Masaru Nakamoto

Masaru Nakamoto Picture

Associate Professor of Biology

Center for the Sciences, 110


  • Post-doctoral – Harvard Medical School
  • Ph.D. – Kagoshima University
  • M.D. – Kobe University

Research Interests

The broad goal of my research is to understand how cell-cell interactions contribute to establishment and maintenance of the spatial pattern of the vertebrate body and diseases. Cell- cell signaling plays pivotal roles in metazoan biological processes throughout the organism’s lifetime, and dysregulation of cell-cell signaling causes many diseases. Elucidation of the molecular mechanism of cell-cell signaling not only constitutes a fundamental quest of today’s life science research but also provides an important basis for development of novel therapeutic approaches.

My current research focuses on two main projects: (1) Molecular mechanisms of development, maintenance, and aging of the nervous system, and (2) Roles of cell-cell competition during cancer progression and inhibition. We take a broad range of approaches, including molecular, cellular, biochemical, pathological, and embryological methodologies.


Selected publications

  • Nakamoto, C. and Nakamoto, M. (2022). Loss-of-function approach in the embryonic chick retina by Tol2 transposon-mediated transgenic expression of artificial microRNAs. J. Vis. Exp. 183, e62399, doi:10.3791/62399
  • Nakamoto, M. and Nakamoto, C. (2020). Tol2 transposon-based regulation of gene expression in the developing chick retina, in “Retinal Development” (Springer). Methods Mol. Biol. 2092: 91-108; In Retinal Development: Methods and Protocols (Mao, C.-A., Ed.), Springer.
  • Nakamoto, C., Durward, E., Horie, M., and Nakamoto, M. (2019) Nell2 regulates the contralateral-versus-ipsilateral visual projection as a domain-specific positional cue. Development 146: dev170704.
  • Collinson, J.M., Lindström, N.O., Neves, C., Wallace, K., Meharg, C., Charles, R.H., Ross, Z.K., Fraser, A.M., Mbogo, I., Oras, K., Nakamoto, M., Barker, S., Duce, S., Miedzybrodzka, Z., and Vargesson, N. (2018). The developmental and genetic basis of ‘clubfoot’ in the peroneal muscular atrophy mutant mouse. Development 145: dev160093.
  • Nakamura, R., Oyama, T., Tajiri, R., Mizokami,  A., Namiki, M., Nakamoto, M., and Ooi, A. (2015). Expression and regulatory effects on cancer cell behavior of NELL1 and NELL2 in human renal cell carcinoma. Cancer Sci. 106, 656-64.
  • Nakamoto, C., Kuan, S-L., Findlay, A.S., Durward, E., Ouyang, Z., Zakrewska, E.D., Endo, T., and Nakamoto, M. (2014). Nel promotes differentiation and survival of retinal ganglion cells during development. Mol. Biol. Cell 25, 234-244.
  • Nakamura, R., Nakamoto, C., Obama, H., Durward, E., and Nakamoto, M. (2012). Structure-function analysis of Nel, a thrombospondin-1-like glycoprotein involved in neural development and functions. J. Biol. Chem. 287, 3282-3291.
  • Jiang, Y., Obama, H., Soh-Leh Kuan, Nakamura, R., Nakamoto, C., Ouyang, Z., and Nakamoto, M. (2009). In vitro guidance of retinal axons by a tectal lamina-specific glycoprotein Nel. Mol. Cell Neurosci. 41, 113-119.
  • Bjartmar,  L.,  Huberman, A.D., Ullian, E.M., Lu, X., Xu, W., Prezioso, J., Stokes, C., Worley, P., Malenka, R.C., Ball, S., Peachey, N., Chapman, B., Nakamoto, M., Barres, B.A. and Perin, M.S. (2006). Neuronal Pentraxins Mediate Strengthening and Patterning of Retinogeniculate Synapses. J. Neurosci. 26, 6269-6281.
  • Matsui, T., Matsuoka, H., Tamekane, A., Inoue R., Shimoyama, M., Okamura, A., Obama, H., Kelly, M.L., and Nakamoto, M. (2005). Cell adhesion and migration regulated by EphB6 expressed on human hematopoietic progenitors. Blood 106, 1386.
  • Matsuoka, H., Obama, H., Kelly, M., Matsui, T., and Nakamoto, M. (2005). Biphasic functions of the kinase-defective EphB6 receptor in cell adhesion and migration. J. Biol. Chem. 280, 29355-29363.
  • Feldheim, D. A.*, Nakamoto, M.*, Osterfield, M., Gale, N.W., DeChiara, T. M., Rohatgi, R., Yancopoulos, R. D., and Flanagan J. G.(2004). Loss-of-Function analysis of EphA receptors in retinotectal mapping.  J. Neurosci. 24, 2542-2550. (* equal contribution)
  • Nishida, K., Flanagan, J.G. and Nakamoto, M. (2002). Regulation of the domain-specific olivocerebellar projection by the Eph-ephrin interaction.  Development 129, 5647-5658.
  • Nakamoto, M. and Bergemann, A.D. (2002). Diverse roles for the Eph family of Receptor Tyrosine Kinases in Carcinogenesis.  Microsc. Res. Tech. 59, 58-67. (Review).
  • Nakamoto, M. (2000) Eph receptors and ephrins. Int. J. Biochem. Cell Biol. 32, 7-12. (Review).
  • Nakamoto, M. (1997). Eph receptors and ligands in the development of neuronal network. Cell Technology 16, 1008-1018. (Review).
  • Nakamoto, M. (1996). Control of retinotectal projection by Eph receptors and their ligands. Experimental Medicine 14, 2658-2665. (Review).
  • Nakamoto, M., Cheng, H.-J., Friedman, G.C., McLaughlin, T., Hansen, M.J., Yoon, C.H., O’Leary, D.D.M. and Flanagan, J.G. (1996).  Topographically specific effects of ELF-1 on retinal axon guidance in vitro and retinal axon mapping in vivo.  Cell  86, 755-766.
  • Cheng, H-J., Nakamoto, M., Bergemann, A.D. and Flanagan, J.G. (1995).  Complementary gradients in expression and binding of ELF-1 and Mek4 in development of the topographic retinotectal projection map.  Cell  82, 371-381.