
Example (FEIM):

In a spreadsheet, the formula A4 + B2 + B2 is entered into cell C3. The contents of cell C3 are copied and pasted into cell D5. The formula in cell D5 is:

(A) A4 + C2 + C4
(B) B6 + C4 + C4
(C) A4 + C4 + C4
(D) A4 + B2 + B2

The first absolute cell reference is unchanged by the paste operation and remains A4.
The second cell reference will have the column reference increased by one and become C2.
The third cell reference will have the column reference increased by one and the row reference increased by two and will become C4.

Therefore, the answer is (A).
Example (FEIM): Simple Spreadsheet Calculations

In a spreadsheet, the number in cell A4 is set to 6. Then, A5 is set to A4 + A4. This formula is copied into cells A6 and A7. The number shown in cell A7 is most nearly
(A) 12
(B) 24
(C) 36
(D) 216

A5 = A4 + A4 = 6 + 6 = 12
A6 = A5 + A4 = 12 + 6 = 18
A7 = A6 + A4 = 18 + 6 = 24

Therefore, the answer is (B).
Computers
Algorithm Flowcharts

Terminal – starts or stops a process
Decision – decision must be made or two items are compared
Input/output – receive, output, or store data
Connector – indicates the flowchart continues elsewhere
Off-page – indicates the flowchart continues on the following page
Processing and predefined process – refer to calculation or data manipulation
Annotation – comments

Figure 17.1 Flowcharting Symbols
Example 1 (FEIM):
What is the value of X at the completion of the flow diagram shown?
(A) 2
(B) 4
(C) 5
(D) none of these

In the first pass, the program performs the operation
X = T + 1 = 3 + 1 = 4
Now, X = 4, so the next operation is
T = X + 1 = 4 + 1 = 5
Since the condition T > X is now satisfied, the program segment is over and X = 4.
Therefore, the answer is (B).

NOTE: “=” indicates replacement not equality (in FORTRAN and on the FE Exam)
Simple Calculations

+ add
– subtract
* multiply
/ divide
^ or ** exponentiation

Sequence of open operations from left to right in the following hierarchy:
exponentiation, then
multiplication and division, then
addition and subtraction

Examples of how X^B might be expressed:
X^{**B}
X^B
Example (FEIM):
A computer structured programming program contains the following calculation. What is the value of X?

$$X = \frac{4 \times 6}{5-3}$$

(A) 12
(B) 20
(C) 24
(D) 40

The quantities in the parentheses are calculated first, so the values are $24/2 = 12$

Therefore, the answer is (A).
Structured Programming

IF-THEN Statements

- IF <condition> THEN <action>
- IF <condition> THEN <action 1> ELSE <action 2>

Example (FEIM):
A computer structured programming program contains the following program segment. What is the value of X after the segment is executed?

X = 2
T = 3
IF X*2 > T THEN T = X*2
IF T > X THEN X = T*2
IF T < X THEN X = T + 3

(A) 2
(B) 6
(C) 7
(D) 11
Since $X \times 2 = (2)(2) = 4$, the condition is satisfied, and the operation is performed:

$T = X \times 2 = (2)(2) = 4$

Since $X = 2$ and $T = 4$ now, the second operation is performed:

$X = T \times 2 = (4)(2) = 8$

Since $X = 8$ and $T = 4$ now, the third operation is performed:

$X = T + 3 = 4 + 3 = 7$

Therefore, the answer is (C).
Computers
Structured Programming

GOTO Operations
These operations move the program to a number designator.

Example (FEIM):
A computer structured programming program contains the following program segment. What is the value of X after the segment is executed?

\[
X = 4 \\
T = 8 \\
T = T - 1 \\
X = X + 1 \\
\text{IF } X < T \text{ THEN GOTO 1}
\]

(A) 6
(B) 7
(C) 9
(D) 11
The first and second operations are performed, so
\[T = 8 - 1 = 7 \]
\[X = 4 + 1 = 5 \]

Since \(X < T \), the GOTO operation is executed and the program returns to line 1.
The first and second operations are performed again, so
\[T = 7 - 1 = 6 \]
\[X = 5 + 1 = 6 \]

Since \(X = T \), the condition for the GOTO operation is not satisfied, so the GOTO is not executed, leaving \(X = 6 \).

Therefore, the answer is \((A) \).
Computers
Structured Programming

DO/WHILE Loops

DO WHILE <condition> ENDWHILE

Example (FEIM):
A computer structured programming program contains the following program segment. What is the value of X after the segment is executed?

X = 4
T = 8
DO WHILE T ≥ X
 T = T – 2
 X = X + 2
ENDWHILE

(A) 4
(B) 6
(C) 8
(D) 10
Computers
Structured Programming

In the beginning, the condition $T \geq X$ is satisfied, so the operations in the loop are executed:

\[
T = T - 2 = 8 - 2 = 6 \\
X = X + 2 = 4 + 2 = 6
\]

Going back up to the beginning of the DO WHILE loop, the condition is still satisfied because $X = T$; so the operations in the loop are executed.

\[
T = T - 2 = 6 - 2 = 4 \\
X = X + 2 = 6 + 2 = 8
\]

Returning again to the beginning of the DO WHILE loop, the condition is no longer satisfied since now $X > T$, so the segment is complete. The final value of $X = 8$.

Therefore, the answer is (C).
Computers
Structured Programming

DO/UNTIL Loops
 DO UNTIL <condition> ENDUNTIL

FOR Loops
 FOR <counter range> NEXT <counter>

Example (FEIM): FOR Loops
A computer structured programming program contains the following program segment. What is the value of X after the segment is executed?
 X = 0
 FOR T = -1 TO 2
 X = X + T
 NEXT T

(A) 2
(B) 3
(C) 4
(D) 6
The FOR statement indicates that the loop is repeated four times, when $T = -1$, $T = 0$, $T = 1$, and $T = 2$. So, in order, the operations are:

\[
\begin{align*}
X &= X + T = 0 - 1 = -1 \\
X &= X + T = -1 + 0 = -1 \\
X &= X + T = -1 + 1 = 0 \\
X &= X + T = 0 + 2 = 2
\end{align*}
\]

Therefore, the answer is (A).
Structured Programming

Example (FEIM): Data Arrays

The numbers –3, 5, 2, –6, –1, 3, ... are in a file to be read and processed by the structured programming that follows.

\[
\begin{align*}
I & = 1 \\
Y & = 0 \\
\text{WHILE } I \leq 3 \\
\text{Read a value from the file and set } X \text{ equal to that value.} \\
\text{If } X < 0 \text{ GOTO 1} \\
\text{ELSE } Y & = Y + X^2 \\
1 & \quad I = I + 1 \\
\text{ENDWHILE} \\
Z & = Y/I
\end{align*}
\]

The number after the structured programming is executed is most nearly

(A) 7.3
(B) 9.7
(C) 19.5
(D) 26.0
First, the WHILE loop will repeat for I = 1, 2, and 3.

When I = 1, X = –3, and the Y = Y + X*X instruction is not executed.
When I = 2, X = 5, and Y = Y + X*X = 0 + 5*5 = 25.
When I = 3, X = 2, and Y = Y + X*X = 25 + 2*2 = 29.

I is incremented to I = 4.

The WHILE loop is exited, and the last instruction is executed:

Z = Y/I = 29/4 ≈ 7.3

Therefore, the answer is (A).